
Deep Dive into the Cost of Context Switch

Shibo Chen, Yu Wu, Xinyun Jiang, Wen-Jye Hu
EECS Department, University of Michigan

Introduction

Today’s CPU and operating systems are good at coping with latency

at nanosecond and millisecond scale, while modern high-performance

networking and flash I/O often have microsecond scale data access

latency. Neither hardware nor software can provide efficient

mechanisms to hide these latency. One of the conventional ways to

hide millisecond-level latency is context switching, thus it is appealing

to use the same technique to hide microsecond scale latency.

This project aims at measuring and analyzing the overhead of the

kernel-level context switch under various working sets and data

access patterns with comparison to user-level context switch. L1

cache misses and dTLB misses are identified as key components

contributing to the overhead of kernel-level context switch.

Methodology & Experiment Setup

We referred to the approach proposed in Li's work [1] as our starting

point. The general idea is that we first measure the average execution

time of one unit of work and then measure the average execution time
of one unit of work plus the overhead of context switch.

To do so, we first create a single thread traversing the array of size M

bytes by stride size S bytes for N times, as shown in algorithm 1.

Then we create two threads, each of which traverses the array of size

M bytes by stride size S bytes in the same manner shown in algorithm

1. After traversing the array, it will switch to the second thread to

continue the work. Figure 1 illustrates the context switch between two

threads, where the threads take turns to execute. When one thread is

stalled due to system call in kernel-level or yield() function called in

user-level, the thread relinquishes the resource and allow the other

thread to execute.

Results and Discussion

The overhead of the kernel-level context switch is shown in figure 2.

The direct cost is 0.62µs. When the stride size is larger than 0, the

overhead is composed of both direct cost and indirect cost induced by

resource contention. The first local maximum appears when array size

is 32KB, which equals to L1 cache capacity. And it then decreases

because that the dCache load miss rate of single-thread case

exceeds that of the two-thread switching case. This diminishing of the

dCache load misses suggests that there might be a better cache

replacement or prefetch policy coming into play and the data locality is

better exploited when L2 gets involved. The pattern, when the array

size is larger than 64KB, conforms to the dTLB load miss rate,

which dominants the overhead, because dTLB misses result in larger

penalty than cache misses.

Figure 2: Kernel-level context switch

Conclusions

We measure the context switch overhead under different working set

sizes and memory access stride sizes. In kernel level experiment, OS

controls context switch with several system calls to ping-pong

messages between two threads; in user level experiment, we go

through the same flow as kernel level does. Our results show the

user-level context switch time is larger than that of kernel level due to

non-customized gtthread library but has less variance. The peaks in

kernel-level context switch are due to L1 dCache load miss and dTLB

load miss. We show not only the cache and TLB misses, but also

cache inclusion policy contribute to the most part of the indirect cost of

context switch. To reduce the context switch time, enabling better

cache policies and enlarging hardware size of TLB or page size can
be good solutions.

Acknowledgement

We would like to thank Prof. Thomas Wenisch and Prof. Todd Austin

who helped us with great suggestions and experiment

equipment throughout the project.

References
[1] Li Chuanpeng, Chen Ding, and Kai Shen. "Quantifying the cost

of context switch." Proceedings of the 2007 workshop on

Experimental computer science. ACM, 2007.

Figure 3: User-level context switch

Event: L1-dcache-load-misses, stride size: 8

Event: dTLB-load-misses, stride size: 8

Array Size/log2(Byte)

10 12 14 16 18 20

Single

Switch

Figure 1: Context switch between 

two threads

Experiment 
Setup

Single

Switch

10 12 14 16 18 20

Array Size/log2(Byte)

Thread1 Thread2

Context
Switch

800

700

600

500

400

300

200

100

0

Context
Switch

N context 
Switches

To
ta

l C
o

u
n

t 
o

f 
Ev

en
t/

K
-i

n
st

ru
ct

io
n

s

Calculate 

Execution 
Time

Execution

Stall

0 1 2 4 8 16 32 64 128 192 256 384 512 768 1024

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

To
ta

l C
o

un
t 

o
f E

ve
n

t/
K

-i
ns

tr
uc

ti
o

ns

In the case of user-level context switch, we

use gtthread library to implement a user-

level context switch between two threads
without using kernel-level libraries.

In order to rule out undesired factors

affecting the results, multiple efforts and

sanity checks have been made.

Array Size(KB)

Time (us)

Stride 0

Stride 8

Stride 16

Stride 32

Stride 64

Stride 128

Stride 256

when they got replaced in the L2 cache. Thus the number of iCache

misses increases along with the array size. There are gaps between

single-thread process and two-thread switching process in both figure

4a and 4b, and the kernel-level case has larger gap because that the

OS has a more complex scheduling algorithm thus leaving a larger

memory footprints in both iCache and dCache. The figure 4c shows a

large gap in dTLB load misses, which is because that two kernel

threads have two different virtual address spaces, and together they

occupy more pages and dTLB entries than the single thread process.
Event: L1-iCache-load-misses, stride size: 8

Figure 4: Perf results (a) kernel-level threads iCache load misses (b) user-level 

threads iCache load misses (c) kernel-level threads dTLB load misses

Single

Switch

To
ta

l C
o

u
n

t 
o

f 
E

ve
n

t

Array Size/log2(Byte)

(a) (b)

10 12 14 16 18 20

(c)

Array Size/log2(Byte) Array Size/log2(Byte)

500000

400000

300000

200000

100000

0

Event: dTLB-load-misses, stride size: 64

175000

150000

125000

100000

75000

50000

25000

0

Single

Switch

Single

Switch

10 12 14 16 18 20 10 12 14 16 18 20

Event: L1-iCache-load-misses, stride size: 8

80000

70000

60000

50000

40000

30000

20000

10000

0

Figure 3 shows the overhead of the user-level context switch. When

the array size is smaller than 64KB, the overhead stays between 1.2

and 1.4 µs. The rest of the overhead pattern is similar to that of the
kernel-level context switch.

Figure 4a and 4b compare the L1 iCache load misses in kernel-

level context switch and that in user-level context switch. Due to the
inclusion of the L2 cache, instructions can be evicted from L1 iCacheExperiments were run on Intel Xeon D-1541.


