
Zipper: Latency-Tolerant Optimizations for High-Performance
Buses

Shibo Chen
chshibo@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

Hailun Zhang
hzhang664@wisc.edu

University of Wisconsin
Madison, Wisconsin, USA

Todd Austin
austin@umich.edu

University of Michigan
Ann Arbor, Michigan, USA

ABSTRACT
As heterogeneous designs take over the world of hardware designs,
the data bus plays a vital role in interconnecting hosts and accelera-
tors. While past works have emphasized increasing communication
bandwidth for data-hungry workloads extensively, this work focuses
on optimizing the communication latency for latency-sensitive accel-
eration applications. We first study the pattern of various accelerator
workloads and demonstrate that various optimization opportunities
exist to reduce the overhead of communication latency. To help devel-
opers exploit these opportunities, we introduce Zipper—a protocol
optimization layer that reduces communication costs by enabling
device and request level parallelism and exploiting data locality
for existing bus standards. We applied Zipper to two domains and
implemented the end-to-end system on a heterogeneous hardware
platform with integrated FPGA. Our physical experiments show that
Zipper provides 8x speedup for one accelerator with 4.3% logic
overhead and 1.5x speedup for another with 0.9% logic overhead.

ACM Reference Format:
Shibo Chen, Hailun Zhang, and Todd Austin. 2025. Zipper: Latency-Tolerant
Optimizations for High-Performance Buses. In 30th Asia and South Pacific
Design Automation Conference (ASPDAC ’25), January 20–23, 2025, Tokyo,
Japan. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3658617.
3697546

1 INTRODUCTION
Data buses are vital in connecting heterogeneous components in
today’s hardware designs. While high-performance data buses have
ramped up bandwidth over time, the access latency has not been scal-
ing on par because link traversing scales poorly as the technology
node shrinks [40]. A recent study [24] shows that the round-trip la-
tency through the popular PCI Express Gen 3.0 [2] or Intel Ultra Path
(UPI) Interconnect [19] languishes at the microsecond scale. Many
applications cannot tolerate microsecond-level latencies, leading to
most of these latencies being fully exposed [8]. As such, long-latency
bus transactions hinder the broad deployment of a wider spectrum
of applications and accelerators in the production environment.

Although communication latency is hard to reduce through im-
proved physical designs, we observed two significant opportunities
for latency-tolerant optimization. First, there is parallelism at both

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPDAC ’25, January 20–23, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01. . . $15.00
https://doi.org/10.1145/3658617.3697546

the request and the device level. We can enhance host and accel-
erator utilization by enabling out-of-order and parallel execution;
second, many compute kernels exhibit significant temporal locality:
the results of previous requests often become inputs for subsequent
requests. We can exploit this locality to reduce data movement.

To capitalize on latency-tolerant optimization opportunities in a
real production system, we desire a generic and reusable solution
that provides the following benefits:

• Simple parallelism model: Data dependencies can exist be-
tween host and accelerator instructions or within accelera-
tor instructions. Harvesting parallelism requires a dynamic
scheduling mechanism that works across ISAs and device
boundaries.
• Efficient data tracking: Since data is continually moved be-

tween host and accelerator, the system needs to precisely and
efficiently track the location of the data to ensure functional
correctness.
• Reduced design complexity: Due to the sheer size of possi-

ble accelerator designs and platforms, customizing APIs and
compilers would be a heavy technology burden for ordinary
system developers. Major vendors only provide function-level
APIs [26, 39], which makes adding compiler support even
more difficult. A portable and extensible solution is neces-
sary to make latency optimizations accessible, scalable, and
bus-standard agnostic.

To deliver these features, we propose Zipper. Working on top of
existing data buses, Zipper is a dynamic bus protocol optimization
layer that reduces bus transaction latency between heterogeneous de-
vices connected through a high-performance data bus. It dynamically
analyzes data dependencies, tracks data movement across devices,
and exploits locality and parallelism as a program proceeds. Zipper
uses a software-defined request scheduling approach that requires no
modification to application logic, compilers, or data buses. Zipper’s
runtime library identifies temporal locality and parallel execution
opportunities and schedules optimized accelerator requests to enable
resource-constraint-aware parallelism and data reuse. The imple-
mentation details of this runtime library are hidden from developers,
and the developers can use encapsulated data types as if they are
host-native. For hardware, Zipper offers a small request buffer to
cache data and enables out-of-order execution of requests with data
reuse. In Section 4.1, two FPGA-based case studies are presented
and shown to benefit significantly from Zipper. Our experiments
show that Zipper provides uniformly good end-to-end application
speedups, with as much as 8x speedup for one case study.

We summarize the contributions of this work as follows:

• We detail the design of Zipper, a general protocol optimization
layer to optimize bus transaction latency for heterogeneous

1

https://orcid.org/0000-0002-9522-8934
https://orcid.org/0009-0000-5810-1347
https://orcid.org/0000-0002-0181-0852
https://doi.org/10.1145/3658617.3697546
https://doi.org/10.1145/3658617.3697546
https://doi.org/10.1145/3658617.3697546

system communication over existing high-performance buses.
The optimization layer exploits locality and parallelism oppor-
tunities that are currently missed, without making demands
on the underlying data bus or programmers.
• We show a real-world FPGA-based implementation of Zip-

per, built over Intel’s QuickPath Interconnect (QPI) for CPU-
integrated FPGAs. We dive into the hardware and runtime
software components that were implemented for this plat-
form.
• We present two real-world FPGA-based case studies with

Zipper in a production environment and show significant
application-level performance improvements (as much as
8x), with modest area overheads (of less than 5% increase
in logic). In both studies, our real-world application demon-
strated significant amounts of temporal locality and transac-
tion parallelism, even for designs with only a 4-entry request
scheduling window.

Zipper is open-sourced and ready to deploy in real production envi-
ronments that connect accelerators using AXI, CCI-P, or CXL data
buses. The implementation, written in C++ and SystemVerilog, will
be available via a URL, which has been omitted for anonymity.

2 DISCOVERING BUS OPTIMIZATION
OPPORTUNITIES

This section discusses three key opportunities that we focus on to
optimize bus communication latency.

2.1 Host-Accelerator Communication Convention
After the host connects to the accelerator, the developer creates a
shared memory space between the two for them to pass inputs and
compute results. To kick off the kernel, the host writes inputs into
the shared memory and issues instructions with metadata (i.e., input
starting address, result write back address, etc.) to the accelerator
through, typically, Memory Mapped Input Output (MMIO). After
receiving the instruction, the accelerator fetches the input data from
the shared memory, writes back the result to the specified write-back
address, and notifies the host. This is usually agnostic to physical
implementations (e.g., UPI [19], PCIe [2], Infinity [5], etc.) or data
transfer protocols (e.g., CCI-P [18], CXL [28], AXI [7], etc.).

2.2 Optimization Opportunities
In this section, we use a reduction algorithm over an abstract hardware-
accelerated operator ⊗, as shown in Algorithm 1, to demonstrate
existing latency-tolerant opportunities. In this algorithm, we want to
calculate the product of the 2n inputs over a hardware accelerated
operator ⊗ and store the result to the write-back address. The accel-
erator is attached to the host system, which runs the algorithm by
high-performance data buses, i.e., UPI, PCIe, etc.

Figure 1 shows the data-dependence graph of Algorithm 1 and
the optimizations to eliminate dependencies, exploit locality, and
enable parallelism. Starting with the unoptimized implementation
in (a), the developer partitions the instructions based on the devices’
capabilities: execute instruction 1, 2, 4, and 6-8 on the host, and
offload instruction 3, 5 to the accelerator. A stock compiler cannot
optimize cross-device dependencies; thus, the unoptimized system
has to execute instructions sequentially in program order. As a result,

Algorithm 1: A reduction algorithm with operator ⊗.
Data: An array of 2n elements: arr[2n], A writeback address

addrwr
Result: y = summation of all elements in arr over special

operator ⊗
i← 0; result← 1;
while i < 2n−1 do

1: a← load(Mem[arr+i]);
2: b← load(Mem[arr+i+1]);
3: c← a⊗b;
4: fetch c;
5: result← c⊗result;
6: fetch result;
7: i← i+2;

end
8: Mem[addrwr]← result

the host always waits for the accelerator to complete computation
and loads the result from the shared memory (performed by fetch
instructions 4 and 6) before it can move on to the next instruction
and/or use the result in subsequent requests.

2.2.1 Exploitable Temporal Locality. We notice that not every de-
pendency is created equal. A cross-device data dependency is much
costlier to resolve than a local data dependency due to the bus com-
munication overhead. Based on this observation, we eliminate cross-
device dependencies and replace them with local ones whenever
possible. That is, instruction 5’s two operands are the result from
instruction 3 and its result from the last iteration. Therefore as shown
in Figure 1b, instruction 5 does not need to wait for instruction 4 on
the host side to complete and then get its input from the host. Rather,
we can remove this cross-device dependency by directly forwarding
the results from the previous requests 3 and 5, as shown in (b). By re-
locating cross-device dependencies, we can avoid much inter-device
communication and thus reduce communication overhead.

2.2.2 Device-level Parallelism. Instructions 4 and 6 block instruc-
tions that fetch results from the shared memory. After the depen-
dencies have been relocated, instruction 4 and 6 can be moved off
the critical path. As shown in Figure 1c, the host can continue ex-
ecution while the accelerator is working on the received requests.
Being non-blocking, the host can run ahead to fetch new data for
future accelerator requests. As long as there is no data dependency
across devices, the two devices can run in parallel and do not need
to synchronize.

2.2.3 Request-level Parallelism. After relocating the data depen-
dencies and enabling device-level parallelism, we can completely
offload a sequence of requests to the accelerator. We can also extract
request-level parallelism locally on the accelerator to maximize the
performance gain. In our example, since instruction 3 is indepen-
dent of previous accelerator instructions, shown in Figure 1d, it can
bypass previous requests or interleave with other requests. The only
limitations would be the number of requests the accelerator can
handle simultaneously and the accelerator’s compute throughput.

2

1 2

3

5
4

6

7

8 Host

Accelerator

(a). Unoptimized Implementation

1 2

3

5
4

6

7

8 Host

Accelerator

(b). Optimized with Exploited Temporal Locality

1 2

3

5

4

6

7

8 Host

Accelerator

(c). Optimized with Device Level Parallelism

6
1 2

3

5
4

6

7

8 Host

Accelerator6

(d). Optimized with Request Level Parallelism

3

5

Remove
Unnecessary

Dependencies

Optimize
Accelerator-Side

Dependencies

Data Dependency

Host Instruction

Accelerator Instruction

Relocate Data
Dependencies

Figure 1: Latency-tolerant optimizations for the instruction sequence shown in Algorithm 1.

3 ARCHITECTING ZIPPER OPTIMIZATIONS
To enable optimizations discussed in Section 2, we propose Zipper.
Zipper is a protocol layer that resides between the physical bus and
the application logic, and thus, it does not require any changes to
the compiler, compute kernel, or the underlying data bus. Zipper is a
drop-in optimization that significantly reduces the exposed latency
that is common for high-performance buses, essentially widening
the applicability of these emerging bus technologies.

3.1 Overview of Zipper
Zipper uses a set of communication semantics that captures the local-
ity and dependency information to connect the host and accelerator.
Zipper adds a request buffer table to the accelerator that tracks the
status of operands and caches recent request results. On the host
side, a runtime library analyzes data dependency and catches the
data reuse opportunities by observing and tracking accelerator re-
quests. The runtime library also manages communication between
the host and the accelerator and hides tedious implementation details
from software developers. The rest of this section will first describe
the communication protocol between Zipper host and accelerator,
Zipper’s hardware structure, and Zipper’s runtime library.

3.2 Host-Accelerator Communication Protocol
In Zipper, the host sends requests to the accelerator through MMIO
and communicates input operands and results with the accelerator
through shared memory. The number of fields and the bits in each
field can vary depending on the use case. As a rule of thumb, each
request should include Instruction, Write-back Address, and
Operand Information. Each request can have multiple operands.
Each operand may reside in the shared memory or the Zipper hard-
ware structure. The shared memory is the communication channel
between the host-accelerator for input operands and results. We par-
tition the shared memory into operand partition and result partition.
The input operands are continuously placed in the operand partition
and wrapped over to reuse the old memory when it reaches capacity.
The result partition maintains the bijection with the accelerator-side
buffer table entries. For input operands smaller than the size of one
memory request granularity, Zipper packs multiple operands for

Instruction-
level Kernel

Index Inst. Op. 1 Mode Op. 2 Result

0 ⊗ REQ Addr7 MEM

1

2

3 ⊗ Addr5 MEM Addr6 MEM

Memory
Controller

1

3

value

Scheduling
Logic

Mode

3

Receive Request

2 Read Operand
from Memory

3 Update Operand
Value

4 Dispatch to
Compute Kernel

5 Write Back
Result

6 Forward Result

7 Write
to Memory

value

value

Data Bus

Figure 2: Zipper hardware structure and life cycle of an acceler-
ator request.
different requests into one cache line to reduce the number of ac-
cesses to the memory. Zipper software attaches a version bit to each
operand when issuing the request. The Zipper accelerator verifies
the freshness of the operand by matching the version bit with the
version bit it receives from the runtime library.

3.3 Zipper Hardware Structure
Zipper hardware resides on the accelerator side and handles requests
it receives from the host. It consists of four parts, shown in Figure 2:
a request buffer table, an execution scheduler, a memory controller,
and the accelerator. The memory controller is platform-specific, and
the compute kernel is user-specific. Zipper does not need to make
intrusive modifications to these two components to work.

Zipper uses the request buffer table and the execution scheduler
to enable request-level parallelism. In 1 , when Zipper hardware
receives a request from its software counterpart, typically through
MMIO, it will first store the request information in the request buffer
table. The request buffer table stores and tracks all the details on
pending and recently completed requests: the instruction, the status
of each operand, the write-back address, etc. The request buffer table
can be of different sizes. We will discuss the impact of buffer size
in Section 5.3. The execution scheduler decides which request is
ready for execution and can dispatch instructions out-of-order. The
scheduling logic prioritizes older requests when multiple requests
are ready to be dispatched.

3

The request buffer table caches recent results until new requests
take the entries. Zipper hardware then reconstructs the data depen-
dency chain based on the information embedded in the requests.
For each accelerator instruction, Zipper fetches their values based
on the information provided in the request. 2 If the operand is in
the memory, Zipper issues a read request to the memory controller
and marks it as "in fetch" to avoid duplicated access. If the operand
comes from a prior request, Zipper either fetches the value if it is
ready in the buffer table or waits until the prior request has been
completed. 4 Once all operands are resolved, Zipper marks this
request as ready to be dispatched. 5 When the computation is done,
Zipper stores the results back in the buffer table and writes the results
into their corresponding write-back address in the memory, shown
in 7 . 6 If there are pending requests whose inputs are dependent
on the newly completed request, Zipper directly forwards the value
when the result is ready.

3.4 Zipper Runtime Library
In Zipper, providing a non-blocking host-side interface that tolerates
multiple pending requests within the accelerator’s resource limitation
is essential. On the host side, Zipper conducts dependency analysis,
request scheduling, and result fetching with a software runtime li-
brary. Zipper provides packaged data classes to host applications as
if they were host-native types. These data classes encapsulate over-
ridden functions and necessary metadata. This approach provides
flexibility and dynamic scheduling capabilities without compiler
modification. Figure 3 shows Zipper’s software data structures and
corresponding updates when behaving different functions.

The Zipper runtime library maintains two data structures to track
data objects and communicate with the accelerator: class objects and
result lists. The class objects track the status of the requests and the
results if the requests are complete.

The result lists track all the software data objects associated with
each hardware buffer table entry. When Zipper fetches the results
back to the host or clears a table entry, it iterates through the list
and updates all relevant data objects. This enables Zipper to track
multiple in-flight requests.

We use a code snippet shown in the figure to demonstrate the
operations of the Zipper runtime library. The code first calculates
an accelerator request and its result a with input from the host and
then calculates another variable b reusing a”s value. After these two
accelerator requests, it re-assigns b to a. Lastly, it retrieves the a’ s
value from the accelerator back to the host.

3.4.1 Issuing New Requests. Figure 3a shows Zipper issuing a new
accelerator request to the accelerator. 1 Within the context shown
in the figure, Zipper registers object a into an available slot in result
lists. 2 Zipper will store the input operands m and n in the shared
memory and send their relative location to the accelerator. In the
last step 4 , Zipper updates a’s validity as false and marks it to be
inside the accelerator at location 3. After this step, the program can
continue onto the next host instruction or accelerator request.

3.4.2 Enabling Accelerator-Side Caching. In Figure 3b, Zipper makes
another accelerator request. Since there is no empty slot available,
Zipper first clears the oldest entry as shown in Step 0 . Zipper forces
each object mapped to slot 1 to fetch its value to the host memory

if they have not already and update them as not in the accelerator’s
buffer anymore. During the analysis stage, Zipper detects variable a
is at location 3 of the accelerator buffer and its value can be reused,
so Zipper will not write a to the shared memory nor need to fetch
a’s value back. Instead, Zipper instructs the hardware to get a’s
value directly from buffer table slot 3. In this way, Zipper detects the
relocation opportunities on the host and utilizes the hardware buffer
to exploit them. We then append b to the result lists and update its
metadata similar to what we did to a in the last request.

3.4.3 Object Reassignment. When reassigning an object to track
another object, as in Figure 3c, Zipper changes the data structure
to reflect this reassignment. We reassign b to variable a. 1 Zipper
copies a’s metadata to b and moves b away from its original slot in
the result lists to the same slot as a. Similarly, Zipper removes the
object from the result list when the object is getting deleted.

3.4.4 Lazy Fetch. Zipper never proactively retreives results until
the value is needed. As the code execution progresses, the host
eventually asks for the value of a to proceed, shown in Figure 3d. In
this case, Zipper fetches a’s result from its tracking location 3. If the
result is not ready, the host will stall due to hard dependency. Once
Zipper fetches the value from the shared memory, it will update a’s
value and its metadata. Zipper will also update all the objects that
are tracking location 3. However, a’s value is still in the accelerator
buffer for future use as no new request evicts a yet.

4 REAL-WORLD EXPERIMENTAL SETUP
This section discusses the case studies and hardware setup that
are representative of the production environment. We conducted
our experiments on Intel HARPv2 [13] with an in-package FPGA.
The system contains a 64K FPGA-side coherent cache. The Zipper-
augmented software runs on the Intel Xeon E5-2699v4 @ 2.2 GHz,
and the Zipper-enabled hardware kernels run on the Arria10 FPGA.
The host and the FPGA are connected with Intel QuickPath Inter-
connect using Core Cache Interface.

4.1 Real-World Case Studies
We evaluated Zipper on two applications that rely on CPU and
accelerator to compute and are highly sensitive to the communication
latency between the two devices: (1) we replaced the floating point
representation in the NASA Parallel Benchmark (NPB) [11] with
a Posit32 number representation. Posit is a 32-bit number format
that achieves better precision than floating points, but currently lacks
native hardware support. All posit computations are computed with
a hardware kernel; (2) we implemented hardware isolation support
for the integer subset of VIP-Bench [10]. VIP-Bench is a set of
algorithms implemented in a data-oblivious manner where only the
SE hardware enclave can see the plaintext values of the secrets[9].
We prototyped the SE enclave on an FPGA, and all privacy-enhanced
operators are offloaded to the SE enclave.

These two latency-sensitive applications represent interesting
privacy and HPC acceleration opportunities that are gaining traction
and benefit greatly from fine-grained offloading. We used an 8-entry
buffer table design for the Posit32 accelerator and a 2-entry design
for the SE enclave design for optimal performance-area trade-offs. In
the baseline design, each request is issued and executed sequentially.

4

Result Lists

1
0

2
3 a

Shared Memory
Operand Partition Result Partition

int m, n, i, j;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;
b = a;
j = a + n;

m

n

0

1

2

3
Data Bus

1

2

3 (⊗, MEM.ADDR5, MEM.ADDR6, 3)

Register a in
Result Lists

Write m, n to Shared Memory

a{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

4

True
False

3

Update a’s
Status

(a) Issuing new request to accelerator

1
0

2
3 aint m, n, i, j;

Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;
b = a;
j = a + n;

Data
Bus

0

3

4 (⊗, Req.3, MEM.ADDR7, 0)

Fetch Result; Update
Status; Clear

Write i to Shared Memory

b

1 Register b in
Result Lists

Result Lists

a{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

2 Check a’s
Status

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

i

True
False

3

(b) Issuing new request with operand reuse

1
0

2
3 a

int m, n, i, j;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;
b = a;
j = a + n;

Data Bus

b

Result Lists

1 Update b’s
Status

b{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

b{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

b

2 Move b to
Track a

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

i

True
False

3
True
False

0

(c) Object reassignment

1
0

2
3 a

int m, n, i, j;
Accl_t a = m ⊗ n;
Accl_t b = a ⊗ i;
b = a;
j = a + n;

Data Bus

Result Lists
1 Check a’s status

a{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

a, b{
Accl_val_t val;
bool valid;
bool inAccl;
int location;

}

b

val.

Shared Memory
Operand Partition Result Partition

m

n

0

1

2

3

i

2 Fetch Result

3 Update All Objects in Slot 3

4 Return

True
False

3
True

3

True

val.

(d) Fetching results from accelerator

Figure 3: Zipper software data structure and scheduling.

5 EXPERIMENTAL EVALUATION
This section provides an analysis of the performance speedup, the
area overhead, the impact of various optimizations, request buffer
table sizes, workload profiles, and other relevant design aspects.

5.1 Performance Speedup and Logic Overhead
Figure 4 shows the relative performance of Zipper over the baseline
design. The figure also provides insights into each feature’s contri-
bution to the overall performance. On average, Zipper provides 8x
speedup for NPB with Posit32 and 1.5x for VIP-Bench with the SE.

We synthesized our design with Intel Quartus Pro 16.0.0.211 onto
the targeted FPGA platform. We compute the logic overhead by
taking the added Zipper logic over the accelerator and the existing
bus control logic. The logic overhead of Zipper is only 4.3% for the
8-entry Zipper Posit32 design over the baseline design and 0.9% for
the 2-entry Zipper SE enclave design over the baseline design.

5.2 Accelerator Memory Access
Zipper’s performance benefits greatly from reducing accelerator
memory demands by exploiting temporal locality and memory coa-
lescing. Figure 5 shows the percentage of the bus transactions Zipper
and other de-featured design options make over the baseline design.

For NPB with Posit32, Zipper reduces the accelerator’s bus trans-
actions by 77% from the baseline. Request-level parallelism enables
out-of-order execution but does not reduce any memory access.
Since Zipper can pack 8 input operands into one cache line, mem-
ory coalescing reduces 63% of bus transactions over the baseline.

Application
Window Size

0 2 4 8

Exploitable parallelism
NPB w/ Posit 1 1.89 3.53 6.17
VIP-Bench w/ SE 1 1.87 2.69 3.94

Percentage of results to be fetched back
NPB w/ Posit 100% 45% 26% 22%
VIP-Bench w/ SE 100% 55% 21% 10%

Distance between issue and use
NPB w/ Posit 251.86 543.59 840.71 821.11
VIP-Bench w/ SE 65 136.68 1656.9 2243.7

Table 1: Zipper characteristics under different instruction win-
dow sizes for two applications on average.
Dependency relocation exploits temporal locality and data reuse,
reducing 34% of bus transactions over the baseline.

Since operands are larger in the VIP-Bench with SE enclave
design, Zipper cannot pack the operands as tight as with Posit32
numbers. Therefore, it is more likely that the operands for the same
request span over two cache lines, which leads to more memory
access and fewer opportunities for memory coalescing. Zipper re-
duces 46% of the bus transactions while memory coalescing and
dependency relocation reduce 37% and 27% of the bus transactions
over the baseline SE enclave design, respectively.

5.3 Impact of Hardware Buffer Size
To study the optimal number of buffers for different workloads,
we analyzed the distance of the data dependency chain in Zipper
requests or the number of entries we need to provide for efficient

5

100%

200%

300%

400%

500%

600%

700%

800%

900%

bt cg lu ft mg Geomean

RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

(a) NPB with Posit

100%

120%

140%

160%

180%

200%
RLP RLP + Dependency Relocation RLP + Memory Coalescing Zipper

(b) VIP-Bench with SE Enclave
Figure 4: Relative performance of Zipper and various de-featured Zipper over the baseline. RLP = Request-level Parallelism.

0%

20%

40%

60%

80%

100%

bt cg lu ft mg Geomean

Only RLP RLP + Dependency Relocation
RLP + Memory Coalescing Zipper

(a) NPB with Posit32

0%

20%

40%

60%

80%

100%

Only RLP RLP + Dependency Relocation
RLP + Memory Coalescing Zipper

(b) VIP-Bench with SE Enclave

Figure 5: Comparison of the number of bus transactions by accelerator between Zipper, de-featured Zipper, and the baseline.

dependency relocation. Our experiment results show that 91% and
92% of the temporal locality can be captured with only four buffer
entries for NPB and VIP-Bench, respectively. Table 1 shows the
number of requests that can be processed in parallel, the percentage
of results required to be fetched back into the host memory, and the
average time distance (in microseconds) between the host issuing
request and the hosting using the request result. As we increase
the number of buffer entries, Zipper can exploit more parallelism
while facing diminishing returns. As Zipper harvests more operand
reuse with larger buffers, the percentage of results that need to be
fetched decreases as more request dependencies get relocated. The
average time distance also increases as fewer results are fetched
back to the host, giving the host more time to execute host-side
codes in parallel. Note that this analysis assumes the system has
perfect knowledge of the instruction dependencies during runtime.
In practice, Zipper always fetches results back when the buffer entry
gets recycled to ensure correctness. A larger buffer gives more time
to continue execution until it needs to recycle a buffer entry.

We then analyzed the performance and logic overhead of various
sizes. We construct our experiments around the buffer size of 4. The
results are shown in Figure 6. The logic overhead increases exponen-
tially as the size of the buffer increases because we need more logic
for scheduling and more space to store results and operands. For
NPB with Posit32, the speedup increases logarithmically as we put
more entries in the buffer table. However, VIP-Bench with SE En-
clave’s performance only increases slightly with more buffer entries.

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

0%

2%

4%

6%

8%

10%

12%

14%

2 4 8

NPB + Posit ALM Overhead

VIPBench + SE Enclave ALM Overhead

NPB + Posit Speedup

VIPBench + SE Enclave Speedup

AL
M

 O
ve

rh
ea

d

Speedup

Figure 6: Impact of different number of buffer table entries on
performance and area for Zipper.
The difference is attributed to the latency of each compute kernel.
The Posit32 kernel takes two cycles to complete an instruction, while
the SE Enclave kernel takes 24 cycles for each instruction. The SE
Enclave is more compute-bound to the kernel itself.

6 LIMITATIONS AND FUTURE WORK
While Zipper demonstrates tremendous performance improvement
over the baseline, there are additional improvements we can explore
as the continuation of this line of work: (1) Request Reordering:
Zipper leverages the optimization opportunities that applications
present. However, there would be more temporal locality by re-
ordering the requests and exploiting operator commutativity and
associativity. To achieve this, Zipper can issue requests in batches
after requests within a scheduling window have been optimized. (2)

6

Multi-Agent Cooperation: We considered the scenario with only
one accelerator in this work. Multiple accelerators can cooperate to
complete the computation in a more complex system. Zipper poises
well to enable such extensions as the developer can use optimized
scheduling algorithms to dispatch requests to different accelerators.

7 RELATED WORKS
With the emergence of heterogeneous and large-scale systems, com-
munication latency between nodes has become a key focus.

There are four major approaches to tolerate latency: prefetching
[1, 4, 6, 20, 21, 27, 29, 36], caching [12, 16, 23, 30, 34, 37], multi-
threading [3, 14, 32, 38], and relocating [15, 17, 22, 25, 31, 33, 35].
Prefetching predicts the memory access pattern and issues memory
accesses before the data is used. This technique does not apply to
the challenge tackled in this paper because accelerator requests often
rely on host-side data-based control flow, making it hard to issue in
advance. Caching keeps data closer to the compute by exploiting
spatial and temporal locality. Being tailored specifically to CPU-
accelerator interactions, Zipper is more flexible and area-efficient
than cache-based designs. Multithreading hides access latency by
allocating the hardware resources to another thread while waiting
for the long-latency operation to complete. However, its benefits
diminish when the operation is at or below the microsecond level
due to context switch overhead. Moreover, multithreading relies on
having enough threads to schedule and focuses on the throughput.
In comparison, Zipper does not rely on switching to other work to
occupy the host and significantly speeds up the end-to-end latency.
Relocating (i.e., in-memory/near-memory computing) is a design
philosophy that moves compute closer to the data. However, even if
placed near the memory, the system still needs to tolerate the latency
between the host and the accelerator. As a result, this challenge is
not directly addressed by relocation.

8 CONCLUSIONS
This paper details Zipper, a bus latency optimization framework
for latency-sensitive accelerated applications. By carefully track-
ing CPU-accelerator dependencies, Zipper can exploit device- and
request-level parallelism and temporal locality to significantly re-
duce exposed bus transaction latency. Zipper is implemented as a
protocol optimization layer over an existing bus interface. Minimal
system or programmer support is required, as Zipper uses runtime
library support for dynamic scheduling and an additional hardware
structure for executing the requests from the host. Zipper is deployed
on Intel’s HARPv2 platform, where two real-world accelerated appli-
cations are examined with and without Zipper optimizations. Zipper
achieves a 1.5x-8x speedup with low logic overheads for the two
case studies presented. This work demonstrates that protocol latency
optimizations have significant promise to reduce the exposed latency
of high-performance buses and widen their applicability to future
application-acceleration opportunities.

7

*References

[1] Sam Ainsworth and Timothy M Jones. Software prefetching for indirect memory
accesses. In 2017 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 305–317. IEEE, 2017.

[2] Jasmin Ajanovic. Pci express 3.0 overview. In Hot Chips Symposium, pages 1–61,
2009.

[3] Haitham Akkary and Michael A Driscoll. A dynamic multithreading processor.
In Proceedings. 31st Annual ACM/IEEE International Symposium on Microarchi-
tecture, pages 226–236. IEEE, 1998.

[4] Hasan Al Maruf and Mosharaf Chowdhury. Effectively prefetching remote mem-
ory with leap. In 2020 USENIX Annual Technical Conference (USENIX ATC 20),
pages 843–857, 2020.

[5] AMD. Amd infinity architecture: The foundation of the modern dat-
acenter. https://www.amd.com/system/files/documents/LE-70001-SB-
InfinityArchitecture.pdf, Aug 2019.

[6] DW Anderson, FJ Sparacio, and Robert M Tomasulo. The ibm system/360 model
91: Machine philosophy and instruction-handling. IBM Journal of Research and
Development, 11(1):8–24, 1967.

[7] ARM. Amba axi and ace protocol specification. version h.c. https://developer.arm.
com/documentation/ihi0022/hc/?lang=en, Jan 2021.

[8] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
Attack of the killer microseconds. Commun. ACM, 60(4):48–54, mar 2017.

[9] Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Fit-
sum Assamnew Andargie, and Todd Austin. Sequestered encryption: A hardware
technique for comprehensive data privacy. In 2022 IEEE International Symposium
on Secure and Private Execution Environment Design (SEED), pages 73–84, 2022.

[10] Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh,
Galane Basha Namomsa, Plato Gebremedhin, Fitsum Assamnew Andargie, Bran-
don Reagen, and Todd Austin. Vip-bench: A benchmark suite for evaluating
privacy-enhanced computation frameworks. In 2021 International Symposium on
Secure and Private Execution Environment Design (SEED), pages 139–149. IEEE,
2021.

[11] Steven W. D. Chien, Ivy B. Peng, and Stefano Markidis. Posit npb: Assessing the
precision improvement in hpc scientific applications. In Roman Wyrzykowski,
Ewa Deelman, Jack Dongarra, and Konrad Karczewski, editors, Parallel Process-
ing and Applied Mathematics, pages 301–310, Cham, 2020. Springer International
Publishing.

[12] Jongsok Choi, Kevin Nam, Andrew Canis, Jason Anderson, Stephen Brown, and
Tomasz Czajkowski. Impact of cache architecture and interface on performance
and area of fpga-based processor/parallel-accelerator systems. In 2012 IEEE 20th
International Symposium on Field-Programmable Custom Computing Machines,
pages 17–24. IEEE, 2012.

[13] Ian Cutress. Intel shows xeon scalable gold 6138p with integrated fpga, shipping
to vendors. 2018.

[14] Susan J Eggers, Joel S Emer, Henry M Levy, Jack L Lo, Rebecca L Stamm, and
Dean M Tullsen. Simultaneous multithreading: A platform for next-generation
processors. IEEE MICRO, 17(5):12–19, 1997.

[15] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The terasys
massively parallel pim array. Computer, 28(4):23–31, 1995.

[16] James R Goodman. Using cache memory to reduce processor-memory traffic. In
Proceedings of the 10th annual international symposium on Computer architecture,
pages 124–131, 1983.

[17] Daniele Ielmini and H-S Philip Wong. In-memory computing with resistive
switching devices. Nature electronics, 1(6):333–343, 2018.

[18] Intel. Intel acceleration stack for intel® xeon® cpu with fpgas core cache inter-
face (cci-p) reference manual. https://www.intel.com/content/www/us/en/docs/
programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html, Nov
2019.

[19] Intel. Intel® xeon® processor scalable family technical overview.
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-
processor-scalable-family-technical-overview.html, Oct 2019.

[20] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz.
Apt-get: Profile-guided timely software prefetching. In Proceedings of the Seven-
teenth European Conference on Computer Systems, pages 747–764, 2022.

[21] Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T Kandemir, Onur Mutlu,
Ravishankar Iyer, and Chita R Das. Orchestrated scheduling and prefetching for
gpgpus. In Proceedings of the 40th Annual International Symposium on Computer
Architecture, pages 332–343, 2013.

[22] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hemp-
stead, and Xuan Zhang. Recnmp: Accelerating personalized recommendation
with near-memory processing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 790–803, 2020.

[23] PAH Knoben. Software caching for tree-based algorithms on accelerator cards.
Master’s thesis, University of Twente, 2021.

[24] Yanqiang Liu, Jiacheng Ma, Zhengjun Zhang, Linsheng Li, Zhengwei Qi, and
Haibing Guan. Megatron: Software-managed device tlb for shared-memory fpga
virtualization. In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pages 1213–1218, 2021.

[25] Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu. Concurrent data struc-
tures for near-memory computing. In Proceedings of the 29th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 235–245, 2017.

[26] Enno Luebbers, Song Liu, and Michael Chu. Simplify software integration for
fpga accelerators with opae.

[27] Sparsh Mittal. A survey of recent prefetching techniques for processor caches.
ACM Computing Surveys (CSUR), 49(2):1–35, 2016.

[28] Patrick Patrick Kennedy. Compute express link cxl latency how much is added
at hc34. https://www.servethehome.com/compute-express-link-cxl-latency-
how-much-is-added-at-hc34/#:~:text=The%20CXL%20Consortium%20is%
20using,170%2D250ns%20for%20CXL%20memory.&text=If%20CXL%
20seems%20to%20be,with%20Q2%202022%20Wind%2DDown., Aug 2022.

[29] R Hugo Patterson, Garth A Gibson, Eka Ginting, Daniel Stodolsky, and Jim
Zelenka. Informed prefetching and caching. In Proceedings of the fifteenth ACM
symposium on Operating systems principles, pages 79–95, 1995.

[30] Christian Pinto, Yiannis Gkoufas, Andrea Reale, Seetharami Seelam, and Steven
Eliuk. Hoard: A distributed data caching system to accelerate deep learning
training on the cloud. arXiv preprint arXiv:1812.00669, 2018.

[31] Carlos Ríos, Nathan Youngblood, Zengguang Cheng, Manuel Le Gallo, Wol-
fram HP Pernice, C David Wright, Abu Sebastian, and Harish Bhaskaran. In-
memory computing on a photonic platform. Science Advances, 5(2):eaau5759,
2019.

[32] Amir Roth and Gurindar S Sohi. Speculative data-driven multithreading. In
Proceedings HPCA Seventh International Symposium on High-Performance Com-
puter Architecture, pages 37–48. IEEE, 2001.

[33] Fabian Schuiki, Michael Schaffner, Frank K Gürkaynak, and Luca Benini. A
scalable near-memory architecture for training deep neural networks on large
in-memory datasets. IEEE Transactions on Computers, 68(4):484–497, 2018.

[34] Yakun Sophia Shao, Sam Xi, Viji Srinivasan, Gu-Yeon Wei, and David Brooks.
Toward cache-friendly hardware accelerators. In HPCA Sensors and Cloud Archi-
tectures Workshop (SCAW), pages 1–6, 2015.

[35] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander
Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra. A review of
near-memory computing architectures: Opportunities and challenges. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 608–617. IEEE,
2018.

[36] Alan Jay Smith. Sequential program prefetching in memory hierarchies. Computer,
11(12):7–21, 1978.

[37] Alan Jay Smith. Cache memories. ACM Computing Surveys (CSUR), 14(3):473–
530, 1982.

[38] Lawrence Spracklen and Santosh G Abraham. Chip multithreading: Opportunities
and challenges. In 11th International Symposium on High-Performance Computer
Architecture, pages 248–252. IEEE, 2005.

[39] Xilinx. Xilinx runtime library (xrt).
[40] Greg Yeric. Moore’s law at 50: Are we planning for retirement? In 2015 IEEE

International Electron Devices Meeting (IEDM), pages 1.1.1–1.1.8, 2015.

8

https://www.amd.com/system/files/documents/LE-70001-SB-InfinityArchitecture.pdf
https://www.amd.com/system/files/documents/LE-70001-SB-InfinityArchitecture.pdf
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://developer.arm.com/documentation/ihi0022/hc/?lang=en
https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/docs/programmable/683193/current/acceleration-stack-for-cpu-with-fpgas.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/#:~:text=The%20CXL%20Consortium%20is%20using,170%2D250ns%20for%20CXL%20memory.&text=If%20CXL%20seems%20to%20be,with%20Q2%202022%20Wind%2DDown.
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/#:~:text=The%20CXL%20Consortium%20is%20using,170%2D250ns%20for%20CXL%20memory.&text=If%20CXL%20seems%20to%20be,with%20Q2%202022%20Wind%2DDown.
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/#:~:text=The%20CXL%20Consortium%20is%20using,170%2D250ns%20for%20CXL%20memory.&text=If%20CXL%20seems%20to%20be,with%20Q2%202022%20Wind%2DDown.
https://www.servethehome.com/compute-express-link-cxl-latency-how-much-is-added-at-hc34/#:~:text=The%20CXL%20Consortium%20is%20using,170%2D250ns%20for%20CXL%20memory.&text=If%20CXL%20seems%20to%20be,with%20Q2%202022%20Wind%2DDown.

	Abstract
	1 Introduction
	2 Discovering Bus Optimization Opportunities
	2.1 Host-Accelerator Communication Convention
	2.2 Optimization Opportunities

	3 Architecting Zipper Optimizations
	3.1 Overview of Zipper
	3.2 Host-Accelerator Communication Protocol
	3.3 Zipper Hardware Structure
	3.4 Zipper Runtime Library

	4 Real-World Experimental Setup
	4.1 Real-World Case Studies

	5 Experimental Evaluation
	5.1 Performance Speedup and Logic Overhead
	5.2 Accelerator Memory Access
	5.3 Impact of Hardware Buffer Size

	6 Limitations and Future Work
	7 Related Works
	8 Conclusions
	References

