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ABSTRACT
Data center networks are designed to interconnect large clus-
ters of servers. However, their static, rack-based architecture
poses many constraints. For instance, due to over-subscription,
bandwidth tends to be highly imbalanced—while servers in
the same rack enjoy full bisection bandwidth through a top-
of-rack (ToR) switch, servers across racks have much more
constrained bandwidth. This translates to a series of perfor-
mance issues for modern cloud applications. In this paper,
we propose a rackless data center (RDC) architecture that
removes this fixed “rack boundary”. We achieve this by insert-
ing circuit switches at the edge layer, and dynamically recon-
figuring the circuits to allow servers from different racks to
form “locality groups”. RDC optimizes the topology between
servers and edge switches based on the changing workloads,
and achieves lower flow completion times and improved load
balance for realistic workloads.
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1 INTRODUCTION
Today’s data centers consist of tens of thousands of servers
connected by multi-layered Clos networks. To reduce equip-
ment and operational cost, the network is typically oversub-
scribed at the core—with typical over-subscription ratios
somewhere between 5:1 to 20:1 [24]. This means that the
bandwidths between servers can vary drastically, depending
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on how “close” they are on the physical topology. Servers
communicating in the same rack enjoy full bisection band-
width, but servers communicating across racks have much
lower bandwidths. As a result, the oversubscribed layers can
be easily congested by inter-rack flows, causing inflated la-
tency and poor application performance; and the edge links
tend not to be fully utilized due to congestion higher up in the
hierarchy [39]. For instance, a measurement study shows that
even though core links tend to be highly utilized, more than
60% of the edge links are utilized less than 1% [16].

Recent work has looked at making better use of the band-
width by the design of advanced transport protocols [13, 38],
flow scheduling algorithms [12, 20], and job placement strate-
gies [17, 27]. Advanced transport protocols aim to mitigate
congestion, scheduling algorithms can lead to higher through-
put, and careful job placement and execution strategies reduce
inter-rack traffic. All these approaches can and do lead to
performance benefits, but the rack boundaries pose physical
constraints that are inherently challenging to get around.

At the same time, recent measurement studies show that
more and more DCN traffic is escaping the rack boundary and
becoming “pod-local” [39], where a pod consists of multiple
racks of servers in the same cluster. This is not only due to
the ever increasing scale of jobs, but also because racks tend
to host servers of similar types—e.g., one rack may host data-
base servers, and another may host cache servers. Therefore,
servers on one rack would inevitably need to coordinate with
servers on other racks, producing inter-rack traffic [39].

Driven by this observation, we propose a novel DCN archi-
tecture specifically designed for pod-local traffic. We aim to
develop a “rackless” data center (RDC) network architecture
to remove the fixed, topological rack boundaries in a pod. In
RDC, servers are still mounted on physical racks, but they
are not bound statically to edge switches. Rather, servers can
move from one edge switch to another. Under the hood, this is
achieved by the use of circuit switches, which can be dynami-
cally reconfigured to form different connectivity patterns. In
other words, servers remain immobile on the racks, but circuit
changes may shift them to different topological locations.

In RDC, circuit switches are deployed at the edge layer,
with the up-ports connected to the edge switches, and the
down-ports connected to the servers. At any point in time,
servers with circuits connecting them to the same edge switch
form a locality group where they enjoy full communication
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bandwidth. However, locality groups represent logical bound-
aries that can be established and removed quickly via on-
demand topology reconfiguration. In a traditional data center
architecture, servers under the same ToR switch form a fixed
locality group, the size of which is on the order of tens. In
contrast, in RDC, thousands of servers connected to the same
circuit switch can potentially form locality groups when a
high-port-count circuit switch is used [31, 35]. This flexibility
means that a server can have the opportunity to talk to many
more servers with full bandwidth via circuit reconfigurations.

RDC could lead to unique benefits, because it can dynam-
ically form locality groups that are optimized for the under-
lying traffic pattern. Traffic patterns can change in a DCN at
different timescales, depending on the underlying dataset be-
ing processed, the particular placement of workers, and many
other factors. Even for a single job, it may proceed in multiple
stages, with each stage exhibiting a different traffic pattern
(e.g., for applications such as SAGE [29] and QBox [25]).
As a result, there does not exist a statically optimal locality
group that would consistently outperform other configurations
across workloads, worker placements, and job stages. RDC,
however, avoids the problem of having to stick to any static
configuration. Rather, servers that heavily communicate with
each other can be grouped together on-demand, and they can
be regrouped as soon as the pattern changes again. Instead of
optimizing the workloads for the topology, RDC optimizes
the topology for the changing workloads.

Specifically, RDC leads to several key benefits:
• Increasing traffic locality. RDC dynamically re-groups

servers that communicate heavily with each other via
circuit reconfiguration, so that a higher percentage of
traffic would enjoy full bandwidth due to the increased
locality. Our results show that RDC speeds up flow com-
pletion time (FCT) by 4.87× on realistic workloads.

• Balancing inter-pod traffic. RDC redistributes servers
across a pod to balance the load on the uplinks of edge
switches, mitigating congestion.

• Increasing resilience to edge switch failures. In to-
day’s DCN architecture, an edge switch failure would
disconnect all servers in a rack. In RDC, the discon-
nected servers can be quickly reconnected to a different
edge switch for recovery.

We also propose a modular packaging design of RDC pods
for a pod to be incrementally deployed in a Clos network. The
extra cost of a pod is estimated to be 3.1% more than that of
a traditional pod, which seems low enough to be practical.

2 MOTIVATION
Next, we present a set of measurement results over produc-
tion traffic traces, and discuss how RDC can improve DCN
efficiency. The traces are collected from three clusters (“fron-
tend”, “database” and “Hadoop”) in Facebook data centers

in a one-day period. They contain packet-level traces with a
sampling rate of 1:30 k, and each sampled packet contains
information about the source and destination racks in the data
center [1]. To simulate the effect of removing rack boundaries,
we simply apply a greedy algorithm that re-groups servers
in different racks under a “hypothetical” rack. At the highest
level, we found that DCN traffic patterns exhibit pod locality,
but not rack locality, and that traffic across racks can be heav-
ily imbalanced. As a result, removing rack boundaries gives
us significant opportunity to exploit pod locality and achieve
better load balance across racks.

2.1 Observation #1: Pod locality
Figure 1(a) shows the heatmap for the traffic patterns of a
representative pod with 74 racks in a 2-minute interval in
the frontend trace. If a server in rack i sends more traffic to
another server in rack j, then the pixel for (i,j) in the heatmap
will become darker. In this presentation, intra-rack traffic al-
ways appears on the diagonal (i.e., i = j). As we can see,
the scattered dots show that the traffic does not exhibit rack
locality—in fact, 96.26% of the traffic in this heatmap is inter-
rack but intra-pod. Similar trend exists for the database trace:
92.89% of traffic is inter-rack but intra-pod (figure omitted).
Hadoop trace has more intra-rack traffic, but still has 52.49%
of traffic being inter-rack but intra-pod (figure omitted). This
observation is consistent with a larger-scale study of Face-
book’s traffic patterns, which shows that over 70% of the
traffic is pod-local, but only 18.3% is rack-local [39].
Re-grouping servers improves locality. Figure 1(b) shows
the heatmap in a hypothetical data center where servers are
re-grouped under different racks based on their communica-
tion intensity, simulating the case RDC aims to achieve. Here,
most of the traffic is on the diagonal and that inter-rack traffic
has been reduced significantly to 38.4%. For the database and
Hadoop traces, the inter-rack traffic after re-grouping is 28.4%
and 41.6%, respectively. Thus, we believe that enormous op-
timization opportunities exist if we were able to dynamically
re-group servers under different physical racks.

2.2 Observation #2: Inter-pod imbalance
Another trend we observe is the heavy imbalance of inter-
pod traffic, which can also benefit from re-grouping servers.
Figure 1(c) sorts the racks based on the amount of inter-pod
traffic they sent (traffic trace: database) in a 20-min interval
where the X-axis is the rack ID, and the Y-axis is the (nor-
malized) amount of inter-pod traffic a rack sends. As we can
see, the top 11 racks account for nearly 50% of the inter-pod
traffic, and almost half of the racks never sent traffic across
pods. This means that certain uplinks of edge switches are
heavily utilized, whereas other links are almost always free.
The load imbalance, defined asmax(Li )/avд(Li ), where Li is
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Figure 1: Traffic patterns from the Facebook traces. (a) Rack level traffic heatmap of a representative frontend pod. (b) Server communication heatmap after
re-grouping servers in (a). (c) and (d) plot the sorted load of inter-pod traffic across racks in a representative database pod, before and after server re-grouping,
respectively. (e) Traffic stability over different timescales.

the amount of inter-pod traffic from rack i, is as much as 4.17.
We found similar observations for other traces.
Re-grouping servers mitigates load imbalance. Figure 1(d)
shows the results for re-grouped servers. The inter-pod traffic
has a load imbalance of 1.14, which leads to a better use of
the inter-pod links, and avoids congesting any particular link
due to traffic imbalance.

2.3 Observation #3: Predictable patterns
Our third observation is on the degree of predictability of
traffic patterns. This does not speak to the benefits of RDC,
but its feasibility. We can only dynamically re-group servers
based on traffic patterns if the patterns are stable—if traffic
patterns change without any predictability, then it would be
difficult to find a suitable reconfiguration strategy.

Therefore, we analyzed the stability of inter-rack traffic at
different time intervals within a pod, using a metric that is
similar to that in MicroTE [15]. We divide time into epochs,
and for each epoch, we measure the amount of traffic ex-
changed between a pair of servers. This would result, for each
epoch i, a set of triples (s, r ,v), where s is the sender, r is the
receiver, and v is the exchanged volume. Then, if we have
a triple (s, r ,v1) for epoch i, and a triple (s, r ,v2) for epoch
i + 1, and |v1−v2 |

v2
< 0.2, then we consider the communication

pattern between s and r to be stable across these two epochs.
Figure 1(e) plots the percent of such “stable triples” for the
three traces. As we can see, the database trace is highly sta-
ble when an epoch lasts from two minutes to one hour. If an
epoch is an hour, then 81% of the triples are stable. Although
the Hadoop trace is less stable, it still has 18% stable triples
for one-hour epochs. We note that these traces are sampled
from the original traffic, which may exhibit higher stability at
finer timescales. Nevertheless, the highest-level takeaway is
that the stability of traffic patterns is notable, and this could
be learned from past traffic patterns. RDC could then use the
stability patterns to determine its reconfiguration period.

3 RELATED WORK
Transport protocols. Recent research projects have devel-
oped optimized DCN transports. DCTCP [13] uses an adap-
tive congestion control mechanism based on ECN. pFab-
ric [14] uses in-network flow prioritization. MPTCP [38]

splits a flow onto different DCN paths. Other transport designs
explicitly optimize for application-level goals, e.g., dead-
lines [41], or co-flow completion times [20]. In contrast, RDC
optimizes the network topology instead of transport protocols.
Job placement. Job placement can also lead to performance
improvement. Sinbad [21] selectively chooses data transfer
destinations to avoid network congestion. ShuffleWatcher [10]
attempts to localize the shuffle phase of MapReduce jobs to
one or a few racks. Corral [27] jointly places input data and
computes to reduce inter-rack traffic for recurring jobs. How-
ever, optimizations to a stage of an application typically do not
generalize to other stages. Since traffic patterns may change
dynamically over a job’s lifetime, a reconfigurable network
architecture can respond to changes in real time.
DCN architecture. Similar to RDC, several other DCN de-
signs provision bandwidth on-demand with reconfigurable
links to serve dynamic workloads, e.g., using electrical cir-
cuit switches [18], optical circuit switches [19, 22, 42], free
space optics [23, 26], and even wireless radio [28, 44]. How-
ever, existing systems such as OSA [19], ProjecToR [23] and
Firefly [26] require substantial changes to the current DCN
architecture and control plane; but RDC allows for local and
incremental deployment. c-Through [42], Helios [22], Fly-
ways [28] and Zhou et al. [44] augment existing DCNs with
out-of-band bandwidth. Instead, RDC aims to drive up the
utilization of existing links. Larry [18] can also reconfigure
the topology locally, but it operates at the aggregation layer
above ToRs and adds extra links to the unused ports on each
ToR. Compared to Larry, RDC removes rack boundaries and
efficiently uses the existing bandwidth at the edge layer, and
it requires no free ports from the ToRs.

4 THE RDC DESIGN
In this section, we present an initial design of the RDC archi-
tecture and its control system.
Circuit switching. RDC relies on switching technologies
that provide on-demand point-to-point connectivity. Optical
or electrical circuit switches do not decode/encode or buffer
packets and are thus protocol or data rate transparent. They
can provide ultra-high bandwidth at low power. For example,
a 320-port optical circuit switch (OCS) based on 3D-MEMS
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Figure 2: RDC architecture illustration. (a) An example of a 4-pod RDC. Circuit switches are inserted at the edge between servers and edge switches (ESW).
Connectivities for aggregation switches (ASW) and core switches (CSW) remain the same as traditional Clos networks. (b) How circuits are reconfigured given
the traffic demand among servers. Reconfigured links are shown in red dashed lines. (c) The physical packaging design of an RDC pod.

technology can provide >100Gbps with less than 45 Watts [2].
The switching speed of OCSes is usually several milliseconds,
while the speed for electrical circuit switches can be as fast as
a few nanoseconds [34]. An OCS with 1100 ports and 4dB in-
sertion loss has already been fabricated [31]. To further scale
up, the internal switching technology of an OCS may have to
change significantly (e.g., using DMD-based switching [23]),
or by sacrificing some degree of reconfigurability [35].
Architecture. RDC changes the traditional Clos topology [11,
24] by inserting circuit switches at the edge layer between
servers and edge switches. The aggregation layer and the core
layer of the network remain the same. Circuit switches are
used per pod. Each pod has d servers and m edge switches,
and requires 2d ports on the OCS 1. For example, a 16-rack
pod with 32 servers per rack requires 1024 ports on the OCS.
Figure 2(a) shows an example RDC architecture with d = 9.
The connectivities between edge switches (ESW) and aggre-
gation switches (ASW) and between aggregation switches and
core switches (CSW) are the same as those in Clos networks.

Figure 2(b) shows how RDC reconfigures its circuits given
the traffic demand between servers. In traditional data centers,
every server has a fixed connection to a single ESW: servers
0-2 are connected to ESW 1, 3-5 are connected to ESW 2,
and 6-8 are connected to ESW 3. In other words, each locality
group has a size of three. In RDC, however, we have full
flexibility to permute the server-ESW connectivity, allowing
runtime topology optimization for dynamic traffic demands.
For example, with the traffic demand shown in Figure 2(b),
flows 0 → 3 and 1 → 5 can be served by simply flipping the
links of servers 1 and 3. Without RDC, these two flows would
have to go through the oversubscribed aggregation or core
layer and experience lower performance.

4.1 RDC reconfiguration
Traffic data collection. Circuit reconfigurations are handled
by per-pod circuit managers that talk to the OCS in an out-
of-band communication channel. A key property of RDC is

1Half of the ports are connected to servers and the other half to edge switches.

that it does not require end host modification—servers do not
need to report traffic demands actively. In RDC, each ESW
maintains a byte counter for each server pair (s,d) where s is
a server currently in its rack while d can be any other server
in the same pod. The circuit manager collects these counters
from all ESWs and then constructs the overall cross-server
traffic data. The data collection period should be carefully
chosen to attain a balance between speed and optimality,
which could be dependent on the workload.
Reconfiguration algorithm. Our circuit manager takes cross-
server traffic matrices as input, and produces an assignment
that maps each server to an ESW, minimizing the amount of
traffic traveling through the ASWs and CSWs. We formulate
the server assignment problem as a balanced graph partition-
ing problem [32]. The traffic matrix is a graph G = (E,V ),
where V is the vertex set (i.e., servers) and E is the edge set.
The weight of an edge e,w(e), is the traffic volume between
the vertices. We need to partition the graph into subgraphs
of equal numbers of vertices such that the weighted sum of
cross-subgraph edges is minimized. We require partitions of
the same size because each ESW must connect to exactly
the same number of servers. The balanced graph partition-
ing problem is NP-hard, but fast parallel heuristics are avail-
able [33]. The computation is very fast (5-10 ms) due to the
limited number of servers in a pod and can run in parallel
with ongoing traffic transmission.
Routing. When servers are moved topologically, routing in-
formation needs to be updated to reflect that. At a high level,
every switch has a forwarding table entry for all server IP
addresses in the same pod. When a server is moved by a cir-
cuit reconfiguration, the server and its ESW would observe
an interface down event followed by an interface up. Upon
these events, the server would send a message to its newly
connected ESW to announce its new address and location (a
method that’s similarly used in previous work [30, 36, 37]).
This ESW then further updates its forwarding table entry
accordingly, and propagates this change to its upper-layer
ASWs to apply the changes. The previous ESW, to which the
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server is no longer connected, executes a similar procedure
for updates. When multiple simultaneous movements occur,
updates can be further aggregated and propagated to ASWs
together. Although updates may result in packet loss, RDC
still guarantees that forwarding loops would not form.
Limitations. A full reconfiguration cycle of RDC includes a)
obtaining historical traffic data from ESWs, b) computing the
server-rack connectivities via a graph partition, c) reconfig-
uring the OCS and, d) updating the routing rules on ESWs
and ASWs. Steps a) and b) can be performed without inter-
rupting ongoing traffic transmissions, with the tradeoff that
historical traffic data could be a bit stale as it does not capture
ongoing traffic. In practice, however, this staleness should
not be a serious problem, as the algorithm computation time
is on a much shorter timescale (several milliseconds) than
the traffic stability period (e.g., 10s of minutes). Steps c) and
d) will cause a short downtime for servers. While previous
work [43] has shown that OCS reconfiguration delay alone
would not trigger TCP timeouts on 10G connections, it re-
mains to be studied experimentally whether this OCS delay
plus routing convergence delay would significantly disrupt
TCP connections.

4.2 Feasibility analysis
Next, we discuss several practical issues in RDC.
Packaging. Figure 2(c) shows the packaging design of an
RDC pod, which is somewhat different from that of a tra-
ditional pod. RDC has a central rack dedicated to hosting
ESWs, ASWs, and the OCS. Server racks are placed around
the switch rack. Each server rack is connected to the OCS
via a fiber bundle to reduce wiring complexity. On the cen-
tral rack, ESWs are connected to the OCS and ASWs using
short fibers and cables, respectively. ASWs provide similar
connectivity to CSWs outside the pod, just like in traditional
data centers. The modular pod design allows the network to
scale up easily by adding more RDC pods.
Cost. The cost of RDC can be estimated as follows. In a
traditional pod, servers are connected to a ToR switch in the
same rack via short, direct attach cables instead of fibers.
ToR switches are connected to ASWs in a central switch rack
via longer optical fibers. Assuming similar fiber bundling
mechanisms, the wiring cost of RDC would be similar, with
extra cost mostly coming from the OCS and per-server opti-
cal transceivers. Optical transceivers used to be the primary
networking cost of data centers, but their price has declined
sharply over the years due to massive production: a QSFP+
40Gbps transceiver with 150m transmission distance costs
only $39; a 10Gbps transceiver costs about $16. Based on
feedback from a commercial optical switch vendor, we have
learned that a) today’s high port-count MEMS OCS has a per-
port cost on the order of $500, but b) this high cost is mainly

Table 1: Cost estimation of network components and their quantities needed
by a) an RDC pod with 4:1 oversubscription b) a traditional pod with 4:1
oversubscription (Baseline) and c) a non-blocking pod (NBLK). “p.c.” stands
for personal communication.

Component Price Note Source Quantity Needed

RDC Baseline NBLK

Ethernet port $200 per-port 40Gbps [8] 768 768 1536
40G Transceiver $39 QSFP+ 150m [5] 1024 256 1024
Optical fiber, 8m $4.4 inter-rack [6] 512 128 512
Optical fiber, 3m $3.4 intra-rack [6] 512 0 0

Electrical cable, 3m $40 intra-rack [4] 128 512 512
OCS $50 per-port price at scale p.c. 1024 0 0

due to the low volume at which these devices are produced,
and finally, c) the higher the volume, the lower the cost. For
instance, if production volume goes up to 50 k units per year,
the per-port cost can be dramatically reduced to below $50.

As an example, consider an RDC pod with 4 ASWs and 16
ESWs (oversubscription ratio 4:1), and 512 servers, each of
which has a 40 Gbps transceiver and connects to a 1024-port
OCS. The required quantities and estimated prices for these
components are listed in Table 1. The overall networking
cost of a 4:1 oversubscribed traditional pod (baseline), an
RDC pod, and a non-blocking pod is $184.6 k, $253.3 k, and
$369.8 k, respectively. The extra cost of RDC compared to
the 4:1 oversubscribed baseline is dominated by the OCS.
However, RDC is significantly cheaper (by 31.5%) than the
non-blocking network. Assuming that a server costs $4000,
then the relative extra cost of RDC increase compared to the
baseline is only 3.1% per pod. It is difficult to extrapolate the
cost curve of an RDC pod beyond 1000s of servers, as the
optical switching technology would need to be significantly
different from the MEMS-based OCSes; we leave the cost
estimate of larger-scale RDC as future work.
Handling OCS failures. OCSes are physical layer devices
and highly reliable [40], with reported Mean-Time-Between-
Failure (MTBF) being over 30 years [7]. For reliability, we
can use 1:1 backup to handle switch failures. To achieve
this, each server is connected to a primary OCS and a sec-
ond backup OCS, via an inexpensive 1:2 optical splitter [3].
Traffic leaving the two OCSes is multiplexed via a cheap 2:1
optical MUX [9] and connected to the ESW. A similar setup
is also used for the ESW to server traffic direction to inter-
pose the primary and backup OCS in between. During normal
operation, only the primary OCS transmits optical signals,
and the backup’s circuits are disabled. Upon primary failure,
the backup OCS changes its circuit configuration based on
the configuration of the primary. This would double the OCS
cost, but does not require additional transceivers on both ends
of the fibers. This brings the extra cost to about 6% for our
RDC pod example, including the extra splitters and MUXes.
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Figure 3: Distribution of FCT speedups for (a) cache (b) web and (c) Hadoop traffic under different oversubscription ratios. (d) The 50th and 95th percentiles of
FCT speedups for cache traffic with varying circuit reconfiguration periods. The oversubscription ratio in (d) is 10:1.

5 INITIAL RESULTS
In order to perform an initial set of experiments, we have
developed a flow-level, event-based network simulator to eval-
uate the potential benefits of RDC. Our simulator computes
flow bandwidths using max-min fairness and without simulat-
ing the transport protocols. When a flow starts or ends, or if
topology changes, the simulator recomputes the throughput
for all impacted flows. Our experiments have been conducted
on a simulated network with 128 racks and 32 servers per
rack; each RDC pod has 16 racks, or 512 servers. The topol-
ogy is a three-layer single-rooted tree, the uplinks from ESWs
are oversubscribed with tunable ratios, and the circuit recon-
figuration time is 5 ms. The CSW is not oversubscribed.
Metric. Our primary metric is the speedup of flow completion
times (FCTs) in RDC due to its ability to localize traffic, using
the Clos topology as the baseline. Evaluations of other aspects
(e.g., load balancing, failure recovery) are left to future work.
Workloads. The original traces described in Section 2 have
no flow-level information. We therefore generate our own
workloads based on the sampled data and the reported results
from [39]. Specifically, the source and destination servers of
the flows are inferred from the sampled trace. The flow size
and the flow arrival rate are sampled from Figures 6 and 14
in the same paper. We omit inter-DC traffic in the traces. The
generated workloads cover three types of traffic (denoted as
“cache", “web" and “Hadoop") that exhibit different charac-
teristics. Cache traffic has strong pod locality, with around
88% of the traffic being intra-pod. The average flow size is
680 kB. Web traffic has similar pod locality (77% intra-pod
traffic) but has a relatively smaller average flow size of 50 kB.
Hadoop traffic is the least pod-local traffic among the three.
It is instead highly rack-local—about 58% of the traffic is
intra-rack. Its average flow size is about 200 kB.
Results. Figure 3 (a)-(c) plot the CDFs of FCTs normalized
against the baseline, i.e., speedups2, using a reconfiguration
period of 10s. On average, RDC achieves speedups (>1.0)
for all traffic. In cache and web traffic, more than 75% of the
flows experience speedups. The average speedups are 2.28

2Speedup < 1.0 means that the transfer is actually slowed down.

and 4.87 for o/s (oversubscription) ratios 5:1 and 10:1, re-
spectively. Web traffic observes similar benefits, with average
speedups of 1.95 and 3.81 for different o/s ratios. Hadoop traf-
fic, instead, sees FCT speedup for only 20% and 32% of the
flows for o/s ratios 5:1 and 10:1. This is because most of the
Hadoop flows are intra-rack and already have non-blocking
bandwidth. The case of o/s ratio 1:1, in particular, reflects the
net overhead of RDC compared to a non-blocking network.
There are actually very few (<3%) flows being slowed down
in this case, and the average speedups are all above 0.99. Such
overhead shows that RDC may not be a good fit for a fully
provisioned network, at least from the traffic localization per-
spective. Figure 3(d) shows the 50th and 95th percentiles of
FCT speedups for the cache traffic under different reconfigura-
tion periods. As we can see, cache traffic achieves the highest
speedup when the period is on the order of 10-1000s. A small
period leads to frequent reconfigurations and thus longer cir-
cuit downtime. On the contrary, a large period would not fully
leverage the opportunity of traffic localization. Instead, we
envision that an RDC network can dynamically adjust the
period to best suit the observed workload patterns, and we are
developing such an algorithm in ongoing work.

6 SUMMARY
We have presented RDC, a “rackless” pod-centric DCN ar-
chitecture designed to break the traditional rack boundaries
in a pod, creating the illusion that servers can move freely
among edge switches in response to traffic pattern changes.
Rather than optimizing the workloads based on the topology,
RDC optimizes the topology to suit the changing workloads.
RDC inserts circuit switches between the edge switches and
the servers, and reconfigures the circuits on demand to form
different connectivity patterns. Our preliminary results on
intra-pod localization show that RDC can decrease flow com-
pletion times considerably on realistic workloads. As ongoing
work, we are working on the RDC’s dynamic reconfiguration
algorithm, as well as a full RDC prototype.
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