
Zipper: Latency-Tolerant Optimizations
for High-Performance Buses

Shibo Chen† Hailun Zhang‡ Todd Austin †

† University of Michigan – Ann Arbor
‡ University of Wisconsin – Madison

Compute Offload Overhead

CPU/Host

Accelerator

Shared Memory

Memory Access

Host-Accelerator
Communication

Compute Process

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

CPU/Host

Accelerator

Shared Memory

Memory Access

Host-Accelerator
Communication

Compute Process

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

CPU/Host

Accelerator

Shared Memory

Memory Access

Host-Accelerator
Communication

Compute Process

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host

Accelerator

Shared Memory

Memory Access

Host-Accelerator
Communication

Compute Process

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host

Accelerator

Shared Memory

Memory Access

Host-Accelerator
Communication

Compute Process

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host

Accelerator

Shared Memory

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host

Accelerator

Shared Memory

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host

Accelerator

Shared Memory

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

⑥ Write back results
& notify the host

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host
⑦Read the results

Accelerator

Shared Memory

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

⑥ Write back results
& notify the host

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host
⑦Read the results

Accelerator

Shared Memory

Overhead ~500 ns

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

⑥ Write back results
& notify the host

④ Fetch Operands

2
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Compute Offload Overhead

① Connect to the
accelerator

② Store input data to
shared memory

③ Launch kernel
through MMIO

CPU/Host
⑦Read the results

Accelerator

Shared Memory

Overhead ~500 ns

Overhead ~500 ns

Memory Access

Host-Accelerator
Communication

Compute Process

⑤ Start computation

⑥ Write back results
& notify the host

④ Fetch Operands

2
~1000ns Overhead for Round Trip Latency

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

P
O

 =

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

P
O

 =

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

P
O

 =

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

P
O

 =

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

=
(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)

𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

P
O

 =

Equation for Computing Offload Trade-offs

3

Ratio of Raw Time Saved Over Offload Overhead P
O

:

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

P
O

 > 1: Beneficial to offload
P
O

 <=1: Not beneficial to offload

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸_𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

=
(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)

𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

4

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

4

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

Intel 8087
First Floating Point

CoProcessor

4

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

Intel 8087
First Floating Point

CoProcessor

4

~200 cycles

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

The Death Zone of Compute Offload

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 100 200 300

P/
O

Locality/Parallelism

Unoptimized

None Low Medium High

Beneficial to Offload

Do NOT Offload

Intel 8087
First Floating Point

CoProcessor

4

~200 cycles

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

~1000 ns

More Forgiving Trade-Offs with Bus Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 33 61 92 122 153 183 214 245 275

Pe
rf

or
m

an
ce

 G
ai

n(
ns

)

Locality/Parallelism

Unoptimized Zipper

None Low Medium High

Beneficial to Offload

Do NOT Offload

5

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

More Forgiving Trade-Offs with Bus Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 33 61 92 122 153 183 214 245 275

Pe
rf

or
m

an
ce

 G
ai

n(
ns

)

Locality/Parallelism

Unoptimized Zipper

None Low Medium High

Beneficial to Offload

Do NOT Offload

5

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

More Forgiving Trade-Offs with Bus Optimizations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 33 61 92 122 153 183 214 245 275

Pe
rf

or
m

an
ce

 G
ai

n(
ns

)

Locality/Parallelism

Unoptimized Zipper

None Low Medium High

New Design Space

Beneficial to Offload

Do NOT Offload

5

P
O

= (𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 −𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
• Support RISC-like instructions
• Compute on encrypted operands
• Running privacy-focused algorithms

• Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
• Posit is an alternative to IEEE 754 Floating Point
• Support arithmetic operations
• Running scientific applications

6

Host Enclave
key

Host Posit
Kernel

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Exploitable Opportunities Exist
*Within an 8-Request Window:
• Temporal Locality:

• Greater than 50% of input operands are from the results of the past 7 requests

• Request-level Parallelism:
• On average, 5 requests can be executed in parallel

• Traffic Reduction:
• Less than 22% of the accelerator results need to be sent back to the host

• Device-level Parallelism:
• On average, greater than100 ms between request issue and result use.

7*Based on the two case studies covered in the talk
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Challenges

Analyzing Dependencies Between Two ISAs
• Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
• Generic communication semantics do not capture this information

Minimal Hardware Modifications
• Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

8
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware
optimizations that tolerate the communication latency for latency-sensitive
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while
• Needs NO compiler modifications -- only C++ libraries
• Captures more than 90% of the locality and enables parallelism
• Has low hardware overhead and NO intrusive modifications
• Is agnostic to underlying bus APIs/semantics

9
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware
optimizations that tolerate the communication latency for latency-sensitive
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while
• Needs NO compiler modifications -- only C++ libraries
• Captures more than 90% of the locality and enables parallelism
• Has low hardware overhead and NO intrusive modifications
• Is agnostic to underlying bus APIs/semantics

9
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call API

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call API

Send requests
& data

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call API

Send requests
& data

Issue
instructions

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call API

Send requests
& data

Issue
instructionsBuffer results

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call API

Send requests
& data

Fetch results

Issue
instructionsBuffer results

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator

requests and between the host and the
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches

results back to the host.

Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results

Host Program

Zipper Runtime Library

Zipper Hardware
Structure

User-defined
Hardware Kernel

10

Call APIReturn results

Send requests
& data

Fetch results

Issue
instructionsBuffer results

Zipper

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library
Three data structures:
• Overloaded data types: track results’

status, location, etc.

• Shared Memory: Separate into operand
partition and result partition.

• Result list: track objects that share the
same results.

Data_type
{ Accl_val_t val;
 bool valid;
 bool inAccl;
 int location; }

Shared Memory
Operand Partition Result Partition

0

1

2

3

Result Lists

1
0

2
3

11
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Result Lists

1
0

2
3

Shared Memory
Operand Partition Result Partition

0

1

2

3

Data Bus

a{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

0

1

2

3

Data Bus

a{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write m, n to
Shared Memory

Data Bus

a{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)

(⊗, MEM.ADDR5,
MEM.ADDR6, 3)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write m, n to
Shared Memory

Data Bus

3

a{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(1/2)

(⊗, MEM.ADDR5,
MEM.ADDR6, 3)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register a in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write m, n to
Shared Memory

Data Bus

3

Update a’s Status a{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

4

True
False

3

12

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Result Lists

1
0

2
3 a

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

Data Bus

b{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

13

Example Code Snippet

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

Data Bus

b{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

13

Example Code Snippet

b

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)
int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared
Memory

Data Bus

b{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

13

Example Code Snippet

b

i

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)

(⊗, Req.3,
MEM.ADDR7, 0)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared
Memory

Data Bus

3

b{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

13

Example Code Snippet

b

i

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Runtime Library Example(2/2)

(⊗, Req.3,
MEM.ADDR7, 0)

int m, n, i;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Register b in
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared
Memory

Data Bus

3

Update b’s Status b{
 Accl_val_t val;
 bool valid;
 bool inAccl;
 int location;
}

4

True
False

0

13

Example Code Snippet

b

i

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

Receive Request

Data Bus
14

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

Receive Request

Data Bus

⊗ Addr5 MEM Addr6 MEM

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

Receive Request

Data Bus

⊗ Addr5 MEM Addr6 MEM

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

Receive Request

2 Read Operand
from Memory

Data Bus

⊗ Addr5 MEM Addr6 MEM

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to
Compute Kernel

Hardware
Kernel

Memory
Controller

1 Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to
Compute Kernel

Hardware
Kernel

Memory
Controller

1

value

Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4

5 Write Back
Result value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to
Compute Kernel

Hardware
Kernel

Memory
Controller

1

value

Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4

5 Write Back
Result

6 Forward Result

value

value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Zipper Hardware Structure

Index Inst. Op. 1 Mode Op. 2 Result

0

1

2

3

⊗ 3 REQ Addr7 MEM

Issue to
Compute Kernel

Hardware
Kernel

Memory
Controller

1

value

Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4

5 Write Back
Result

6 Forward Result

7 Write
to Memory

value

value

value

Data Bus

⊗ Addr5 MEM Addr6 MEMop1 op2

14
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

FPGA-Based
Evaluation

1/17/2025 15

Experiment Setup

16

Platform Name Intel HARP V2

Host CPU Intel Xeon CPUs (E5-2699v4)

Host Frequency 2.2GHz

FPGA Type Arria10 GX1150

Interconnect Intel QuickPath Interconnect (QPI)

Bus Interface Core Cache Interface(CCI-P)
A Photo of Intel HARP V1

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Performance Improvements with Low Area
Overhead (1)

17

100%

120%

140%

160%

180%

200%
Only RLP* RLP + Dependency Relocation RLP + Memory Coalescing Zipper

VIP-Bench + Sequestered Encryption Enclave
1.5x Speedup with 0.9% Adaptive Logic Module overhead

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions
*RLP = request-level parallelism

H
ig

he
r i

s
be

tte
r

Performance Improvements with Low Area
Overhead (2)

18

100%

200%

300%

400%

500%

600%

700%

800%

900%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
8x Speedup with 4.3% Adaptive Logic Module overhead

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

H
ig

he
r i

s
be

tte
r

Zipper Improves Performance by Reducing
Memory Traffic (1)

19

VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

0%

20%

40%

60%

80%

100%
Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

Lo
w

er
 is

 b
et

te
r

Zipper Improves Performance by Reducing
Memory Traffic (2)

20

0%

20%

40%

60%

80%

100%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
Zipper reduces 77% of bus transactions

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Lo
w

er
 is

 b
et

te
r

Conclusions & Looking Ahead

• Communication latency is not getting any lower

• However, they can be tolerated and hidden…

• Zipper achieves, even without any drastic and intrusive changes:
• On average, 1.5-8X speed-up with <5% area overhead.
• No compiler changes or intrusive changes to the hardware kernel.
• Portable to all buses, APIs, and operating systems.

• Zipper is open-sourced @ https://github.com/zipper-bus-optimizations

21
Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

https://github.com/zipper-bus-optimizations

Questions?

1/17/2025 22

	Zipper: Latency-Tolerant Optimizations for High-Performance Buses
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	Case Studies
	Exploitable Opportunities Exist
	Challenges
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Runtime Library
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	FPGA-Based Evaluation
	Experiment Setup
	Performance Improvements with Low Area Overhead (1)
	Performance Improvements with Low Area Overhead (2)
	Zipper Improves Performance by Reducing Memory Traffic (1)
	Zipper Improves Performance by Reducing Memory Traffic (2)
	Conclusions & Looking Ahead
	Questions?

