Modularizing Reasoning about AI Capabilities via Abstract Dijkstra Monads

Cyrus Omar (University of Michigan, USA) <comar@umich.edu>
Anil Madhavapeddy (University of Cambridge, UK) <avsm2@cam.ac.uk>

1 Overview

Emerging agentic AI systems have the potential to substantially accelerate progress on critical scientific and societal problems, but they also present substantial privacy, security, and safety challenges because they execute commands autonomously or semi-autonomously in environments where they have access to sensitive data and effects (Figure 1) [16]. For example, an AI agent tasked with enacting environmental interventions that qualify for biodiversity credits [24] may exhibit harmful behavior (or even act “maliciously” if, e.g., attacked by an unscrupulous actor) by executing sequences of commands that:

1. modify sensor data to minimize the extent of habitat loss [15];
2. leak location sightings of vulnerable species to poachers [9]; or
3. enact an intervention that causal modeling would suggest may not be likely to satisfy desirable constraints, e.g. water rights agreements or standards for equitable economic impact.

Formal methods are a key approach to enforcing mathematically rigorous safeguards that limit the ability of agentic AIs to cause these kinds of harms. In particular, we envision enforcing AI capability safety policies that impose strict constraints of various kinds:

- **Capability Access Constraints**, which limit access to sensitive data [23], e.g. a policy could withhold access to a write capability for locations where sensor data is stored, addressing Issue 1.

- **Information Flow Constraints**, which limit information flows that leak sensitive data outside of an allowable perimeter [22], addressing Issue 2.

- **Causal Constraints**, which require proof using detailed causal modeling, informed by an accurate world model, that the impact of an intervention can be shown, with high probability, to have the intended impact and to avoid undesirable impacts [13], addressing Issue 3.

Specifying AI capability safety policies able to enforce these kinds of constraints in practical settings will necessarily be a large-scale, collaborative effort. In particular, it will require (1) employing a wide variety of approaches to specification and proof (see [6] for examples); (2) developing large-scale world models encompassing organizational access control and information flow models, legal models, and more general causal models of the world; and (3) developing robust AI safety policies and specifications that are likely to minimize the risk of catastrophic harm from future AI agents.

The proposed talk will outline the vision for a recently originated research project aiming to build a formally verified prototype of a foundational “operating system” for safeguarded AI, called Bastion, that grounds these activities within programming language theory, namely by combining dependent type theory (as a practical general-purpose theory of computational structures and proofs [18, 3]), Dijkstra monads (as a flexible formalism for reasoning about an AI agent’s computational effects [1, 10]), and abstract types (for modularizing reasoning [4, 12, 11] to individual components that can be separately developed by various stakeholders, including AI safety researchers, formal methods experts, organizations of various scales, and governments seeking to develop actionable, specific policy).
The proposed Bastion system architecture, diagrammed in Figure 2, consists of two main components:

1. The **bastion** is a computational wiki consisting of code written in a dependently typed language—we will use F* due to its mature support for reasoning about effects via Dijkstra monads [1, 10, 14], though other languages like Coq and Lean can also encode Dijkstra monads [19]—interleaved with natural language narrative and diagrams. In the bastion, stakeholders collaboratively construct:
 - an **AI capability safety policy** that determines (1) which baseline capabilities, from a collaboratively developed **capability library** parameterized by data from access and information flow control systems, and (2) which further task-specific capability restrictions, formulated by antagonistic AIs trained to enforce the principle of least privilege, that a client AI agent can use when performing a given task; and
 - **AI capability safety proofs**, i.e. proofs that the capabilities allowed by the policy have desirable safety properties, informed by a collaboratively developed **world model**.

2. The **policy enforcer** is a formally verified typechecker [20] and run-time system that communicates the policy specified in the bastion to an AI agent and checks that its proposed commands, expressed as simple monadic programs, conform to this policy through both a typechecking phase and, when necessary, run-time instrumentation enabled by configuring a **secure execution environment** [21].

2 **Bastion by Example**

To further flesh out the Bastion architecture, let us develop a simple AI capability safety policy that enforces capability access constraints limiting an AI agent’s directory access (e.g. Issue 1 above).
2.1 Modular AI Capability Safety Policies

The central construct in Bastion is a capability, \(c \), which is an \(\mathcal{F}^\star \) module implementing a capability signature, \(C \), which is an \(\mathcal{F}^\star \) module signature that specifies an abstract monad, i.e. a monad without a public implementation, \(C.\text{Cmd } a \). A monad is an algebraic structure (made famous by Haskell) that can be used to encode an sequence of effectful commands that finally return a value of type \(a \).

For example, \texttt{CapDataAccess} below is a parameterized capability signature because it specifies an abstract monad with the two monad operations, return and bind, and commands readfile and writefile.

```ocaml
module type CapDataAccess (readonly : list (dir), writable : list (dir)) =
(* abstract monad *)
(* only allows access to given directories *)

type Cmd a
val return : a -> Cmd a
val readfile : path -> Cmd string
val bind : Cmd a ->
  val writefile : path -> string -> Cmd ()
(a -> Cmd b) -> Cmd b
```

A capability safety policy, \(\pi : (A, T) \to (c : C) \), is a mapping from an agent identifier, \(a : A \), and task, \(t : T \), to a capability signature paired with an implementation, which we write \(c : C \). For example, our policy might look up the agent in a formally verified access control system like Cedar [5] to determine a baseline set of read-only and writable directories. Because the task will typically be specified in natural language, we envision the use of antagonist AIs trained to implement the principle of least privilege by generating further task-specific restrictions of the baseline capability’s parameters. Symbolically, we can express this simple policy as follows (the implementation, \(c \), is discussed below):

```ocaml
fun (a, t) -> c : CapDataAccess (setminus (acl a) (antagonist (acl a) t))
```

By using set minus, we know (can prove) that the antagonist AI can only restrict the agent’s access further beyond the baseline specified by the access control list, acl \(a \).

The AI agent must express its commands as values of this abstract monad type (assisted by “do notation” so this looks essentially like a standard imperative program). The policy enforcer is a formally verified type checker and command executor. In particular, the key metatheoretic properties that we will establish formally are type safety, which ensure no undefined behavior, capability safety, which ensures that there is no backdoor to access effects other than those provided explicitly by the policy-sanctioned capability [7, 12, 11], and parametricity, which ensure that all values of the abstract monad type are compositions of commands defined in the capability, even though the underlying implementation will be in terms of a more permissive monad (e.g. the environment’s base I/O monad). In some cases, a capability will ask the policy enforcer to correctly configure a secure execution environment, e.g. to implement run-time monitoring or instrumentation [2].

2.2 Modular AI Capability Safety Proofs

Parametricity modularizes reasoning about the safety properties of a capability implementation. Stakeholders, assisted by theorem proving AIs [17], can mechanically prove properties of interest by instantiating the abstract monad with a suitable Dijkstra monad, which consists of a command monad (typically the environment’s base IO monad) indexed by a specification monad. For example, we can prove that an implementation of the above capability signature correctly restrict access to the given directories using predicate transformers (not shown, but see [1, 10]). This indexing structure makes Dijkstra monads very flexible to a variety of reasoning techniques—they can be used for reasoning about side channel attacks, concurrency, information flow, and probabilistic programs (which could in the future be used for proofs about causal constraints).

In addition to modular proofs about capabilities, a capability signature in general could defer to the AI agent to discharge proof obligations using a dependently typed signature, e.g. one that asks the agent to provide causal proofs justifying a particular course of action before it is executed. This will require a robust world model, which can also be expressed as a collaboratively developed collection of dependently typed structures in the Bastion.

Capabilities can be composed using monad transformers [8]. If the constituent capabilities are separable, proofs will easily compose. In other cases, capabilities might interact non-conservatively.
3 Talk Logistics

The proposed talk will provide an overview of the problem space, related work, and the proposed architecture (20 minutes), then seek discussion (10 minutes) from HOPE participants who are familiar with the reasoning challenges that will come up and potential solutions from the literature that the project team should consider. We are very open to potential collaborations that might arise.

References

