
RustViz: Interactively Visualizing
Ownership and Borrowing

Marcelo Almeida, Grant Cole, Ke Du, Gongming Luo, Shulin Pan, Yu Pan,
Kai Qiu, Vishnu Reddy, Haochen Zhang, Yingying Zhu, Cyrus Omar

University of Michigan
Ann Arbor, MI, USA

{mgba,gtcole,madoka,luogm,shulinp,panyu,qiuk,reddyvis,haochenz,zyy,comar}@umich.edu

Abstract—Rust is an industrial systems programming language
unique in achieving memory safety without the need for a
garbage collector. Instead, Rust relies on a unique and sometimes
subtle resource ownership and borrowing system. This system
can make learning Rust a challenge, even for experienced pro-
grammers. Motivated by these challenges, we introduce RustViz,
a tool that allows an instructor to generate custom interactive
timelines depicting ownership and borrowing events alongside
Rust code examples embedded within learning material. These
visualizations makes visible the static events, and subsequent state
changes, that a Rust programmer must otherwise track entirely
mentally. We have used RustViz to build a week-long Rust
unit in a large undergraduate programming languages course.
We demonstrate that this learning material, and the RustViz
visualizations in particular, were valuable to students and led to
the development of an accurate mental model of the essentials
of ownership and borrowing in Rust.

I. INTRODUCTION

Today, critical systems software (e.g. operating system
components, web browser renderers, drivers, and numerical
libraries) is typically written in languages like C and C++ that
are not memory safe. Programs can, for example, read from
memory that has already been freed or access an out-of-bounds
location in an array. This can cause program crashes, memory
corruption, and open up security vulnerabilities. The costs of
bugs like these are collectively enormous: Microsoft reported
that 70% or more of all security vulnerabilities are caused by
memory safety issues [1]. In addition to safety issues, C/C++
programs often exhibit memory leaks, where resources are not
deallocated though they are no longer referenced.

The most direct solution to these pernicious problems is to
write systems software in languages that enforce the use of a
memory safe automatic memory management system. Indeed,
nearly every mainstream language today except for C and C++
is memory safe. However, memory safety typically comes at a
cost: automatic memory management typically requires a run-
time garbage collector. While garbage collection algorithms
have advanced significantly over the past several decades, the
associated run-time cost is still perceived to be prohibitive for
performance-critical systems software [2].

Rust sits in a unique niche: it is a systems programming
language that achieves memory safety without relying on run-
time garbage collection [3, 4]. Instead, Rust’s automatic mem-

ory management is achieved by an entirely static (compile-
time) analysis, so there is no run-time cost. In particular,
Rust’s borrow checker statically associates a unique owner
with each allocated resource. The resource is automatically
deallocated (“dropped”, in Rust parlance) when its owner goes
out of scope. The key complication is that ownership of a
resource is moved when passing data into and returning from
functions. To increase flexibility, the owner of a resource can
also enable borrowed access to the resource, without giving
up ownership, via references (internally, pointers). The borrow
checker enforces a set of rules to ensure that such borrows do
not outlive the resource’s owner, thereby ensuring memory
safety. Reference lifetimes are non-lexical, determined by a
last-usage analysis within their lexical scope.

In addition to memory safety, Rust enforces a form of thread
safety (avoidance of data races, another notorious source of
bugs in systems software), aliasing control, and mutation
control by distinguish two kinds of references. Mutable (a.k.a.
unique) references allow for mutation, but within their lifetime
the borrow checker ensures that they are unique in their access
to the resource. Elsewhere, any number of immutable (a.k.a.
shared) references can be created.

Despite these unique and subtle restrictions, Rust has been
gaining traction explosively. For five consecutive years, Rust
was the “most loved” programming language in Stack Over-
flow’s Developer Survey [5]. In industry, Rust has notable
users such as Microsoft [6], Amazon [7], Mozilla [8], Cloud-
flare [9], Dropbox [10], and Discord [11].

However, the subtlety inherent in Rust’s ownership and
borrowing rules also make Rust difficult to learn and Rust code
difficult to reason about, even for experienced programmers
[12, 13]. A systematic survey of posts on various online
forums found that people learning Rust frequently complained
that the borrow checker was inaccessible [14]. In interviews,
participants learning Rust reported that the borrow checker was
an “alien concept” and “the biggest struggle” in learning Rust
[15]. Searches on Rust forums show that “fighting the bor-
row checker” has become a common refrain, particularly for
novices. Interviews with industry professionals also found that
difficulties with learning Rust presented barriers to adoption
[2]. A participant in a study by Coblenz et al. [16] writes:

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

“Learning Rust ownership is like navigating a maze
where the walls are made of asbestos and frustra-
tion, and the maze has no exit, and every time you
hit a dead end you get an aneurysm and die.

Motivated by the difficulties that Rust learners face, we
sought to develop learning material targeted at students with at
least 2 semesters of programming experience (CS1 and CS2,
taught using C++ at our institution), but no exposure to Rust.

Based on the studies above, we identified the key challenge:
the user must learn to mentally simulate the logic of the
borrow checker, which is known to be challenging [17–19].
The source code itself does not directly express key events
and quantities, e.g. ownership movement events, reference life-
times, or uniqueness-related constraints. To help students learn
to understand the borrow checker, we built a tool, RustViz,
for creating interactive visualizations that explicitly visualize
ownership and borrowing events in the form an interactive
timeline for each variable, displayed aligned with Rust source
code examples appearing in written learning material.

There are two kinds of RustViz users: instructors use
RustViz to generate visualizations for integration into learning
material and learners interact with the visualizations while go-
ing through learning material. Sec. II introduces RustViz from
the learner’s perspective (and serves as a brief introduction to
Rust itself). Sec. III then describes how instructors can prepare
such visualizations, customized to focus specifically on the
program elements of interest, by annotating Rust source code
using a simple domain-specific language (DSL).

We have integrated RustViz into a two-lecture Rust unit
in an upper-level undergraduate course on Programming Lan-
guages taken by 313 students over four semesters. Sec. IV de-
scribes the learning goals and reports the results of quantitative
assessments, qualitative surveys, and thinkaloud lab sessions
involving the participants. This data suggest that the students,
who all have prior experience with C++ and limited or no prior
exposure to Rust, are able to achieve the intended learning
goals, i.e. they are able to form an accurate mental model
of the essential components of Rust’s distinctive ownership
and borrowing system over the course of only one week of
instruction and one homework assignment. The RustViz visu-
alizations were extensively used by, and considered valuable
by, these students. Students were largely enthusiastic about the
language after engaging with this learning material.

In addition to the required assignment, students from one
semester were offered extra credit to generate a RustViz
visualization, taking on the role of a hypothetical instructor.
Students who submitted this exercise were able to generate the
correct visualization within two hours. Some students reported
that this helped improve their understanding of Rust itself,
suggesting a pedagogical role for visualization generation.

Taken together and more broadly, this data suggests that in
learning advanced type systems and static analyses, visualiza-
tion can serve a valuable role as part of a broader pedagogical
context. We conclude after a discussion of future and related
work in Secs. V-VII.

Fig. 1. Moves, Copies, and Drops (sublabels for exposition)

II. RUSTVIZ BY EXAMPLE

RustViz visualizations consist of a piece of Rust source
code, typically integrated into a narrative tutorial or book
chapter (generated by the popular mdbook tool, see Sec. III),
together with an adjacent timeline of memory-related events
for each variable in the source code that the instructor chooses
to visualize, in an instructor-specified order. This timeline is
displayed aligned with the corresponding source code. Color is
used as secondary notation to better visually group source code
elements with the corresponding column of the timeline. When
learners hover their cursor over the various visual elements of
the timeline, Hover Messages are displayed which describe
the memory events in more detail. To avoid visual clutter, we
describe the key Hover Messages in the text by referring to
sublabels in the figures (which do not appear to users).

A. First Example: Moves, Copies and Drops

Fig. 1 shows a simple example that demonstrates moves,
copies, and drops, all fundamental Rust concepts.

1) Moves: On Line 2, a heap-allocated String resource
is created and bound to s. In Rust, each resource has a unique
owner, and when ownership changes, it is called a move. In this
case, String::from heap-allocates and returns a String,
which moves ownership of that resource to s as indicated by
the Arrow at (b) pointing from (a) to the Dot at (c). The hollow
Line Segment at (d) indicates that s cannot be reassigned nor
can it be used to mutate the resource because let rather than
let mut was used to define s. As the learner hovers their
mouse over these visual elements, the corresponding line is
underlined and the following Hover Messages are displayed:

(a) String::from() (the hover message and highlighted
function name and line are shown in Fig. 1 as an
example)

(b) Move from String::from() to s
(c) s acquires ownership of a resource
(d) s is the owner of the resource. The binding cannot be

reassigned.
On Line 3, takes_ownership (not shown) is called with

s as a parameter, so the String resource gets moved from s
into the function. After this move, s is no longer the owner of
the resource, so the resource is no longer accessible through
s. This move is shown in RustViz with the Arrow at (f) from
(e) to (g). Since s is no longer valid for use after the move
event, there is no longer a visible Line Segment in s’s timeline
after the Dot. The Hover Messages here are:

(e) s’s resource is moved
(f) Move from s to takes_ownership()
(g) takes_ownership() (and the corresponding func-

tion in the code is highlighted)
2) Copies: On Line 4, the (immutable) integer value 5 is

bound to x. We use let mut rather than let, so x can be
reassigned. as indicated by the solid Line Segment at (i). The
Hover Messages are:

(h) x acquires ownership of a resource
(i) x is the owner of the resource. The binding can be

reassigned.
On Line 5, y is initialized with x. In Rust, types with stack-

only data, like integers, generally have an annotation called
the Copy trait. Resources of these types get copied rather
than moved. The copy is shown in RustViz with the Arrow
at (k) pointing from (j) to (l). Since x is still valid for use,
the solid Line Segment continues in x’s timeline at (m). The
Line Segment at (n) is hollow because we used let rather
than let mut for y. The Hover Messages here are:

(j) x’s resource is copied
(k) Copy from x to y
(l) y is initialized by copy from x

(m) x is the owner of the resource. The binding can be
reassigned.

(n) y is the owner of the resource. The binding cannot be
reassigned.

On Line 6, we mutate x, as indicated by the Dot at (o)
continuing to solid Line Segment (p):

(o) x acquires ownership of a resource
(p) x is the owner of the resource. The binding can be

reassigned.
3) Drops: The variables s, x, and y go out of scope at

the end of the function on Line 7, as indicated by Dots (q)-
(s). Since x and y were owners, their resources are dropped.
However, since s’s resource was moved earlier, no drop
occurs, as indicated in the corresponding Hover Messages:

(q) s goes out of scope. No resource is dropped.
(r) x goes out of scope. Its resource is dropped.
(s) y goes out of scope. Its resource is dropped.
By following the arrows coming out of move events, it is

possible to see exactly when each resource is automatically
dropped by Rust.

B. Second Example: Shared and Unique Borrows

Our second example, in Fig. 2, demonstrates borrowing, i.e.
working with references to resources.

1) Immutable Borrows: On Line 2, a mutable String
resource is created as described in Sec. II-A.

On Lines 4 and 5, immutable references (a.k.a. shared
references) to s are created and assigned to r1 and r2,
respectively. In Rust, immutable references are created with
the & operator and the creation of an immutable reference
is called an immutable borrow. Resources cannot be mutated
through immutable references, so it is thread safe for Rust’s
borrow checker to allow multiple immutable borrows of a

Fig. 2. Borrows

resource to be live. The timelines for variables of reference
type are split into two parts. The first part is the Line Segment
that represents the variable itself, which is displayed in the
same way as variables of other types. The second part is the
curved line to the right of the Line Segment, here (d) and (h),
which represents how the borrow allows access to the resource,
i.e. how *r1 and *r2 work as indicated in the header. The
Hover Messages are:

(a) s’s resource is immutably borrowed
(b) Immutable borrow from s to r1
(c) r1 immutably borrows a resource
(d) Cannot mutate *r1
(e) s’s resource is immutably borrowed
(f) Immutable borrow from s to r2
(g) r2 immutably borrows a resource
(h) Cannot mutate *r2
On Line 6, r1 and r2 are passed to compare_strings,

which is shown in RustViz by the f symbol on (i) and (j).
compare_strings can read the resource through these
references, but cannot mutate it. Since r1 and r2’s borrows
are no longer used after the function returns, the borrowed
resource is returned, despite r1 and r2’s lexical scope not
ending. This is due to a feature in Rust called non-lexical
lifetimes, which allows more programs to pass the borrow
checker by disregarding borrows which are no longer live
because they are never used again. The return of these borrows
are represented by the Arrows at (k) and (l). Some Hover
Messages here are:

(i) compare_strings() reads from r1
(j) compare_strings() reads from r2
(k) Return immutably borrowed resource from r1 to s
(l) Return immutably borrowed resource from r2 to s

(m) s’s resource is no longer immutably borrowed
Variables cannot be mutated if there are live borrows. This is

indicated by the change from a solid to a hollow line segment
at the first borrow event, (a). Once all of the borrows have
been returned, the line segment is solid again.

2) Mutable Borrows: On Line 9, a mutable reference (a.k.a.
unique reference) to s’s resource is created and assigned to r3.
In Rust, mutable references are created with the &mut operator
rather than the & operator, and the creation of a mutable
reference to a resource is called a mutable borrow. Resources

Fig. 3. Conditionals

can be mutated through mutable references. To ensure thread
safety and help control aliasing, if a mutable borrow of a
resource is live, no other borrow of that resource, mutable or
immutable, may be live, nor may the resource be accessed by
the owner. Thanks to non-lexical lifetimes, r3’s borrow does
not conflict with r1 or r2 because r1 and r2’s borrows are
not live. We show that r3’s borrow is mutable in RustViz with
a Solid Line at (q). Since r3 mutably borrows s’s resource,
we cannot access the resource through s, so there is no Line
Segment between Lines 9 and 10. The Hover Messages here
are:

(n) s’s resource is mutably borrowed
(o) mutable borrow from s to r3
(p) r3 mutably borrows a resource
(q) Can mutate the resource *r3

On Line 10, r3 is passed to clear_string, and
clear_string is able to mutate the String through that
reference. After the function returns, the borrowed resource
is returned to s. With the String resource no longer being
mutably borrowed, s’s Line Segment in the timeline resumes.
Some Hover Messages here are:

(r) clear_string() reads from r3
(s) Return mutably borrowed resource from r3 to s
(t) s’s resource is no longer mutably borrowed

C. Third Example: Conditionals

Our third example, in Fig. 3, demonstrates how ownership
changes in conditionals are visualized. The key idea is that
the ownership state at the branchpoint, (b), is the initial
state in each branch. However, the visualization challenge is
that the else branch is far away from the branchpoint. To
communicate this, we mark branching in the visualization by
splitting the timeline. In the first branch, the left split is active
and visualizes the move on Line 5, at (c). In the else branch,
the right split, which was left grayed out but visible to indicate
continuity from the branchpoint, is active. In this branch, no
move occurs. At the end of the conditional, the ownership state
has been moved if either branch ended with the resource being
moved away. Again, we use the Hover Messages to indicate
the semantics:

(a) x acquires ownership of a resource
(b) Conditional is entered. x owns a resource at the start

of both branches.
(c) x owns a resource at the start of the else branch

(d) One branch caused a change in ownership, so x no
longer owns a resource. Its resource will be dropped if
it was not moved.

(e) x goes out of scope. No resource is dropped.

III. GENERATING RUSTVIZ VISUALIZATIONS

We now turn to the instructor’s perspective. Instructors gen-
erate visualizations using a domain-specific language (DSL)
written in comments within the Rust code being visualized,
which are read and stripped by the RustViz tool. Consider as
a running example the simple visualization in Fig. 4a. The
corresponding visualization specification is in Fig. III. The
visualization specification consists of a:

1) Column Specification, which specifies which variables
and related functions are to be visualized; and

2) Event Specifications, which specify ownership and bor-
rowing events via structured comments after each cor-
responding line

A. Column Specification

The column specification at the top of Fig. III specifies
names of all the variables that are used in the visualization
together with their role: Owners, StaticRefs or MutRefs,
or Functions. The first three of these roles appear as
columns in the order specified. Functions can be used for
the function icons that appear between columns.

A column specification including all variables and functions
mentioned in the code can be automatically generated from a
Rust file as a starting point. However, typically there will be
variables or functions that are not of pedagogical interest (e.g.
the println! macro function, or guard in Fig. 3), so after
automatic generation, the instructor is free to manually remove
or re-order the columns as necessary.

B. Event Specification

Once the columns are specified, the instructor can write an
event specification via structured comments at the end of each
line where one or more events occur. Each structured comment
consists of comma-separated event descriptions between !{
and }. Each event description consists of the event name and
its parameters.

On Line 7, the event InitResourceParam(s1)
specifies that s1 acquires ownership of a resource
from the caller because it is a function parameter. On
Line 8, the event Move(String::from()->s2)
specifies that there is a move from String::from()
to s. The instructor decided not to visualize events
related to println!() on Line 9. On Lines 10-11, the
events PassByStaticReference(s1->other()),
PassByStaticReference(s2->other()) specify
that both s1 and s2 are statically passed to function
other() as references. On Line 12, the events
GoOutOfScope(s1), GoOutOfScope(s2) specify
that s1 and s2 are going out of scope. The system
automatically determines whether a drop will occur based on
the prior move events.

(a) Example Visualization Output

1 /*--- BEGIN Column Specification ---
2 Owner s1;
3 Owner s2;
4 Function String::from();
5 Function other();
6 --- END Column Specification ---*/
7 fn f(s1 : String) { // !{ InitResourceParam(s1) }
8 let s2 = String::from("hello"); // !{ Move(String::from()->s2) }
9 println!("{}:{}", s1, s2);

10 other(&s1,&s2); /* !{ PassByStaticReference(s1->other()),
11 PassByStaticReference(s2->other()) } */
12 }/* !{ GoOutOfScope(s1), GoOutOfScope(s2) } */

(b) Corresponding Visualization Specification

Fig. 4. Generating RustViz Visualizations

TABLE I
EVENTS SUPPORTED BY RUSTVIZ (EXCLUDING EVENTS RELATED TO CLOSURES AND STRUCTS)

Event Image Hover Messages / Description

Bind(x) (a) x acquires ownership of a resource.

Copy(x->y) (a) x’s resource is copied.
(b) Copy from x to y.
(c) y is initialized by copy from x.

Copy(x->None) (a) x’s resource is copied.

Move(x->y) (a) x’s resource is moved.

(b) Move from x to y.

(c) y acquires ownership of a resource.

Move(x->None) (a) x’s resource is moved to the caller.

ImmutableBorrow(x->y) (a) x’s resource is immutably borrowed.
(b) Immutably borrowed from x to y.
(c) y immutably borrows a resource.

MutableBorrow(x->y) (a) x’s resource is mutably borrowed by y.
(b) Mutably borrowed from x to y.
(c) y mutably borrows a resource.

ImmutableDie(y->x) (a) x’s resource is no longer immutably borrowed.
(b) Return immutably borrowed resource from y to x.

MutableDie(y->x) (a) x’s resource is no longer mutably borrowed.
(b) Return mutably borrowed resource from y to x.

PassByImmutableReference(x->f) (a) f() reads from x.

PassByMutableReference(x->f) (a) f() reads from x.

GoOutOfScope(x) (a) x goes out of scope.

GoOutOfScope(x) (a) x goes out of scope. Its resource is dropped.

GoOutOfScope(x) (a) x goes out of scope. No resource is dropped.

InitRefParam(x) (a) x is initialized as the function argument.

InitResourceParam(x) (a) x acquires ownership of a resource.

StartIf() (a) Enters an if block.

StartElse() (a) Enters an else block.

EndIf() (a) Finishes an entire conditional block.

The events that Rustviz supports are included in Table I,
together with their hover messages and the visual depiction
that is generated. Lines in this table are shown as hollow
unless it is obligatory for the line to be solid. Events related
to closures and structs are also supported, but were not used
in our evaluation or presented in the previous section, so we
omit them from the table.

The system performs lightweight error checking for events.
Namely, DSL syntax errors are reported, as are uses of names
that were not declared in the Column Specification. However,
no semantic analysis of the Rust code itself is performed.

C. Visualization Generation

The instructor supplies this annotated source file, i.e. the
visualization specification, to the RustViz DSL processor to
generate SVG files containing the original source code (with
DSL comments stripped) and the corresponding timeline visu-
alization. These SVG files can be incorporated into narratives
generated using a version of mdbook, a popular documentation
system in the Rust community (used, for example, by the
official Rust Book), equipped with an additional helper script
that handles hover interactions. The resulting book can be
viewed in a web browser. The visualizations could also in
principle be integrated into any other webpage.

IV. EVALUATION

We evaluated the effectiveness of RustViz within a broader
pedagogical context: a short Rust unit, consisting of two 80
minute lectures, an optional 60 minute discussion section,
a 30-minute written tutorial, and a homework assignment,
which included a survey. This unit has been integrated into the
second half of an undergraduate elective Programming Lan-
guages course. RustViz is integrated into the tutorial material
directly. In addition, the lecture material includes hand-drawn
whiteboard diagrams inspired by RustViz’s visual language.
Our quantitative focus was on evaluating the learning unit
as a whole, rather than on isolating the impact of specific
visualization design choices. We evaluated the visualization
design primarily via qualitative means, discussed below.

A. Learning Goals

This unit was near the end of the semester, so students were
assumed to have basic understanding of basic programming
language concepts, e.g. scope and memory. We sought to
achieve the following learning goals:

1) Understand concepts related to ownership in Rust
a) Understand that each resource has a unique iden-

tifier called its owner
b) Understand the different ways that ownership can

be moved
c) Be able to determine when resources are automat-

ically dropped (when the owner goes out of scope)
d) Understand the difference between moves and

copies
2) Understand Rust’s borrowing rules

a) Understand the difference between mutable and
immutable borrows

b) Understand that borrows cannot outlive the owner
c) Understand non-lexical lifetimes

Notably, we avoid certain advanced Rust concepts such as
lifetime annotations, compound data types (e.g., structs and
array slices), reborrowing, and unsafe code.

B. Study Format

The participants in our study are students of an elective
Programming Language course for computer science majors.
This course was taught four times, over four consecutive
semesters (the first two of which were taught remotely due
to the COVID-19 pandemic), consisting of 62, 65, 74, and
112 students, respectively, totaling 303 students. The lecture
and tutorial materials, and certain aspects of the visualization
(e.g. spacing between the code and the visualization, the
line spacing, the ease of hovering over lines and other small
elements, the addition of the line underlining when hovering)
were modified somewhat between semesters based on student
feedback, though the overall structure of the material did
not change, so we analyzed the results from each semester
separately. However, the results below are pooled because we
did not observe substantial qualitative differences in response
distributions or performance. The study was conducted with
Institutional Review Board (IRB) approval. All participants are
adults who are proficient in C++ (which is taught in the two-
course pre-requisite sequence) but report limited or no prior
exposure to Rust: 31.9% of the students had not heard of Rust
at all, an additional 52.4% had heard of Rust but not learned
any details of its semantics, while less than 5% had more than
trivial experience with Rust.

We additionally selected four paid student volunteers for
a thinkaloud study to provide additional qualitative context.
These participants were recorded as they engaged with the
tutorial and assignment questions for one hour and asked
to “think aloud” as they engaged with the tutorial text and
visualizations, describing their thought processes, including
times when they were confused or unsure. Participants were
also asked to describe their problem solving process when
answering corresponding assignment questions.

C. Learning Material

Prior to engaging in the assessment portion of the Rust unit,
participants were able to virtually attend or asynchronously
watch two 80-minute lectures introducing Rust’s ownership
and borrowing system. These lectures were optional, and
between 20-30% of students did not attend or watch the lecture
videos before starting on the assignment.

In addition to the optional lectures, the students were re-
quired to read an interactive tutorial, developed using mdbook
and RustViz as described in Sec. III. This tutorial was designed
to take about 30 minutes and covered the same concepts as
lecture, in more specific detail. The tutorial text and code ex-
amples were designed to convey all of the necessary concepts
in isolation, even if the student did not refer to or understand

the visualizations. Students generally spent between 20-45
minutes on the tutorial as assessed by both self-report and
telemetry, and almost no students skipped the tutorial.

In the survey after the assessment, students were asked to
reflect on the helpfulness of the tutorial text and the interactive
visualizations separately. Rating on a 5-point Likert scale,
The results show that nearly all students found both the
text and the interactive visualizations helpful or very helpful.
In particular, across four semesters, 47% reported that the
interactive visualizations in the tutorial was very helpful in
terms of improving their understanding of ownership and
borrowing in Rust, and 46% reported it to be helpful.

When asked to assess the level of interaction that students
had with the RustViz visualizations in particular, about 3 out of
4 students reported either interacting with each code visualiza-
tion or regularly inspecting the visualizations throughout the
tutorial. In our thinkaloud sessions, the participants chose not
to inspect all segments of the visualizations on the first pass.
If the reading was confusing, the participants would generally
spend more time on the corresponding visualization, or would
revert back to a visualization from earlier in the tutorial. All
thinkaloud participants provided feedback suggesting that they
found the visualizations helpful in these particular situations.
Free response feedback also indicated that students referred
back to visualizations multiple times:

“I think most of them are helpful. But sometimes I
had to read them twice to fully understand.”

“I looked at every visual and traced the ownership
for each variable, but I found it a bit bothersome to
repeatedly look back and forth from the code. The
color highlighting did help, and I did enjoy that. I
found the different arrows and line segments to be
a bit hard to follow.”

Much of the feedback focused on the difficulty of pointing
at a particular part of the visualization that was of interest, due
to crowding. We made small improvements between semesters
but a more comprehensive solution remains desirable:

“The arrow heads seemed to overlap a bit as well,
so it was harder to see some of the directions of
actions.”

“The hovering required precision sometimes, like
in the Borrowing section where there were multiple
things that can be hovered clustered together. Maybe
bigger or more spaced out targets would help with
this.”

In addition, some students noted difficulty with understand-
ing the meaning of certain aspects of the visual notation, which
could perhaps be addressed using a key or making this more
explicit in the tutorial text when the corresponding concept is
introduced:

“A key identifying what different types of lines and
symbols meant would have been helpful. I still don’t
know what the double line vs the single line means
in the diagrams.”

“I wish there was an easier way to tell if the
lines represented ownership, immutable borrowing,
or mutable borrowing by just looking at the visuals
without hovering my mouse over them. Maybe a key
of some sort for what each line represents? I like the
hover feature but maybe there is a way to provide
more detail at a glance.”

D. Exercises

After engaging with the learning material, students were
asked to complete a series of graded multiple choice exercises.
Students were allowed to refer back to the learning material
freely during these exercises. Students were not informed of
whether their answer was correct until after the deadline.

The exercises were designed to assess the learning goals
described above, while avoiding questions where the answer
could be produced simply by entering the code into a Rust
REPL. For example, to assess students’ ability to reason about
ownership changes and drops, we asked questions like:
Consider the following Rust program.

fn id(y : String) -> String {y}
fn f(x : String) -> i32 {
println!("Hello, {}!", x);
let z = id(x);
println!("Goodbye, {}!", z);
42

}
fn main() {
println!("Welcome!");
{
let a = String::from("world");
println!("Thinking...");
let q = f(a);
println!("The meaning of life is: {}.", q);

}
println!("Done.");

}

The student is then provided with the text that is printed
to standard out, followed by the following multiple-choice
question. “The string resource that a initially owns is dropped
between which two adjacent lines of output above?”. In the
example above, the answer is just after Goodbye, world!.
This cannot be determined simply by entering the code into
Rust, because drops do not elicit any visible side effect.

As a free response follow up, we ask the student to
“Explain why by describing the events related to movement
and borrowing that occur in the code above.”

It took students a median of 5.43 minutes to provide
an answer to each exercise. Students performed well: the
average score for the exercises was 5.46 out of 6, with a
standard deviation of 0.662. The was one question that students
performed most poorly on (about 30% of students answered
incorrectly) required an understanding of non-lexical lifetimes,
suggesting a need to improve coverage of this topic.

We assessed the free response question qualitatively, and
found that students were generally correct in the sequence
of moves and borrows involved in each question, though the
precision in the language used varied (we did not provide
any examples). A slight preference for phrases used in the
Hover messages was apparent, but we did not analyze this
quantitatively.

Students did generally choose to refer back to the tutorial
while answering the exercises. About 30% of students also
reported accessing other resources (e.g. an online IDE, the
official documentation, or other tutorials or books). Though
most students had no experience using Rust coming into the
unit, the survey after the assessment indicated that over 85% of
the students were interested or very interested in using the Rust
language. This enthusiasm was also evident in survey results
at the end of the semester (and in informal interactions).

E. Extra Credit: Creating a Visualization

During the second semester, we also offered an extra credit
assignment (several weeks after the above assignment, after
one intervening assignment which also used Rust to explore
parallelism and concurrency) which allowed students to try
generating the visualization for an example program using the
RustViz DSL. We assessed the correctness of the generated
visualization and included several additional qualitative survey
questions. The exercise material is included in the supplement.

Among the students completing the previous assignment, 28
of them completed the extra credit assignment. It is not clear
whether there was a bias in favor or against students who were
doing well. It took 103.1 minutes on average for a student
to complete this assignment, including reading the tutorial,
setting up Rust locally, setting up RustViz, annotating the
sample source code using our DSL to generate the timelines,
and debugging. Over 60% of the students agree or strongly
agree that the set up process is simple and easy, while 90%
agree or strongly agree that the annotation format is simple
and intuitive. Additionally, more than 60% of the students
reported that trying to generate visualization for an example
using RustViz helps them better understand move, copy and
borrow events in Rust programs. This suggests that it may be
helpful to use RustViz as a tool for students to generate these
examples themselves in order to develop a more systematic
understanding of Rust.

F. Threats to Validity

All four semesters of the course described above were
taught during the COVID-19 pandemic, with two semesters
being taught entirely remotely. The student population in the
remote semesters was unlikely to be statistically identical to
the population in the first semester, having gone through many
months of isolation in a remote setting. Neither is either group
necessarily representative of students in a more conventional
classroom setting.

While the student population had a background typical of
the systems programming domain, with their experience being
primarily or exclusively C++ programming, it may be difficult
to generalize to, for example, programmers who have been
in industry for many years, or to programmers who are not
familiar with manual memory management at all.

While we attempted to gather qualitative feedback about
each component of our learning materials separately, it is
difficult to isolate the impact of any one aspect of our
design, and indeed RustViz was designed to operate as one

component in a set of educational materials sharing learning
goals. Our survey and thinkaloud observations suggested that
participants were making active use of the visualizations as
part of an information foraging study strategy, and that merely
attending lecture had not already prepared them to understand
the material in the tutorial. Our deployment in a classroom
setting did not allow us to form a control group of students
who, for example, read a version of the tutorial without the
RustViz visualization. This would be an interesting to study
in a laboratory setting in the future.

Our quantitative assessment is not a validated instrument.
We hope that more research into assessing understanding of
advanced language concepts can be developed to make it
possible to compare alternative Rust learning materials.

V. LIMITATIONS AND FUTURE WORK

The presented design does not visualize code that fails
the borrow checker, although such code is often helpful in
an instructional narrative, including in the tutorial we de-
signed. Rust’s error messages already include ASCII diagrams
explaining in detail why each error occurs, and these error
messages are highly valued by the Rust community.

We also neglected advanced Rust features, which may be of
interest in a course that covers Rust more in depth. We created
a primitive version of visualization of the conditional branches,
described in Sec. II, but we did not include a detailed account
of conditionals in the tutorial or assessment. Similarly, while
we have designed visualizations for closures (which can take
ownership of resources) and structs, these were not evaluated
in the context of the one-week unit.

Currently, RustViz generates visualizations from manually-
specified memory events rather than automatically from the
source code directly. Only the column specification can be
automatically generated. We might explore the possibility of
automatic generation of memory events from source code.
However, this might make it difficult for instructors to specifi-
cally control the visualization, e.g. by hiding certain subtleties
or well-understood aspects of a code example to focus on
the new ideas. A hybrid approach, similar to our Column
Specification system, may be helpful. However, we did not find
that the work involved in writing the tutorial visualizations was
a significant barrier as instructors of the course, and the control
offered was useful. Fully automatic visualization generation
could, however, be helpful for students or practitioners inter-
ested in explanations of code that they have written. Handling
the scaling challenges inherent in our visual design (where
arrows can overlap and timelines are adjacent) is left as future
work.

VI. RELATED WORK

RustViz is a program visualization system. Program visual-
ization, in the pedagogical setting and more broadly, has a long
history that has been surveyed extensively [20–22]. RustViz is
distinctive in that it focuses on visualizing the static semantics
of Rust, rather than run-time behavior (where tools like Python
Tutor [23] and other algorithm visualization systems have

been influential [21]). Visualization systems focusing on static
aspects of programs have focused on visualizing syntactic
structure, data and control flow, or architectural relationships
[24]. A related line of work on type debuggers has focused on
helping explain static type errors [25, 26]. RustViz is similar
to TypeTool [27] in its focus on explaining correct but subtle
code, but differs in that it focuses on borrow checking rather
than type checking.

One line of research focused on visualizing the structure
of object graphs using a structure called an “ownership tree”
[28–30]. However, ownership here relates to encapsulation
in object-oriented programming [31], rather than the static
resource ownership discipline used as the basis for Rust’s
memory management system. The ideas here may be relevant
to visualizing ownership relationships involving structs in
Rust, which we did not consider in detail in this paper.

We find that there is little peer-reviewed research specif-
ically on visualizations to assist in reasoning about Rust’s
unique ownership and borrowing rules despite interest in the
Rust community for such tools. Several blog posts propose
various visualizations informally. One showcases a vertical
timeline of ownership and borrowing events [32]—this design
is visually similar to RustViz, except without interactivity.
A different mock-up in another blog post shows a possible
approach for visualizing Rust code in an editor rather than for
documentation [33], albeit emphasizing lifetime extents rather
than the full set of events discussed in this paper. On the
Rust Internals Forum [34], a member (username Nashenas88)
started a thread to discuss ideas for visualizing ownership and
borrowing within an editor. The thread contains various ideas
for such a visualization from Faria and others. Notably, the
member was able to create a working prototype of lifetime
visualization in Atom that is generated directly from Rust
source code. In all cases, these mockups were not substantially
developed or evaluated.

For their bachelor thesis [35], Dominik developed an al-
gorithm that identifies lifetime constraints and the code that
generates the constraints from information extracted from
the Rust compiler, including the Polonius borrow checker.
Dominik also shows a visualization of the lifetime constraints
as a directed graph. Blaser [36] builds on this work for
their bachelor thesis by developing a tool that can explain
lifetime errors in code given the lifetime constraints. Blaser
also created an extension for Visual Studio Code that can
show a graph-based visualization of the lifetime constraints
that is simpler than Dominik’s. As an alternative to the graph-
based visualization, Blaser’s Visual Studio Code extension can
show a text-based explanation of lifetime errors in Rust code.
The focus of Blaser’s tool is to help programmers reason
about lifetime-related errors, while our focus is on generating
visualizations in documentation for use in a teaching setting.

Flowistry is a system for visualizing information flows in
Rust code, aimed at helping users hide code unrelated to their
current task [37]. This slicing approach might be helpful in
improving visualizations involving conditionals.

In the direction of visualizations of other “esoteric” seman-

tics, there are some visualization tools that support learning
specialized programming languages other than Rust. SQLVis,
which is a graph-based visualization tool that displays the
implicit relationship between database tables in user-provided
SQL queries, proves to be helpful for novice SQL program-
mers [38]. CUPV help more advanced learners who study
compilers to understand operations of generated parsers [39].

VII. CONCLUSION

In this paper, we introduced RustViz, a tool to generate
visualizations of ownership and borrowing in Rust programs
from manually-provided memory events. These visualizations
are designed to be displayed alongside example code in docu-
mentation to help Rust learners develop a basic understanding
of Rust’s ownership and borrowing rules. We showcased our
visual design by walking through some examples, showed
how RustViz is used to generate the visualizations, described
learning goals that RustViz is being designed to help learners
accomplish, and described and evaluated the design of a short
Rust unit that has been deployed at scale in the classroom.
The results are quite promising – it seems likely that with
the right learning material, programmers familiar with C/C++,
and perhaps other languages, can learn key ideas unique to
Rust in a short period of time, perhaps just an hour or two.
This bodes well for the future of memory and thread safety in
systems programming applications—perhaps human-centered
techniques in conjunction with modern language design can
help turn the tide in the battle against memory-related security
vulnerabilities, program crashes, and program complexity.

ACKNOWLEDGEMENTS

The authors would like to thank Ethan Brooks for develop-
ing a portion of the Rust coding assignment infrastructure, the
course staff of EECS 490 at the University of Michigan (Fall
2020 through Winter 2022) for collaborating with the RustViz
team to integrate RustViz into the course infrastructure, and
the students of EECS 490 for their participation in the study,
their valuable feedback, and their top-notch crab drawings on
the final exam.

REFERENCES

[1] G. Thomas. (2019) A proactive approach to more secure
code. [Online]. Available: https://msrc-blog.microsoft.com/2019/07/
16/a-proactive-approach-to-more-secure-code

[2] K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L. Mazurek,
“Benefits and drawbacks of adopting a secure programming language:
Rust as a case study,” in Seventeenth Symposium on Usable
Privacy and Security, SOUPS 2021, August 8-10, 2021, S. Chiasson,
Ed. USENIX Association, 2021, pp. 597–616. [Online]. Available:
https://www.usenix.org/conference/soups2021/presentation/fulton

[3] N. D. Matsakis and F. S. Klock, “The Rust language,” Ada
Lett., vol. 34, no. 3, p. 103–104, oct 2014. [Online]. Available:
https://doi.org/10.1145/2692956.2663188

[4] R. Jung, J. Jourdan, R. Krebbers, and D. Dreyer, “Safe systems
programming in Rust,” Commun. ACM, vol. 64, no. 4, pp. 144–152,
2021. [Online]. Available: https://doi.org/10.1145/3418295

[5] S. Overflow. (2020) Stack overflow developer survey 2020. [Online].
Available: https://insights.stackoverflow.com/survey/2020

[6] R. Vengalil. (2019) Building the Azure IoT edge security daemon in
Rust. [Online]. Available: https://msrc-blog.microsoft.com/2019/09/30/
building-the-azure-iot-edge-security-daemon-in-rust/

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code
https://www.usenix.org/conference/soups2021/presentation/fulton
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/3418295
https://insights.stackoverflow.com/survey/2020
https://msrc-blog.microsoft.com/2019/09/30/building-the-azure-iot-edge-security-daemon-in-rust/
https://msrc-blog.microsoft.com/2019/09/30/building-the-azure-iot-edge-security-daemon-in-rust/

[7] D. Barsky, A. Gupta, and J. Peddicord. (2019) AWS’ sponsorship
of the Rust project. [Online]. Available: https://aws.amazon.com/blogs/
opensource/aws-sponsorship-of-the-rust-project/

[8] D. Herman. (2016) Shipping Rust in Firefox. [Online]. Available:
https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/

[9] D. Kitchen. (2019) How we made firewall rules. [Online]. Available:
https://blog.cloudflare.com/how-we-made-firewall-rules/

[10] S. Jayakar. (2020) Rewriting the heart of our sync
engine. [Online]. Available: https://dropbox.tech/infrastructure/
rewriting-the-heart-of-our-sync-engine

[11] J. Howarth. (2020) Why Discord is switching from
Go to Rust. [Online]. Available: https://blog.discord.com/
why-discord-is-switching-from-go-to-rust-a190bbca2b1f

[12] K. Ferdowsi. (2022) The usability of advanced type systems: Rust
as a case study. [Online]. Available: https://weirdmachine.me/papers/
usability of advanced type systems.pdf

[13] W. Crichton, “The usability of ownership,” in Proceedings of Human
Aspects of Types and Reasoning Assistants (HATRA ’20), 2020.

[14] A. Zeng and W. Crichton, “Identifying barriers to adoption for Rust
through online discourse,” CoRR, vol. abs/1901.01001, 2019. [Online].
Available: http://arxiv.org/abs/1901.01001

[15] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why
is it difficult for developers to learn another programming language?”
in Proceedings of the 42nd International Conference on Software
Engineering, ICSE, 2020.

[16] M. Coblenz, M. L. Mazurek, and M. Hicks, “Garbage collection makes
Rust easier to use: A randomized controlled trial of the Bronze garbage
collector,” in International Conference on Software Engineering (ICSE),
2022.

[17] W. Crichton, M. Agrawala, and P. Hanrahan, “The role of working
memory in program tracing,” in CHI ’21: CHI Conference on Human
Factors in Computing Systems, Virtual Event / Yokohama, Japan,
May 8-13, 2021. ACM, 2021, pp. 56:1–56:13. [Online]. Available:
https://doi.org/10.1145/3411764.3445257

[18] J. J. Canas, M. T. Bajo, and P. Gonzalvo, “Mental models and com-
puter programming,” International Journal of Human-Computer Studies,
vol. 40, no. 5, pp. 795–811, 1994.

[19] J. M. Carroll and J. R. Olson, “Mental models in human-computer
interaction,” Handbook of human-computer interaction, pp. 45–65, 1988.

[20] J. Urquiza-Fuentes and J. Á. Velázquez-Iturbide, “A survey of successful
evaluations of program visualization and algorithm animation systems,”
ACM Transactions on Computing Education (TOCE), vol. 9, no. 2, pp.
1–21, 2009.

[21] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education (TOCE), vol. 13, no. 4, pp. 1–
64, 2013.

[22] E. E. Fırat and R. S. Laramee, “Towards a survey of interactive visual-
ization for education,” Proc. Computer Graphics and Visual Computing,
pp. 91–101, 2018.

[23] P. J. Guo, “Online Python tutor: embeddable web-based program visu-
alization for CS education,” in Proceedings of the 44th ACM Technical
Symposium on Computer Science Education, 2013, pp. 579–584.

[24] P. Caserta and O. Zendra, “Visualization of the static aspects of software:
A survey,” IEEE transactions on visualization and computer graphics,
vol. 17, no. 7, pp. 913–933, 2010.

[25] O. Chitil, “Compositional explanation of types and algorithmic
debugging of type errors,” in Proceedings of the Sixth ACM
SIGPLAN International Conference on Functional Programming
(ICFP ’01), Firenze (Florence), Italy, September 3-5, 2001, B. C.
Pierce, Ed. ACM, 2001, pp. 193–204. [Online]. Available: https:
//doi.org/10.1145/507635.507659

[26] K. Tsushima and K. Asai, “An embedded type debugger,” in
Implementation and Application of Functional Languages - 24th
International Symposium, IFL 2012, Oxford, UK, August 30 - September
1, 2012, Revised Selected Papers, ser. Lecture Notes in Computer
Science, R. Hinze, Ed., vol. 8241. Springer, 2012, pp. 190–206.
[Online]. Available: https://doi.org/10.1007/978-3-642-41582-1 12

[27] H. Simoes and M. Florido, “TypeTool: A type inference visualization
tool,” in WFLP’04: Proc. 13th Intl. Workshop on Functional and
(Constraint) Logic Programming, H. Kuchen, Ed. RWTH Aachen, Dept.
Comp. Sc., Technical report AIB-2004-05. Citeseer, 2004, pp. 48–61.

[28] T. Hill, J. Noble, and J. Potter, “Visualising the structure of object-
oriented systems,” in Proceeding 2000 IEEE International Symposium
on Visual Languages. IEEE, 2000, pp. 191–198.

[29] ——, “Scalable visualisations with ownership trees,” in Proceedings
37th International Conference on Technology of Object-Oriented Lan-
guages and Systems. TOOLS-Pacific 2000. IEEE, 2000, pp. 202–213.

[30] ——, “Scalable visualizations of object-oriented systems with ownership
trees,” Journal of Visual Languages & Computing, vol. 13, no. 3, pp.
319–339, 2002.

[31] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad, “Ownership types: A
survey,” Aliasing in Object-Oriented Programming. Types, Analysis and
Verification, pp. 15–58, 2013.

[32] P. Ruffwind. (2017) Graphical depiction of ownership and borrowing
in Rust. [Online]. Available: https://rufflewind.com/2017-02-15/
rust-move-copy-borrow

[33] J. Walker. (2019) Rust lifetime visualization ideas. [Online]. Available:
https://blog.adamant-lang.org/2019/rust-lifetime-visualization-ideas/

[34] P. D. Faria. (2019) Borrow visualizer for the Rust
language service. [Online]. Available: https://internals.rust-lang.org/
t/borrow-visualizer-for-the-rust-language-service/4187

[35] D. Dominik, “Visualization of lifetime constraints in Rust,” 2018.
[Online]. Available: https://ethz.ch/content/dam/ethz/special-interest/
infk/chair-program-method/pm/documents/Education/Theses/Dominik
Dietler BA report.pdf

[36] D. Blaser, “Simple explanation of complex lifetime
errors in Rust,” 2019. [Online]. Available: https:
//ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/
pm/documents/Education/Theses/David Blaser BA Report.pdf

[37] W. Crichton, M. Patrignani, M. Agrawala, and P. Hanrahan, “Modular
information flow through ownership,” in PLDI ’22: 43rd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, San Diego, CA, USA, June 13 - 17, 2022,
R. Jhala and I. Dillig, Eds. ACM, 2022, pp. 1–14. [Online]. Available:
https://doi.org/10.1145/3519939.3523445

[38] D. Miedema and G. Fletcher, “SQLVis: Visual query representations
for supporting SQL learners,” in 2021 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2021, pp. 1–9.

[39] A. Kaplan and D. Shoup, “CUPV—a visualization tool for generated
parsers,” SIGCSE Bull., vol. 32, no. 1, p. 11–15, mar 2000. [Online].
Available: https://doi.org/10.1145/331795.331801

https://aws.amazon.com/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://aws.amazon.com/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/
https://blog.cloudflare.com/how-we-made-firewall-rules/
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://weirdmachine.me/papers/usability_of_advanced_type_systems.pdf
https://weirdmachine.me/papers/usability_of_advanced_type_systems.pdf
http://arxiv.org/abs/1901.01001
https://doi.org/10.1145/3411764.3445257
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/507635.507659
https://doi.org/10.1007/978-3-642-41582-1_12
https://rufflewind.com/2017-02-15/rust-move-copy-borrow
https://rufflewind.com/2017-02-15/rust-move-copy-borrow
https://blog.adamant-lang.org/2019/rust-lifetime-visualization-ideas/
https://internals.rust-lang.org/t/borrow-visualizer-for-the-rust-language-service/4187
https://internals.rust-lang.org/t/borrow-visualizer-for-the-rust-language-service/4187
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/Dominik_Dietler_BA_report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Education/Theses/David_Blaser_BA_Report.pdf
https://doi.org/10.1145/3519939.3523445
https://doi.org/10.1145/331795.331801

	Introduction
	RustViz by Example
	First Example: Moves, Copies and Drops
	Moves
	Copies
	Drops

	Second Example: Shared and Unique Borrows
	Immutable Borrows
	Mutable Borrows

	Third Example: Conditionals

	Generating RustViz Visualizations
	Column Specification
	Event Specification
	Visualization Generation

	Evaluation
	Learning Goals
	Study Format
	Learning Material
	Exercises
	Extra Credit: Creating a Visualization
	Threats to Validity

	Limitations and Future Work
	Related Work
	Conclusion
	References

