Zipper: Latency-Tolerant Optimizations
for High-Performance Buses

Shibo Chen' Hailun Zhang* Todd AustinT

OQ .;,
“““““““““““““““ TUniversity of Michigan — Ann Arbor “:#
DHE"”m“""" tUniversity of Wisconsin - Madison é



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

CPU/Host

Shared Memory

Accelerator



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

@ Connect to the
accelerator

CPU/Host

Shared Memory

Accelerator



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

@ Connect to the
accelerator
CPU/Host >
@ Store input data to
shared memory

Shared Memory

Accelerator



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

(D Connect to the (3 Launch kernel

accelerator through MMIO
CPU/Host B susEEsEEssEssEEEEEsEEsEEEEEEEEEEEEEEEEEEEEEEs >

@ Store input data to
shared memory

Shared Memory

Accelerator



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

(D Connect to the (3 Launch kernel

accelerator through MMIO
CPU/Host B susEEsEEssEssEEEEEsEEsEEEEEEEEEEEEEEEEEEEEEEs >

@ Store input data to
shared memory

Fetch Operands
Shared Memory ® P

Accelerator



Compute Offload Overhead

(D Connect to the (3 Launch kernel
accelerator through MMIO

CPU/HoSt D sEssmssssEEEsEEEEEsEEEEEEEEEEEEEEEEEEEEEEEEESE

@ Store input data to

shared memory

Fetch Operands
Shared Memory ® P

Accelerator

Overhead ~500 ns

» Compute Process

Memory Access

Host-Accelerator
Communication



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator
Communication

(D Connect to the (3 Launch kernel

accelerator through MMIO
CPU/Host D FusEEsEEssEEsEEsEEsEEsEEEEEEEEEEEEEEEEEEEEEEs >

@ Store input data to
shared memory

Fetch Operands
Shared Memory ® P

Accelerator

@ Start computation
Overhead ~500 ns



Compute Offload Overhead

(D Connect to the (3 Launch kernel

accelerator through MMIO
CPU/Host D FusEEsEEssEEsEEsEEsEEsEEEEEEEEEEEEEEEEEEEEEEs >

@ Store input data to
shared memory

@ Fetch Operands

@ Write back results
& notify the host

Shared Memory

Accelerator

@ Start computation
Overhead ~500 ns

» Compute Process

Memory Access

Host-Accelerator
Communication



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator

Communication
(D Connect to the (3 Launch kernel
accelerator through MMIO (DRead the results
CPU/Host D FusEEsEEEsEEsEEsEEsEEsEEEEEEEEEEEEEEEEEEEEEEs e >

@ Store input data to

shared memory
@ Fetch Operands

@ Write back results
& notify the host

Shared Memory

Accelerator

@ Start computation
Overhead ~500 ns



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator

Communication
(D Connect to the (3 Launch kernel
accelerator through MMIO Overhead ~500 ns (DRead the results
CPU/Host B EusEEsEEEEEEEEEEEEEEEsEEEEEEEEEEEEEEEEEEEEEEs = >

@ Store input data to

shared memory

Fetch Operands
Shared Memory ® P

@ Write back results
& notify the host

Accelerator

@ Start computation
Overhead ~500 ns



» Compute Process

Memory Access

Compute Offload Overhead

Host-Accelerator

Communication
(D Connect to the (3 Launch kernel
accelerator through MMIO Overhead ~500 ns (DRead the results
CPU/Host D mEEEEEEEEEEEEEEEESEEsEEsEEEEEEEEsEEEsEEEEEEEn = -
@ Store input data to
shared memory
@ Fetch Operands
Shared Memory
@ Write back results
& notify the host
Accelerator
@ Start computation
Overhead ~500 ns
~1000ns Overhead for Round Trip Latency
2




Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):



Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

@} Bav



Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

(Execution_Time py — Execution_Timey colerator)

P
0,



Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

(Execution_Time py — Execution_Timey colerator)

P
O Communication_Latency



Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

(Execution_Time py — Execution_Timey colerator)

P
O Communication_Latency

_ (Tcpu —Tacc)

TLat



Equation for Computing Offload Trade-offs

Ratio of Raw Time Saved Over Offload Overhead (g):

(Execution_Timecpy — Execution_Timeg ceolerator)

P
O Communication_Latency

_ (Tcpu —Tacc)

TLat

g> 1: Beneficial to offload

<=1: Not beneficial to offload

Background Motivation



The Death Zone of Compute Offload

P (Tepu —Tacc) 14 4 —Unoptimized
0 Tia 12 Y

1

~1000 ns

0.8

P/O

0.6

04

0.2

None Low Medium High
Locality/Parallelism

Background Motivation



The Death Zone of Compute Offload

P (Tepu —Tacc) 14 4 —Unoptimized
0 Tim 12 Y

1

08 | Do NOT Offload

0.6

~1000 ns

P/O

04

0.2

None Low Medium High
Locality/Parallelism

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



The Death Zone of Compute Offload

@) Trat 1.2 ‘ Beneficial to Offload

1 ~1000 ns
0.8 Do NOT Offload
g e SHES
o 0.6
0.4 Intel 8087
First Floating Point
0.2 CoProcessor

None Low Medium High
Locality/Parallelism

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



The Death Zone of Compute Offload

P (Tepu —Tacc) 14 4 —Unoptimized
0 Tim 12 Y

1

~1000 ns

0.8

P/O

0.6

Intel 8087
First Floating Point
CoProcessor

04

0.2

None Low Medium High
Locality/Parallelism

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



The Death Zone of Compute Offload

P (Tepu —Tacc) 14 4 —Unoptimized
0 Tia 12 Y

1

0.8 | Do NOT Offload

0.6

~1000 ns

P/O

04

0.2

None Low Medium High
Locality/Parallelism

Background Motivation



More Forgiving Trade-Offs with Bus Optimizations

1.4 4 —Unoptimized —Zipper

‘ Beneficial to Offload

P (Tepu —Tace)

O TLat

o -
(0 0) - N

Performance Gain(ns)
o
»

0.4

None Low Medium High
Locality/Parallelism

Background Motivation



More Forgiving Trade-Offs with Bus Optimizations

1.4 4 —Unoptimized —Zipper

‘ Beneficial to Offload

P (Tepu —Tace)

O TrLat l

o -
(0 0) - N

Performance Gain(ns)
o
»

0.4

None Low Medium High
Locality/Parallelism

Background Motivation



More Forgiving Trade-Offs with Bus Optimizations

—=Unoptimized —Zipper

‘ Beneficial to Offload

::: *T' #
... ™= | New Design Space

14 ,
P (Tepu —Tace) 5
P £ 1.2
O TLatl £
@®
() 1
o SN
(& RIROEIOPMIRRR IR
C 0.8 i TN
© D
g ..............
o 0.6 |
=
& 0.4
0.2
0
None

Background Motivation

Low Medium High
Locality/Parallelism



Case Studies

Case Study #1: Sequestered Encryption Enclave + VIP-Bench
* Support RISC-like instructions
* Compute on encrypted operands
* Running privacy-focused algorithms

— Enclave
key

* Case Study #2: Posit Hardware Kernel + NAS Parallel Benchmark
* Positis an alternative to IEEE 754 Floating Point
* Support arithmetic operations
* Running scientific applications

L
Kernel

Background Motivation Case Studies



Exploitable Opportunities Exist

"Within an 8-Request Window:

* Temporal Locality:
* Greater than 50% of input operands are from the results of the past 7 requests

* Request-level Parallelism:
* On average, 5 requests can be executed in parallel

e Traffic Reduction:
 Less than 22% of the accelerator results need to be sent back to the host

* Device-level Parallelism:
* On average, greater than100 ms between request issue and result use.

*Based on the two case studies covered in the talk 7

Background Motivation




Challenges

Analyzing Dependencies Between Two ISAs
 Compiler modifications not easy for regular developers

Communicating Locality and Parallelism Information
* Generic communication semantics do not capture this information

Minimal Hardware Modifications
* Intrusive ones are costly and prone to bugs and errors

Different Communication Protocols/APIs to Support

Background Motivation Case Studies »Challenges



Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware
optimizations that tolerate the communication latency for latency-sensitive
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while

Needs NO compiler modifications -- only C++ libraries

Captures more than 90% of the locality and enables parallelism

Has low hardware overhead and NO intrusive modifications

Is agnostic to underlying bus APls/semantics

Background Motivation Case Studies Challenges



Zipper Overview

Zipper is a set of flexible and reconfigurable software-hardware
optimizations that tolerate the communication latency for latency-sen:
applications.

Our FPGA-based evaluation shows Zipper provides a significant performance
boost while

* Needs NO compiler modifications -- only C++ libraries
* Captures more than 90% of the locality and enables parallelism
 Has low hardware overhead and NO intrusive modifications

* |s agnostic to underlying bus APls/semantics

Background Motivation Case Studies Challenges

i

Ry G :

q
i ‘,’;’
%
[ gl



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

Host Program

-

Zipper

o

Zipper Runtime Library

Zipper Hardware
Structure

~

/

User-defined

Hardware Kernel

Background Motivation Case Studies Challenges Zipper




Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

-

o

Call AP \

Zipper Runtime Library

Zipper Hardware
Zipper Structure
User-defined
Hardware Kernel
10

Background Motivation Case Studies Challenges Zipper



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

-

Zipper

o

Call AP \

Zipper Runtime Library

Send requests
& data

Zipper Hardware

Structure

/

User-defined
Hardware Kernel

10

Background Motivation Case Studies Challenges Zipper



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

-

Zipper

o

Call AP \

Zipper Runtime Library

Send requests
& data

Zipper Hardware
Structure

Issue

instructioy

User-defined
Hardware Kernel

10

Background Motivation Case Studies Challenges Zipper



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

Call AP \

Zipper Runtime Library

-

Send requests
& data

Zipper Hardware
Structure

Zipper
Issue

kBuffer results instructioy
User-defined
Hardware Kernel

10

Background Motivation Case Studies Challenges Zipper



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

Call AP \

Zipper Runtime Library

Zipper Hardware
Structure

-

Send requests
& data

Fetch results

Zipper
Issue

kBuffer results instructioy
User-defined
Hardware Kernel

10

Background Motivation Case Studies Challenges Zipper



Zipper Overview

Software Runtime Library:

* Detects dependencies between accelerator
requests and between the host and the
accelerator request.

* Manages shared memory.

* Sends requests to the accelerator & fetches
results back to the host.

Hardware Structure:
* Schedules requestissuing
* Buffers recent results for locality
* Fetches input or forwards results

/Return results Call API \

Zipper Runtime Library

Zipper Hardware
Structure

Send requests
& data

Fetch results

Zipper
Issue

kBuffer results instructioy
User-defined
Hardware Kernel

10

Background Motivation Case Studies Challenges Zipper



Zipper Runtime Library

Data_type
Three data structures: {Accl_val_t va/
bool valid-
* Overloaded data types: track results’ bool inAcdl 3
status, location, etc. int location;} | || peee -

e Shared Memory: Separate intooperand | | | [
partition and result partition. 0

Operand Partition Result Partition

Shared Memory
(o e )
* Result list: track objects that share the g X N N
same results. > -3
3 [

\ Result Lists)

11

round Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(1/2)

Example Code Snippet

)

1 -
2 -
3

\_

Result LiStSj

round

Operand Partition

Motivation

intm, n, I;
Accl_ta=m Q) n;
Accl_tb=a® i;

Shared Memory
Case Studies Challenges

Result Partition

Zipper

af
Accl_val_t val
bool valid:
bool inAccl:
int /ocation;

}

Data Bus
12



Zipper Runtime Library Example(1/2)

Example Code Snippet

@ Register a in

. intm, n, I; af
Result Lists

Accl_ta=m®n; Accl_val_t va/-

(0 ) Accltb=a®i; bool valid
1 - bool inAccy
int /ocation;
2 m/ |
3 B |
\_ Result L|st5/
3
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 12

round Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(1/2)

Example Code Snippet

@ Register a in

. intm, n, I; af
Result Lists

Accl_ta=m®n; Accl_val_t va/-

G ) Accltb=a®i; bool valid
1 - bool inAcct
int /ocation;
2 .:w @) Write m, n to }
3 Y Shared Memory
\_ Result LiStS)
3
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 12

Background Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(1/2)

Example Code Snippet

@ Register ain intm. n. i: af
Result Lists P :
Accl_ta=m®n Accl_val_t va/
G ™ Accl_tb=a®i; \ bool valid:
X bool /inAcd/:
- int /ocation;
2 .“"/ @) Writem, nto 3
3 Y Shared Memory
Result Lists
. >/ 5 © (®, MEM.ADDRS,
---------- MEM.ADDRS6, 3)
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 12

Background Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(1/2)

Example Code Snippet

@ Register ain intm. n. i:
Result Lists Accl It ’_’m ® n: — @Update a’s Status | ai
ccl_ta= | Accl_val_t va/
G ) Acd_tb=a®i; \ bool valig: IEIRS
1 - bool /nAcc/ LIS
int /ocation; BEE T
2 .“"/ @) Writem, nto }
3 Y Shared Memory
Result Lists
. >/ 5 © (®, MEM.ADDRS,
---------- MEM.ADDRS, 3)
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 12

Background Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(2/2)

Example Code Snippet

)

1 -
2 -
3

\_

Result LiStSj

round

Operand Partition

Motivation

intm, n, I;
Accl_ta=mQ n;
Accl_tb=a® i;

Shared Memory
Case Studies Challenges

Result Partition

Zipper

b{
Accl_val_t val
bool valid:
bool inAccl:
int /ocation;

}

Data Bus
13



Zipper Runtime Library Example(2/2)

Example Code Snippet

@ Register b in
Result Lists

)
1“]]
2 -
3

\_

Result L|st5/

sround

Operand Partition

Motivation

intm, n, I;

Accl_tb=a® i;

Accl_ta=mQ n;

Shared Memory
Case Studies Challenges

Result Partition

Zipper

b{
Accl_val_t val
bool valid:
bool inAccl:
int /ocation;

}

Data Bus
13



Zipper Runtime Library Example(2/2)

Example Code Snippet

@ Register b in
Result Lists

)
1‘"]
2 -
3

\_

Result L|st5)

sround

Operand Partition

Motivation

intm, n, I;
Accl_ta=mQ n;

Accl_tb=a® i;

Write i to Shared
Memory

Shared Memory
Case Studies Challenges

Result Partition

Zipper

b{
Accl_val_t val
bool valid:
bool inAccl:
int /ocation;

}

Data Bus
13



Zipper Runtime Library Example(2/2)

Example Code Snippet

(1) Regis':er bin intm, n, i b
Result Lists
Accl_ta=mQn; Accl_val_t va/
6 - Acc_tb=a®i; —_ bool valid-
1 - oo i
int /ocation;
2 - Write i to Shared 3
3 a Memory
\_ Result Lists € (®, Req.3,
3 MEM.ADDR7, 0)
2
1
0)
Operand Partition Result Partition Data Bus
Shared Memory 13

sround Motivation Case Studies Challenges Zipper



Zipper Runtime Library Example(2/2)

Example Code Snippet

@ Register b in - .
Result Lists ntm, n, @Update b’s Status | D1
Accl_ta=mQn; Accl_val_t va/:
6 b = Accltb=a®i; = —— | bool valid | False |
1 - bool /nAcc/ LIS
int /ocation; G
2 BB Write i to Shared }
3 B Memory
\_ Result Lists € (®, Req.3,
3 MEM.ADDR?7, 0)
2
1
0
Operand Partition Result Partition Data Bus
Shared Memory 13

sround Motivation Case Studies Challenges Zipper



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

Hardware

Kernel

w N = O

Data Bus [ }

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

Hardware

Kernel

w N = O

® Adds MEM Addb MEM

Data Bus [ }

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

0 ® 3 REQ Addry MEM Hardware
1 Kernel
2

3 ® Adds MEM Addé MEM

Data Bus [ }

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

SN I EECHS P Z0 NNERT Hardware

Kernel

0
1
2
3  ® Adds MEM Addd MEM

@ Read Operand
from Memory

Data Bus /{ }

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

SN I EECHS P Z0 NNERT Hardware

Kernel

w N = O

lopl MEM | op2 MEM

O Read Operand © Update Operand
from Memory Value

Data Bus

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

@ Issueto
Compute Kernel

0 X 3 REQ Ado’/7 MEM Hardware
1
Kernel

2 3

s ® lopl MEM [op2 Mew

O Read Operand © Update Operand

from Memory Value

Data Bus

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

@ Issueto

Index | Inst. | Op. 1 | Mode | Op.2 |Mode | Result | Compute Kernel
0 R 3 REQ Addy MEM Hardware
1
Kernel
2
3 opl MEM |op2 MEm [T
O Read Operand © Update Operand
from Memory Value © Write Back
Result m
Data Bus

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

@ Issueto

Index | Inst. | Op. 1| Mode | Op. 2 |Mode | Result_ Compute Kernel
- ® — AFO:I/:WH':,(I’E;,IESU“ Hardwa re
i 6 Kernel
3 ® MEM YV M Value
@ Read Operand © Update Operand

from Memory Value © Write Back

Resultm
Data Bus /{ }

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Hardware Structure

@ Receive Request Scheduling
Logic

@ Issueto

Index | Inst. | Op. 1| Mode | Op. 2 |Mode | Result_ Compute Kernel
- ® — AFO:I/:WH':,(I’E;,IESU“ Hardwa re
i 6 Kernel
3 ® MEM YV M Value
@ Read Operand © Update Operand

from Memory Value

Data Bus /{

© Write Back

Result m
@ write (2111

to Memory

14

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



FPGA-Based
Evaluation

15



Experiment Setup

Platform Name

Intel HARP V2

Host CPU

Host Frequency

FPGA Type

Interconnect

Bus Interface

Intel Xeon CPUs (E5-2699v4)

2.2GHz

Arrial0 GX1150

Intel QuickPath Interconnect (QPI)

Core Cache Interface(CCI-P)

Background

Motivation

Case Studies Challenges Zipper

Evaluation

A Photo of Intel HARP V1

16




Performance Improvements with Low Area
Overhead (1)

>00% Only RLP* = RLP + Dependency Relocation m RLP + Memory Coalescing ® Zipper
0

180%

t  160%
140%
o 1 I
100% |
a(\e a(,\k \\

Higher is better

o’ \\5‘ e g ) e‘ 2
\e"’ . c C aQ (‘:e“ \(\SQ . ‘e“’ ’(.’Qa ,C\Q\\ e
‘Ob N\ % w «\ K\\\ \‘e eo

VIP-Bench + Sequestered Encryption Enclave
1.5x Speedup with 0.9% Adaptive Logic Module overhead

*RLP =request-level parallelism

Background Motivation Case Studies Challenges Zipper Evaluation

17



Performance Improvements with Low Area
Overhead (2)

Higher is better

™ Only RLP RLP + Dependency Relocation ® RLP + Memory Coalescing ® Zipper
900%

800%
700%
600%
500%
400%
300%
200%
100 B l N l m . H I = ml =B

Geomean

NAS Parallel Benchmark + Posit Hardware Kernel
8x Speedup with 4.3% Adaptive Logic Module overhead

Background

Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Improves Performance by Reducing
Memory Traffic (1)

® Only RLP  m RLP + Dependency Relocation m RLP + Memory Coalescing Zipper
100%

80%

60%
40%
\4
20%
e

Lower is better

0%

20 o X el
CLABIITS Lo L ,c\"“
K\\) ‘\_e xe®

on®

VIP-Bench + Sequestered Encryption Enclave
Zipper reduces 46% of bus transactions 19

S ct
e %06'\\ e

b\,\e*" o @9 \d\a(’

6\5‘ «\\“

o

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Zipper Improves Performance by Reducing
Memory Traffic (2)

M Only RLP m RLP + Dependency Relocation ® RLP + Memory Coalescing = Zipper
100%

80%

60%
v 40%
- I I I I I I

0%

Lower is better

Geomean

NAS Parallel Benchmark + Posit Hardware Kernel

Zipper reduces 77% of bus transactions 20

Background Motivation Case Studies Challenges Zipper Evaluation Conclusions



Conclusions & Looking Ahead

* Communication latency is not getting any lower
* However, they can be tolerated and hidden...

e Zipper achieves, even without any drastic and intrusive changes:
* On average, 1.5-8X speed-up with <5% area overhead.
* No compiler changes or intrusive changes to the hardware kernel.
* Portable to all buses, APIs, and operating systems.

e Zipperis open-sourced @ https://github.com/zipper-bus-optimizations

21

Background Motivation Case Studies Challenges Zipper Evaluation


https://github.com/zipper-bus-optimizations

Questions?

1/17/2025

22



	Zipper: Latency-Tolerant Optimizations for High-Performance Buses
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Compute Offload Overhead
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	Equation for Computing Offload Trade-offs
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	The Death Zone of Compute Offload
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	More Forgiving Trade-Offs with Bus Optimizations
	Case Studies
	Exploitable Opportunities Exist
	Challenges
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Overview
	Zipper Runtime Library
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(1/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Runtime Library Example(2/2)
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	Zipper Hardware Structure
	FPGA-Based Evaluation
	Experiment Setup
	Performance Improvements with Low Area Overhead (1)
	Performance Improvements with Low Area Overhead (2)
	Zipper Improves Performance by Reducing Memory Traffic (1)
	Zipper Improves Performance by Reducing Memory Traffic (2)
	Conclusions & Looking Ahead
	Questions?

