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Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
• Support RISC-like instructions
• Compute on encrypted operands
• Running privacy-focused algorithms

• Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
• Posit is an alternative to IEEE 754 Floating Point
• Support arithmetic operations
• Running scientific applications

6
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key

Host Posit 
Kernel
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Exploitable Opportunities Exist
*Within an 8-Request Window:
• Temporal Locality:

• Greater than 50% of input operands are from the results of the past 7 requests

• Request-level Parallelism:
• On average, 5 requests can be executed in parallel

• Traffic Reduction:
• Less than 22% of the accelerator results need to be sent back to the host

• Device-level Parallelism:
• On average, greater than100 ms between request issue and result use.

7*Based on the two case studies covered in the talk
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Challenges

Analyzing Dependencies Between Two ISAs
• Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
• Generic communication semantics do not capture this information

Minimal Hardware Modifications
• Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

8
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Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware 
optimizations that tolerate the communication latency for latency-sensitive 
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance 
boost while
• Needs NO compiler modifications -- only C++ libraries
• Captures more than 90% of the locality and enables parallelism
• Has low hardware overhead and NO intrusive modifications
• Is agnostic to underlying bus APIs/semantics
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Zipper Overview

Software Runtime Library:
• Detects dependencies between accelerator 

requests and between the host and the 
accelerator request.

• Manages shared memory.
• Sends requests to the accelerator & fetches 
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Hardware Structure:
• Schedules request issuing
• Buffers recent results for locality
• Fetches input or forwards results
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Zipper Runtime Library
Three data structures:
• Overloaded data types: track results’ 

status, location, etc.

• Shared Memory: Separate into operand 
partition and result partition.

• Result list: track objects that share the 
same results.

Data_type
{ Accl_val_t val;
     bool valid;
     bool inAccl;
     int location;  }

Shared Memory
Operand Partition Result Partition

0

1

2

3

Result Lists

1
0

2
3

11
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Zipper Runtime Library Example(1/2)
int m, n, i; 
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;

Result Lists

1
0

2
3

Shared Memory
Operand Partition Result Partition

0

1

2

3

Data Bus

a{
   Accl_val_t val;
   bool valid;
   bool inAccl;
   int location;
}

12

Example Code Snippet
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Zipper Runtime Library Example(1/2)
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Zipper Runtime Library Example(2/2)
int m, n, i; 
Accl_t a = m ⊗ n;
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Zipper Runtime Library Example(2/2)
int m, n, i; 
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Register b in 
Result Lists

Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

Data Bus

b{
   Accl_val_t val;
   bool valid;
   bool inAccl;
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Zipper Runtime Library Example(2/2)
int m, n, i; 
Accl_t a = m ⊗ n;
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Zipper Runtime Library Example(2/2)

(⊗, Req.3, 
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Zipper Runtime Library Example(2/2)

(⊗, Req.3, 
MEM.ADDR7, 0)

int m, n, i; 
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;
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Result Lists

1
0

2
3 a

1

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

2 Write i to Shared 
Memory

Data Bus

3
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   Accl_val_t val;
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Zipper Hardware Structure
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FPGA-Based 
Evaluation
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Experiment Setup

16

Platform Name Intel HARP V2

Host CPU Intel Xeon CPUs (E5-2699v4)

Host Frequency 2.2GHz

FPGA Type Arria10 GX1150

Interconnect Intel QuickPath Interconnect (QPI)

Bus Interface Core Cache Interface(CCI-P)
A Photo of Intel HARP V1
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Performance Improvements with Low Area 
Overhead (1)
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Performance Improvements with Low Area 
Overhead (2)
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Zipper Improves Performance by Reducing 
Memory Traffic (1)

19

VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions
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Zipper Improves Performance by Reducing 
Memory Traffic (2)

20

0%

20%

40%

60%

80%

100%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

NAS Parallel Benchmark + Posit Hardware Kernel
Zipper reduces 77% of bus transactions

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions

Lo
w

er
 is

 b
et

te
r



Conclusions & Looking Ahead

• Communication latency is not getting any lower

• However, they can be tolerated and hidden…

• Zipper achieves, even without any drastic and intrusive changes:
• On average, 1.5-8X speed-up with <5% area overhead.
• No compiler changes or intrusive changes to the hardware kernel.
• Portable to all buses, APIs, and operating systems.

• Zipper is open-sourced @ https://github.com/zipper-bus-optimizations
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Questions?
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