Chris Peikert – Research Statement

My research is dedicated to developing new, stronger mathematical foundations for cryptography, with a particular focus on geometric objects called lattices. Informally, a lattice is a periodic ‘grid’ of points in \(n \)-dimensional real space \(\mathbb{R}^n \). Lattices have been studied since the early 1800s, and their apparent simplicity belies many deep connections and applications across mathematics, physics, and computer science.

In cryptography, the security of most systems necessarily relies upon computational problems that are conjectured to be intractable, i.e., infeasible to solve with any realistic amount of computational resources. Over the past three decades, the most useful candidate hard problems have come from an area of mathematics called number theory. For instance, a commonly made conjecture is that it is infeasible to compute the prime factors of huge random integers. However, the relatively high computational cost, and largely sequential nature, of operating on such enormous numbers inherently limits the efficiency and applicability of number-theoretic cryptography. Even more worrisome is that quantum algorithms, which work in a model of computation that exploits quantum mechanics to dramatically speed up certain kinds of computations, can efficiently solve all the number-theoretic problems commonly used in cryptography! Therefore, the future development of a practical, large-scale quantum computer would be devastating to the security of today’s cryptographic systems. Alternative foundations are therefore sorely needed.

The seminal works of Ajtai [Ajt96] and Ajtai-Dwork [AD97] in the mid-1990s used conjectured hard problems on lattices as a basis for cryptography. Since then, it has been broadly recognized that lattices have the potential to yield cryptographic schemes with unique and attractive security guarantees—including “worst-case” hardness (explained in the next section) and resistance to quantum attacks—and high levels of asymptotic efficiency and parallelism. However, until 2007 only a few very basic lattice-based objects (having limited applicability) were known, and in practice they were very inefficient and so mainly of theoretical interest. Over the past several years, my research has contributed ground-breaking progress toward realizing the full potential of lattices in cryptography, by (1) strengthening the theoretical foundations of the area, (2) designing new cryptographic constructions that enjoy rich functionality and strong security properties, and (3) making lattice cryptography efficient and practical via new design paradigms, fast algorithms, and optimized implementations.

Impact. My work in lattice cryptography has greatly contributed to a recent explosion of activity and interest in the area, and to other exciting developments in cryptography more broadly. As one indication of impact, cryptographic research on lattices in the two decades prior to 2006 was relatively rare. Most of these works were focused on using lattices to break various cryptographic proposals, e.g., “knapsack” cryptosystems and variants of RSA. A large fraction of the remaining works were substantial (and important) refinements of the seminal papers, but did not provide any new cryptographic constructions or concepts. As explained in detail below, my work has shown that lattices are unexpectedly versatile and efficient for a wide variety of important cryptographic goals—in fact, for several tasks the only known solutions are based on lattices! As a result, top-tier conferences like Crypto and Eurocrypt now frequently have at least one session dedicated entirely to lattice cryptography; many conferences (both theoretical and applied) such as Crypto, Theory of Cryptography, and Security & Cryptography for Networks have featured invited tutorials on the area by myself and others; and several workshops have been held around the world to disseminate new developments.

More generally, my work on lattices has introduced new perspectives and tools to cryptography, which in some cases have been applied to solve long-standing problems having nothing at all to do with lattices! Therefore, I find this beautiful subject to be not merely a niche subarea of cryptography, but rather one with the potential to continue shedding light on some of the central questions of the field.
Theoretical Foundations

Cryptography inherently requires a certain kind of intractability, called average-case hardness: schemes must be hard to break not only for some possibly rare or hard-to-generate choices of their “keys” (i.e., instances of an underlying problem), but rather for almost all choices of random keys. This notion of hardness is quite different from, and much less well understood in general than, the worst-case notion most commonly studied in the context of algorithms, NP-completeness, etc. For the problems used in cryptography, there is the possibility that they could be hard in the worst case, but easy (or substantially easier) for any usable probability distribution over their instances [Imp95].

The groundbreaking work of Ajtai [Ajt96] proved that several problems related to finding “relatively short” vectors in lattices have a striking worst-case/average-case equivalence: solving them on even a tiny fraction of randomly generated lattices (under a particular probability distribution) is provably as hard as solving them on any lattice of a related dimension. Moreover, Ajtai’s work and follow-ups (e.g., [GGH96, AD97, Reg03, Reg05]) showed that random lattices can be used for basic cryptographic tasks like secure hashing and public-key encryption. Because finding short vectors in high-dimensional lattices has been a notoriously hard algorithmic question for hundreds of years—even when one allows for the power of quantum algorithms (see, e.g., [LLL82, Sch87, SE94, Reg02])—we have solid and unique evidence that lattice-based cryptoschemes are secure. However, many aspects of the seminal results leave room for improvement in various ways, and my work has further cemented the foundations of the area.

Minimizing assumptions. A core endeavor in theoretical cryptography is to determine the weakest intractability assumptions that suffice for achieving various security and functionality goals. As a first example, all the seminal worst-case/average-case reductions for lattices were designed to work for the Euclidean (ℓ_2) norm, i.e., they measured “shortness” in ℓ_2. Of course, ℓ_2 and other norms like ℓ_p are related up to some polynomial factor in the dimension, but this alone leads to worse quantitative bounds for norms other than ℓ_2. Because ℓ_2 is, in a precise sense, the “easiest” norm for lattice problems [RR06], the security of lattice cryptography therefore relied on the qualitatively strongest assumptions, at least with respect to the choice of norm. In a work [Pei07] that was selected as one of the top papers at the Conference on Computational Complexity ’07, I showed that existing worst-case/average-case reductions for lattice problems actually work for all ℓ_p norms simultaneously, for $p \geq 2$, with essentially no loss in quality versus the ℓ_2 norm. In other words, in order to break existing lattice-based cryptosystems, one must be able to solve not only all instances of certain lattice problems, but all instances in all ℓ_p norms, simultaneously. At a technical level, this work exhibited new properties of “discrete Gaussian” probability distributions on lattices, which are at the heart of many of my later works (e.g., [GPV08, Pei10, OPW11, MP12, MP13]), as discussed below.

As a second example, Ajtai’s seminal work [Ajt96] constructed a one-way function—the ‘minimal’ cryptographic object—assuming the worst-case hardness of (among others) the approximate Shortest Vector Problem (GapSVP), which is usually considered the most fundamental computational problem on lattices. By contrast, public-key encryption schemes like [AD97, Reg03, Reg05] relied either on more specialized (and so possibly easier to break) lattices having some additional geometric structure, or on the explicit assumption that lattice problems are indeed hard for quantum algorithms. For over a decade, a central open question was whether such stronger assumptions were necessary for secure encryption. I resolved this problem, in a work [Pei09] awarded Best Paper at the top-tier theory conference STOC’09 (and cited at least 280 times), by giving an encryption scheme that is provably as hard as GapSVP for classical algorithms, on arbitrary lattices having no extra structure. Building on this work, several coauthors and I recently showed [BLP+13] (in a work at STOC’13) that a wide class of previously incomparable problems used in lattice-based encryption are in fact equivalent, thus unifying many disparate assumptions into one.

Even if lattice problems turn out to be easy for quantum algorithms, lattice cryptography might still be secure against classical (non-quantum) attacks. That is, quantum-hardness is not a necessary assumption for security, but rather a “bonus” property.
Algebraic lattices. I have been a primary investigator of so-called ideal lattices and their use in efficient and highly functional cryptographic schemes. Ideal lattices arise naturally in the classical study of number fields, and have algebraic symmetries that enable compact representations and efficient operations (i.e., quasi-linear $O(n)$ space and time), via algorithms like the Fast Fourier Transform. Building on [Mic02], my initial work [PR06] in lattice cryptography (with Rosen) provided the first cryptographically secure hash function based on ideal lattices. Our follow-up work [PR07] from STOC’07 showed the surprising fact that certain families of ideal lattices admit worst-case/average-case reductions with approximation factors as small as $O(\sqrt{\log n})$, versus $\Omega(n)$ for general lattices.

A capstone of my research on ideal lattices is a work [LPR10] with Lyubashevsky and Regev from Eurocrypt’10 and the Journal of the ACM, in which we proved the worst-case hardness of a natural average-case problem, called “learning with errors over rings” (ring-LWE). As a first application of ring-LWE, we gave a public-key cryptosystem that can encrypt and decrypt in just polylogarithmic $\tilde{O}(1)$ time per message bit. Subsequently, ring-LWE has served as the foundation for numerous efficient cryptographic constructions, such as pseudorandom functions and fully homomorphic encryption (described in the upcoming sections).

Ongoing and future work. In a recent work [CDLP13] with Chung, Dadush, and Liu, we study the complexity of approximating the “smoothing parameter” of a lattice, which is a fundamental quantity at the heart of the best known worst-case/average-case reductions [MR04, GPV08, MP13] and other important analytical results on lattices (e.g., [Ban93, AR04]). As one consequence, our work gives security proofs of existing cryptographic schemes under the mildest lattice assumptions to date. Another outcome of our work, which I am eager to pursue, is the tantalizing possibility that certain lattice problems may be complete for the class SZK of languages having statistical zero-knowledge proofs (see [SV97]). The class SZK contains all problems that have ever been used as a foundation for cryptography, and so SZK-completeness of lattice problems would be exceptionally strong evidence for the security of lattice cryptography, and unprecedented among problems used in cryptography.

Cryptographic Constructions

Broadly speaking, cryptography is concerned with defining and achieving security for complex interactions among potentially malicious entities. As such, the field deals with a wide spectrum of objects—ranging from “one-way” functions (which are necessary for almost any nontrivial cryptography) to full-featured encryption schemes and interactive protocols—and various notions of security for them. A major research endeavor is to design and analyze schemes that combine desirable security, functionality, and efficiency properties. The following describes a few of my main research threads along these lines.

Secure encryption against active attacks. For encryption, two types of security are commonly considered: (1) a basic notion that guarantees the secrecy of messages from any passive eavesdropper (who does not alter the ciphertext or interact with the communicating parties), and (2) a “gold standard” notion which preserves secrecy from an active adversary that may alter ciphertexts and decrypt arbitrary ones of its choice. Most real-world applications of encryption actually require the latter notion, but rigorously obtaining it (under any natural assumption) is quite challenging. In particular, no lattice-based cryptosystem had active security until my work in STOC’08 with Waters [PW08] (which was selected as one of the top papers of the conference, and has been cited at least 290 times). Our construction worked by way of a novel abstraction called a “lossy” trapdoor function. The concept of lossiness has since found many other applications by myself and others, including my work [PVW08] on very simple, efficient, and securely composable instantiations of “oblivious transfer” (a central component of secure protocols), and solutions to the long-standing open problems of deterministic encryption [BFO08] and security under so-called “selective-opening” attacks [BH09]. In addition, my further work [Pei09, MP12] on active security for lattice-based encryption has refined the somewhat complex and inefficient scheme from [PW08] to be nearly as simple and efficient as passively secure encryption.
Lattice trapdoors and applications. A second major thrust has been to construct lattice-based cryptographic schemes that support flexible and expressive functionality, going far beyond basic authentication and/or confidentiality. A seminal example of this is my work from STOC’08 with Gentry and Vaikuntanathan [GPV08], which introduced techniques for securely using “trapdoors” for lattices in cryptographic schemes. This work, which has been cited more than 540 times, opened up a major new line of research that has led to a vast array of powerful applications by myself and many others, e.g., [PVW08, PV08, CHKPT0, ABBT0a, GHV10, Boy10, Pei10, ABBT0b, GKV10, BFT1b, BFT1a, OPW11, AFV11, MP12, AP12, GVW13, GSW13, BGG14, Wic14, GV14], to name just a few.

A main technical result from [GPV08] is an efficient algorithm that randomly samples from a discrete Gaussian distribution over a desired lattice coset, given a suitable “trapdoor” for the lattice (roughly analogous to the factorization of a composite integer). A main conceptual contribution is that such discrete Gaussian samples are, in a precise sense, “zero knowledge:” they reveal essentially no information about the trapdoor that was used to generate them. This property can be exploited in many ways to design a variety of cryptographic applications (and it has applications outside cryptography as well).

One main cryptographic application from [GPV08] is a simple “hash-and-sign” digital signature (i.e., message authentication) scheme, which was the first direct construction of lattice-based signatures with a security proof. Indeed, the zero-knowledge property of Gaussian sampling is the key that circumvents certain attacks [NR06, DN12] that had rendered previous heuristic signature proposals [GGH97, HPS01, HHGP03] completely insecure! A second main application is a realization of powerful idea called “identity-based” encryption (IBE), originally conceived of by Shamir [Sha84], which allows a user’s name or other identifying string (such as an email address) to serve as her public encryption key. Despite first being envisioned in 1984, no candidate scheme appeared until 17 years later [BF01], using mathematical structures that were completely new to cryptography at the time. In [GPV08] we used discrete Gaussian sampling to give the first IBE from standard lattice problems (in particular, from worst-case assumptions), which remains the only known IBE that has withstood quantum attacks.

A large portion of my work in recent years has been dedicated to further expanding the range of applications made possible by the ideas introduced in [GPV08], and giving more efficient and practical algorithms to instantiate them. A highlight is my work with Cash, Hofheinz, and Kiltz, which was awarded Best Paper at the top-tier Eurocrypt’10 conference and has been cited at least 270 times. In this work we resolved the main open problem from [GPV08], which was to eliminate the use of an idealized object called a “random oracle” from the digital signature and IBE schemes. In addition, we demonstrated a secure delegation mechanism for our IBE, which allows users to pass restricted capabilities to subordinates, in a hierarchical fashion. These techniques are at the heart of countless works that extend the flexibility of our schemes even further.

A few more examples of my works that build upon the foundation of [GPV08] include:

- A work with visiting student Alwen [AP09], which was selected as one of the top papers of STACS’09, that gives a new construction (improving on a rather complex and quantitatively loose one of Ajtai [Ajt99]) for generating a worst-case-hard random lattice together with a trapdoor. Notably, our construction is simultaneously optimal in all relevant parameters.
- A work [Pei10] from Crypto’10, which addresses the practical inefficiency and inherent sequentiality of the discrete Gaussian sampling algorithm from [GPV08]. It introduces a new analytical technique for discrete Gaussians, which yields an algorithm that is very simple and fast, and optimally parallelizable.
- A work with O’Neill and Waters [OPW11] from Crypto’11 that uses trapdoor techniques to solve a fourteen-year-old question about the existence of “deniable” encryption [CDNO97].

2The results from this work were discovered independently by myself and the other three authors, and our papers were merged at the request of the Eurocrypt program committee.
A work with Micciancio from Eurocrypt’12 [MP12], which was selected as one of the top papers of the conference. It gives a new trapdoor notion which is more compact and easy to work with than the one used in [GPV08], along with specialized efficient and parallel algorithms for generating and using such trapdoors. (Our notion is also implicitly at the heart of a recent wave of functional encryption and signature schemes [GSW13, BGG14, AP14, Wic14, GV14].)

A work with my PhD student Krehbiel and visiting student Bendlin [BKP13] that gave the first “threshold” versions of trapdoor-using applications, in which trust is split among several users (some of whom may be malicious) who collectively run a distributed protocol to perform privileged operations.

Fully homomorphic encryption. A third area of interest is the exciting concept of “fully homomorphic encryption” (FHE), which allows an untrusted worker to perform computations on encrypted data. Due to its many applications, and the lack of any plausible candidate construction for decades, FHE was often called a “holy grail” of cryptography. In 2009, Gentry [Gen09b, Gen09a] proposed the first candidate FHE construction (based on lattices), which quickly set off a flurry of interest and led to several improvements (e.g., [BV11b, BV11a, BGV12, Bra12, GSW13]). Today, the most efficient FHE schemes are based upon the ring-LWE problem from my foundational work on encryption from algebraic lattices [LPR10, LPR13], discussed in the previous section. However, these FHE schemes are still exceedingly inefficient, due mainly to the high cost of an auxiliary “bootstrapping” operation.

My PhD student Alperin-Sheriff and I have devised new methods for bootstrapping that yield major efficiency improvements. In work from Crypto’13 [AP13], which was selected as one of the top papers of the conference, we gave the fastest bootstrapping algorithm to date, which runs in only quasi-linear $O(n^{\log n})$ time in the bit length of the ciphertext. In addition, the hidden factors are relatively small, and the method seems suitable for practice. Our method builds upon a “ring-switching” technique that I and coauthors devised for entirely different purposes [GHPS12], and homomorphically evaluates a Fast Fourier-like transform by switching through a carefully designed sequence of “hybrid” rings.

More recently, a new kind of FHE scheme and bootstrapping approach [GSW13, BV14] have emerged, based on quantitatively much milder lattice assumptions, but at the cost of vastly more expensive bootstrapping operations (i.e., very large polynomial runtimes). In work from Crypto’14 [AP14], we gave a substantially different bootstrapping method that is based on very mild assumptions and is quasi-optimal in the number of homomorphic operations required. It has subsequently been implemented [DM14], and is many hundred times faster than the previous state of the art.

Pseudorandom functions and future work. A final research direction that I am especially excited about concerns pseudorandom functions (PRFs), which are the central objects in symmetric-key cryptography. While PRFs are theoretically much “easier” to obtain (via general-purpose but inefficient and sequential transformations) than rich objects like IBE described above, until recently they were one of the last fundamental objects that lacked a direct lattice-based realization. In a work [BPR12] from Eurocrypt’12, my PhD student Banerjee, Rosen and I devised new approaches and proof techniques to construct the first PRFs directly from lattice problems, yielding efficient and highly parallel constructions. One interesting aspect of our work is that for our lowest-depth constructions, our security proof requires quite large parameters and strong hardness assumptions. However, the constructions themselves appear to be secure (they resist all known attacks) for very small parameters! This mismatch may be an artifact of our proof technique, and obtaining a security proof that yields the “right” parameters is a fascinating theoretical question that I continue to pursue.

A second research thread relates to PRFs having additional properties that can be useful in applications. A nice work of Boneh et al. [BLMR13] showed that a variant of our PRF from [BPR12] is the first known one to have “key homomorphism,” a very useful property with several applications. However, their construction was highly inefficient, with large polynomial key sizes and runtimes. In follow-up work [BP14], Banerjee and I gave much more efficient, compact, and general constructions of key-homomorphic PRFs. As an unexpected
side benefit, these are also the first known PRFs having both good parallelism and quasi-optimal key sizes. Looking forward, a sizable body of recent research has demonstrated the power and importance of so-called “functional” or “constrained” PRFs in a variety of contexts. Building on our work from [BPR12, BPT14], we have obtained some initial results [BFP+14] in constructing such objects, and there is a vast horizon waiting to be explored.

Efficiency and Towards Practice

In terms of performance, lattice cryptography has long been recognized for its promise of high asymptotic efficiency. In practice, however, most theoretically sound schemes suffer from impractically large keys and runtimes. The main reason is that in general, it requires at least quadratic $\Omega(n^2)$ space and time to specify and operate on an n-dimensional lattice, and n needs to be at least in the few hundreds for sufficient security. As already mentioned above in the section on algebraic lattices, my research has started to bridge this gap between theory and practice by constructing compact, fast cryptographic objects with sound proofs of security (under reasonable complexity assumptions). Going further, a major goal of mine is to see lattice cryptography brought successfully to practice in the real world. My work in this direction falls into a few broad, mutually reinforcing threads.

Algorithms and analysis. First, lattice cryptography in practice will require highly efficient specialized algorithms and sharp analysis to minimize runtimes, parameters, key sizes, etc. For example, my work with Micciancio [MP12] completely reworked and simplified all the central operations and analytical tools used by all “trapdoor” applications discussed above (like digital signatures and IBE), yielding major practical improvements over previous methods. As another example, in a companion work [LPR13] to the ring-LWE paper [LPR10], we designed a toolkit of very fast, customized algorithms and analytical techniques for optimal use of ring-LWE and ideal lattices in cryptography, across all applications. These tools have paid unexpected dividends, as they have become central to the unexpected functionality and substantial efficiency improvements we exhibited [GHPS12, AP13] for fully homomorphic encryption schemes (described in the previous section).

Constructions and security estimates. Second, moving to practice will require not just general-purpose constructions and asymptotic bounds, but optimized schemes for particular applications, with concrete parameters and estimated security levels. To that end, my work [LP11] with PhD student Lindner showed that concrete instantiations of ring-LWE encryption (from [LPR10]) can have key sizes and security levels comparable to those of the widely used RSA cryptosystem, while running many times faster. In addition, a recent work of mine [Pei14] proposed “drop-in” lattice-based components for core Internet protocols like key exchange, along with various optimizations that improve ciphertext lengths by about a factor of two over the prior best.

Implementations. Third, practical lattice cryptography obviously will require implementations and benchmarks. For example, with colleagues I expanded my early work [PR06] on ideal lattice-based hash functions into a fast implementation [LMPR08] and a proposal [ADL+08] to NIST’s SHA-3 hash function competition. More recently, with colleagues I implemented and benchmarked [BBL+14] the PRF design from [BPR12], and showed that with only basic optimizations, it runs only 2-3 times slower than highly optimized software implementations of AES, the national standard. It also turns out that the algebraic nature of our PRF is highly amenable to homomorphic evaluation, which has many attractive applications in theory and practice (see, e.g., [GGI+14]). Using techniques from my work on bootstrapping [AP13], we have demonstrated [ACPR14] that our PRF can be evaluated homomorphically with more than a thousand-fold speedup and memory reduction versus AES (cf. [GHPS12]). Finally, my students and I have made major progress on the design and implementation of a general-purpose, modular, and highly parallel library for lattice cryptography, which we intend to serve as a platform to bring the many exciting theoretical applications of lattices to practice.
Additional Research Interests

I also have significant interests in algorithms for hard lattice problems like the ones used in cryptography, and in the use of lattices for error correction and reliable communication.

Because many lattice problems are conjectured to be hard, and some are even NP-complete, we do not expect to find efficient algorithms for them. However, due to their utility in areas like optimization (e.g., integer programming), their usefulness in low dimensions as subroutines to other algorithms, and their importance in cryptanalysis, it is very important to investigate the most efficient algorithms for hard lattice problems. For instance, several problems are not yet even known to be solvable in simply exponential $2^{O(n)}$ time! A major development by Micciancio and Voulgaris \cite{MV10} gave the first deterministic, exponential-time algorithm for the shortest and closest lattice vector problems, but it was highly specialized to the Euclidean norm. In a work \cite{DPV11} with former GT PhD student Dadush and colleague Vempala, which appeared in the top-tier theory conference FOCS'11, we gave a new “enumerative” algorithm that lists all the points of a given lattice inside an arbitrary convex body. We applied this powerful tool to give the first deterministic, $2^{O(n)}$-time algorithm for the exact shortest lattice vector problem, in any norm.

In the theory of error-correcting codes, one of the most exciting modern developments was the discovery that it is possible to efficiently recover from significantly more error if one allows the decoder to output a short list of all possible original codewords within the error bound, rather than insisting on a unique answer. Beyond its natural applications to reliable communication and storage, this discovery of efficient “list decoding” algorithms has had profound implications for cryptography, learning theory, and computational complexity. In work \cite{GP12} at the Conference on Computational Complexity ’12, my former postdoc Grigorescu and I initiated the study of list decoding for lattices, using the Euclidean (ℓ_2) norm to measure the amount of error. Our main result is an efficient list decoder for the well-studied Barnes-Wall family of lattices: our decoder runs in time polynomial in the list size for any desired error tolerance, is perfectly parallelizable, and is even quite efficient in practice. We continue to investigate list decoding algorithms for other families of lattices, and new families of lattices that admit good tradeoffs between list size and error tolerance (along with efficient decoding algorithms).

References

