
Lattices in Cryptography
University of Michigan, Fall 2015

Lecture 2
SVP, Gram-Schmidt, LLL

Instructor: Chris Peikert
Scribe: Hank Carter

1 Shortest Vector Problem

Last time we defined the minimum distance λ1(L) of a lattice L, and showed that it is upper bounded by√
n · det(L)1/n (Minkowski’s theorem), but this bound is often very loose. Some natural computational

questions are: given a lattice (specified by some arbitrary basis), can we compute its minimum distance?
Can we find a vector that achieves this distance? Can we find good approximations to these? These are all
versions of the Shortest Vector Problem, which we now define formally.

Definition 1.1 (Shortest Vector Problem, exact form). The exact form of SVP has three common variants,
which we restrict to integer lattices (and so integral bases) without loss of generality:

1. Decision: given a lattice basis B and a real d > 0, distinguish between the cases λ1(L(B)) ≤ d and
λ1(L(B)) > d.1

2. Calculation: given a lattice basis B, find λ1(L(B)).

3. Search: given a lattice basis B, find a (nonzero) v ∈ L(B) such that ‖v‖ = λ1(L(B)).

It is obvious that the ability to solve the Calculation version immediately implies the ability to solve
the Decision version. More formally, we say that “Decision reduces to Calculation” and write Decision ≤
Calculation (note the directionality of the statements). The converse (Calculation ≤ Decision) also holds,
since using an oracle for Decision we can solve Calculation via binary search by varying the choice of d.
The only subtlety is that the number of possible values for λ1 must be bounded by 2poly(|B|), where B is
the bit length of the given basis, in order for the search to succeed in polynomial time. This is indeed the
case, because the minimum distance is the square root of an integer, and is between 1 and

√
n det(B)1/n

by Minkowski’s theorem. The latter is bounded by 2poly(|B|) because the determinant can be computed in
polynomial time. It also turns out that the Search version of the problem is also equivalent to the other two
versions; we will see the proof of this later.

Also of great interest and wide applicability are approximate versions of SVP.

Definition 1.2 (Approximate SVP). The γ-approximate Shortest Vector Problem, where γ = γ(n) ≥ 1 is
a function of the dimension n, has the following variants (again restricted to integer lattices):

1. Decision (GapSVPγ): given a lattice basis B and a positive integer d, distinguish between the cases
λ1(L(B)) ≤ d and λ1(L(B)) > γ · d.2

2. Estimation (EstSVPγ): given a lattice basis B, compute λ1(L(B)) up to a γ factor, i.e., output some
d ∈ [λ1(L(B)), γ · λ1(L(B))].

3. Search (SVPγ): given a lattice basis B, find a (nonzero) v ∈ L(B) such that 0 < ‖v‖ ≤ γ ·λ1(L(B)).

Observe that taking γ = 1 corresponds to the exact versions of the problems, and also that the problems
can only become easier as γ increases. Formally, GapSVPγ′ ≤ GapSVPγ for any γ′ ≥ γ (note the
directionality of the reduction), and similarly for SVP.

It is easy to check that
GapSVPγ ≤ EstSVPγ ≤ SVPγ ,

1Notice that because the lattice is integral, we can restrict to d which are square roots of positive integers, and represent them
by d2.

2If λ1(L(B)) falls between d and γ · d, either answer is acceptable. Alternatively, this version can be considered as a “promise
problem,” where the input B is guaranteed to satisfy one of the two cases.

1

http://www.eecs.umich.edu/~cpeikert/lic15/
http://www.eecs.umich.edu/~cpeikert/

i.e., being able to solve Search implies being able to solve Estimation, which implies being able to solve
Decision. It can also be seen that EstSVPγ ≤ GapSVPγ , again using a binary search technique. So these
two variants are equivalent, and we usually deal with just GapSVPγ . However, and perhaps surprisingly, for
“interesting” γ > 1 it is currently unknown if solving decision is equivalent to solving search! The “interesting”
qualifier is needed to rule out very large γ ≈ 2n, for which both versions are solvable in polynomial time (as
we will see shortly), and hence trivially equivalent.

Open Problem 1.3. Prove or disprove that SVPγ ≤ GapSVPγ for some (or all) nontrivial γ > 1.

In the remainder of the lecture we will develop tools that allow us to efficiently compute bounds on the
minimum distance, and even find relatively short nonzero lattice vectors.

2 Gram-Schmidt Orthogonalization

For linearly independent vectors b1, . . . ,bn ∈ Rn, we define the Gram-Schmidt orthogonalized vectors
b̃1, . . . , b̃n via an iterative process. First we define b̃1 = b1, and then for j = 2, . . . , n, we define b̃j to
be the component of bj orthogonal to span(b1, . . . ,bj−1) = span(b̃1, . . . , b̃j−1), the linear span of the
previous vectors. Symbolically, we define

b̃1 := b1,

b̃2 := b2 − µ1,2 · b̃1 where µ1,2 = 〈b2, b̃1〉/〈b̃1, b̃1〉,
...

b̃j := bj −
∑
i<j

µi,j · b̃j where µi,j = 〈bj , b̃i〉/〈b̃j , b̃j〉.

We can verify that the vectors b̃j are mutually orthogonal. For example,

〈b̃2, b̃1〉 = 〈b2, b̃1〉 − µ1,2 · 〈b̃1, b̃1〉 = 0.

The general case can then be proved by induction.

b̃1 = b1

b2

b̃2

Figure 1: An example of Gram-Schmidt orthogonalization and a (partial) tiling by the fundamental paral-
lelepiped of the resulting vectors.

2

It is often very convenient to view the orthogonalization process as corresponding to the following
(unique) matrix factorization:

B =

b̃1 b̃2 · · · b̃n


︸ ︷︷ ︸

B̃

·


1 µ1,2 · · · µ1,n

1 · · · µ2,n
. . .

...
1


︸ ︷︷ ︸

U

,

where the matrix U ∈ Rn×n is upper unitriangular (i.e., upper triangular with 1s on the diagonal) and hence
has determinant one.3

We can further factor out the lengths of the columns b̃i of B̃, obtaining

B̃ = Q ·


‖b̃1‖

‖b̃2‖
. . .
‖b̃n‖


︸ ︷︷ ︸

D

where Q is an orthogonal matrix, i.e., QtQ = I. This is because its columns are the mutually orthogonal
unit vectors b̃i/‖b̃i‖. Altogether, we have the (unique) factorization

B = QDU (2.1)

for orthogonal Q, diagonal D with positive diagonal entries, and upper-unitriangular U. This also corresponds
to the so-called “QR” factorization B = QR, where R = DU is an upper-triangular real matrix having
diagonal entries ‖b̃i‖.

In the context of lattices, we can usually ignore the orthogonal matrix Q, taking it to be the identity
matrix without loss of generality. This is because Q simply acts as a rigid rotation of Rn, and therefore
preserves all the main geometrical properties of the space (Euclidean norms, volumes, etc.). Therefore, we
can usually focus on just D and U.4

The Gram-Schmidt vectors have many important connections with the geometry of the lattice.

Lemma 2.1. For any lattice L = L(B), we have det(L) =
∏n
i=1‖b̃i‖.

Proof. We have det(L) = det(B) = det(Q) det(D) det(U) = det(D) =
∏n
i=1‖b̃i‖.

Lemma 2.2. For any lattice L = L(B), the body P(B̃) = B̃ · [−1
2 ,

1
2)
n is a fundamental region of L.

Proof. You will prove this in the homework. (Notice that the volume of P(B̃) is
∏
i‖b̃i‖, as expected.)

A very useful fact is that the Gram-Schmidt vectors gives a lower bound on the lattice minimum distance.

3However, U is not necessarily unimodular because the µi,j are not necessarily integers. Therefore, B̃ is not necessarily a basis
of the lattice generated by B.

4This all can be made formal by working with the so-called Gram matrix BtB = UtD(QtQ)DU = UtD2U of the basis B,
which characterizes B up to rigid rotations. Essentially all lattice algorithms and mathematical analyses can be made to work with a
Gram matrix instead of a basis.

3

Lemma 2.3. For any lattice L = L(B), we have λ1(L) ≥ mini‖b̃i‖.

Proof. Let’s first develop some intuition in the two-dimensional case. We can partition the lattice points
v = Bz into “slices” according to the integer coefficient z2 of b2. If this coefficient is zero, then v is in
the sublattice L(b1), which obviously has minimum distance ‖b1‖ = ‖b̃1‖. Otherwise, v lies in the affine
subspace z2b2 + span(b1), which is at distance |z2| · ‖b̃2‖ ≥ ‖b̃2‖ from the origin, and hence ‖v‖ ≥ ‖b̃2‖.
So altogether, ‖v‖ ≥ min{‖b̃1‖, ‖b̃2‖}.

b1

b2
b̃2

Figure 2: A two-dimensional lattice partitioned into “slices” according to the integer coefficient of b2.

To prove the claim formally (in n dimensions), let B = DU be the unique factorization from Equa-
tion (2.1), where as noted above we can assume Q = I without loss of generality. Let v = Bz for nonzero
z ∈ Zn be an arbitrary nonzero lattice point, and let zi be the last nonzero entry of z. Then, letting ?s denote
arbitrary real numbers, we have

v = Bz = D


1 ? ? · · · ?

1 ? · · · ?
1 · · · ?

. . . ?
1





?
?
zi
0
...
0


= D



?
?
zi
0
...
0


=



?
?

‖b̃i‖zi
0
...
0


,

which, because |zi| ≥ 1, implies that ‖v‖ ≥ ‖b̃i‖.

Combining Minkowski’s inequality with Lemmas 2.1 and 2.3, we have now have the following bounds
on the minimum distance:

min
i
‖b̃i‖ ≤ λ1(L(B)) ≤

√
n ·
(n∏
i=1

‖b̃i‖
)1/n

=
√
n · GM(‖b̃‖i), (2.2)

where GM denotes the geometric mean. While this allows us to bound λ1 from above and below in terms of
the Gram-Schmidt vectors, in the homework you will show that in general, these bounds can be arbitrarily
loose (simultaneously), even in small dimensions.

3 Lenstra-Lenstra-Lovász (LLL) Algorithm

The LLL algorithm yields a polynomial-time solution to search-SVPγ with an approximation factor γ =
2(n−1)/2, which is exponential in the dimension.5 While such a large factor may seem unimpressive at

5Actually, the algorithm can be tuned to yield an approximation factor as small as γ = (2/
√
3)n, but this is still exponential in n.

4

first, it is nontrivial because it depends only on the dimension n of the lattice; by contrast, the bounds from
Equation (2.2) depend on the lengths of the given basis vectors, which can be arbitrarily large. Also, an
exponential approximation factor can be very useful when the dimension n is small, or when a shortest
nonzero lattice vector is much shorter than all other non-parallel lattice vectors, which are the case in many
applications of LLL.

The LLL algorithm converts an arbitrary lattice basis into one that generates the same lattice, and which
is “reduced” in the following sense (the notations µi,j and b̃i refer to the Gram-Schmidt orthogonalization as
in the previous section):

Definition 3.1. A lattice basis B is LLL-reduced if the following two conditions are met:

1. For every i < j, we have |µi,j | ≤ 1
2 . (Such a basis is said to be “size reduced.”)

2. For every 1 ≤ i < n, we have 3
4‖b̃i‖

2 ≤ ‖µi,i+1b̃i + b̃i+1‖2. (This is the “Lovász condition.”)

The LLL conditions ensure that the lengths of the Gram-Schmidt vectors do not “decrease too quickly:”

Lemma 3.2. In an LLL-reduced basis B, we have ‖b̃i+1‖2 ≥ 1
2‖b̃i‖

2 for all 1 ≤ i < n.

Proof. Since the Gram-Schmidt vectors are mutually orthogonal, by the Pythagorean theorem we have

3

4
‖b̃i‖2 ≤ ‖µi,i+1b̃i + b̃i+1‖2

= µ2i,i+1 · ‖b̃i‖
2 + ‖b̃i+1‖2

≤ 1

4
‖b̃i‖2 + ‖b̃i+1‖2.

The claim follows by collecting like terms.

Because the Gram-Schmidt vectors give a lower bound on the lattice minimum distance, it follows that
the first vector in an LLL-reduced basis approximates a shortest lattice vector:

Corollary 3.3. In an LLL-reduced basis B, we have ‖b1‖ ≤ 2(n−1)/2 · λ1(L(B)).

Proof. Recall that b1 = b̃1, so ‖b1‖ = ‖b̃1‖. By Lemma 3.2, we also have ‖b̃i+1‖ ≥ 1√
2
‖b̃i‖ for every

1 ≤ i < n. Therefore,
‖b1‖ ≤ 2(i−1)/2 · ‖b̃i‖ ≤ 2(n−1)/2 · ‖b̃i‖

for all i. From this and Lemma 2.3 we conclude that ‖b1‖ ≤ 2(n−1)/2 ·mini‖b̃i‖ ≤ 2(n−1)/2 · λ1(L(B)).

We will describe the LLL algorithm itself (and its analysis) in the next lecture.

5

	Shortest Vector Problem
	Gram-Schmidt Orthogonalization
	Lenstra-Lenstra-Lovász (LLL) Algorithm

