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Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

(Execution_Timecpy — Execution_Timeg ceolerator)

P
O Communication_Latency

_ (Tcpu —Tacc)

TLat

g> 1: Beneficial to offload

<=1: Not beneficial to offload
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Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
* Support RISC-like instructions
* Compute on encrypted operands
* Running privacy-focused algorithms

— Enclave
key

* Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
* Positis an alternative to IEEE 754 Floating Point
* Support arithmetic operations
* Running scientific applications

L
Kernel

Background Motivation Case Studies



Exploitable Opportunities Exist

"Within an 8-Request Window:

* Temporal Locality:
* Greater than 50% of input operands are from the results of the past 7 requests

* Request-level Parallelism:
* On average, 5 requests can be executed in parallel

e Traffic Reduction:
 Less than 22% of the accelerator results need to be sent back to the host

* Device-level Parallelism:
* On average, greater than100 ms between request issue and result use.

*Based on the two case studies covered in the talk 7

Background Motivation




Challenges

Analyzing Dependencies Between Two ISAs
 Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
* Generic communication semantics do not capture this information

Minimal Hardware Modifications
* Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

Background Motivation Case Studies »Challenges



Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware
optimizations that tolerate the communication latency for latency-sensitive
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while

Needs NO compiler modifications -- only C++ libraries

Captures more than 90% of the locality and enables parallelism

Has low hardware overhead and NO intrusive modifications

Is agnostic to underlying bus APls/semantics
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Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
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Zipper Runtime Library

Data_type
Three data structures: {Accl_val_t va/
bool valid-
* Overloaded data types: track results’ bool inAcdl 3
status, location, etc. int location;} | || peee -

e Shared Memory: Separate intooperand | | | [
partition and result partition. 0

Operand Partition Result Partition

Shared Memory
(o e )
* Result list: track objects that share the g X N N
same results. > -3
3 [

\ Result Lists)
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Zipper Runtime Library Example(1/2)

Example Code Snippet
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FPGA-Based
Evaluation
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Experiment Setup

Platform Name

Intel HARP V2

Host CPU

Host Frequency

FPGA Type

Interconnect

Bus Interface

Intel Xeon CPUs (E5-2699v4)

2.2GHz

Arrial0 GX1150

Intel QuickPath Interconnect (QPI)

Core Cache Interface(CCI-P)

Background

Motivation

Case Studies Challenges Zipper

Evaluation

A Photo of Intel HARP V1
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Performance Improvements with Low Area
Overhead (1)

>00% Only RLP* = RLP + Dependency Relocation m RLP + Memory Coalescing ® Zipper
0
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VIP-Bench + Sequestered Encryption Enclave
1.5x Speedup with 0.9% Adaptive Logic Module overhead

*RLP =request-level parallelism
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Performance Improvements with Low Area
Overhead (2)

Higher is better

™ Only RLP RLP + Dependency Relocation ® RLP + Memory Coalescing ® Zipper
900%

800%
700%
600%
500%
400%
300%
200%
100 B l N l m . H I = ml =B

Geomean

NAS Parallel Benchmark + Posit Hardware Kernel
8x Speedup with 4.3% Adaptive Logic Module overhead

Background

Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Improves Performance by Reducing
Memory Traffic (1)

® Only RLP  m RLP + Dependency Relocation m RLP + Memory Coalescing Zipper
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Zipper reduces 46% of bus transactions 19
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Zipper Improves Performance by Reducing
Memory Traffic (2)

M Only RLP m RLP + Dependency Relocation ® RLP + Memory Coalescing = Zipper
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Zipper reduces 77% of bus transactions 20
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Conclusions & Looking Ahead

* Communication latency is not getting any lower
* However, they can be tolerated and hidden...

e Zipper achieves, even without any drastic and intrusive changes:
* On average, 1.5-8X speed-up with <5% area overhead.
* No compiler changes or intrusive changes to the hardware kernel.
* Portable to all buses, APIs, and operating systems.

e Zipperis open-sourced @ https://github.com/zipper-bus-optimizations

21
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https://github.com/zipper-bus-optimizations

Questions?

1/17/2025

22



	Zipper: Latency-Tolerant Optimizations for High-Performance Buses
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	Case Studies
	Exploitable Opportunities Exist
	Challenges
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Runtime Library
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	FPGA-Based Evaluation
	Experiment Setup
	Performance Improvements with Low Area Overhead (1)
	Performance Improvements with Low Area Overhead (2)
	Zipper Improves Performance by Reducing Memory Traffic (1)
	Zipper Improves Performance by Reducing Memory Traffic (2)
	Conclusions & Looking Ahead
	Questions?

