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ABSTRACT

In this paper, we propose a new approach to diagnosing prob-
lems in distributed systems. Our approach is based on the in-
sight that many of the trickiest problems are anomalies. For
instance, in a network, problems often affect only a small
fraction of the traffic (perhaps a certain subnet), or they only
manifest infrequently. Thus, it is quite common for the op-
erator to have “examples” of both working and non-working
traffic readily available — perhaps a packet that was mis-
routed, and a similar packet that was routed correctly. In
this case, the cause of the problem is likely to be wherever
the two packets were treated differently by the network.

We present the design of a debugger that can leverage this
information using a novel concept that we call differential
provenance. Differential provenance tracks the causal con-
nections between network states and state changes, just like
classical provenance, but it can additionally perform root-
cause analysis by reasoning about the differences between
two provenance trees. We have built a diagnostic tool that
is based on differential provenance, and we have used our
tool to debug a number of complex, realistic problems in
two scenarios: software-defined networks and MapReduce
jobs. Our results show that differential provenance can de-
liver very concise diagnostic information; in many cases, it
can even identify the precise root cause of the problem.
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1. INTRODUCTION

Distributed systems are not easy to get right. Despite the fact
that researchers have developed a wide range of diagnostic
tools [16, 30, 31, 19, 27, 29, 10], understanding the intricate
relations between low-level events, which is needed for root-
cause analysis, is still challenging.

Recent work on data provenance [36] has provided a new
approach to understanding the details of distributed execu-
tions. Intuitively, a provenance system keeps track of the
causal connections between the states and events that a sys-
tem generates at runtime; for instance, when applied to a
software-defined network (SDN), it might associate each flow
entry with the parts of the controller program that were used
to compute it. Then, when the operator asks a diagnostic
question — say, why a certain packet was routed to a par-
ticular host — the system returns a comprehensive explana-
tion that recursively explains each relevant event in terms of
its direct causes. A number of provenance-based diagnostic
tools have been developed recently, including systems like
ExSPAN [36], SNP [34], and Y! [30].

However, while such a comprehensive explanation is use-
ful for diagnosing a problem, it is not the same as finding the
actual root causes. We illustrate the difference with an ana-
logy from everyday life: suppose Bob wants to know why
his bus arrived at 5:05pm, which is five minutes late. If
Bob had a provenance-based debugger, he could submit the
query “Why did my bus arrive at 5:05pm?”, and he would
get a comprehensive explanation, such as “The bus was dis-
patched at the terminal at 4:00pm, and arrived at stop A at
4:13pm; it departed from there at 4:15pm, and arrived at stop
B at 4:21pm; ... Finally, it departed from stop Z at 5:01pm,
and arrived at Bob’s platform at 5:05pm”. This is very dif-
ferent from what Bob really wanted to know: the actual root
cause might be something like “At stop G, the bus had to
wait for five minutes because of a traffic jam”.

But suppose we allow Bob to instead ask about the dif-
ferences between two events — perhaps “Why did my bus
arrive at 5:05pm today, and not at 5:00pm like yesterday?”.
The debugger can then omit those parts of the explanation
that the two events have in common, and instead focus on
the (hopefully few) parts that caused the different outcomes.
We argue that a similar approach should work for diagnos-
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ing distributed systems: reasoning about the differences be-
tween the provenance of a bad event and a good one should
lead to far more concise explanations than the provenance
of the bad event by itself. We call this approach differential
provenance.

Differential provenance requires some kind of “reference
event” that produced the correct behavior but is otherwise
similar to the event that is being investigated. There are sev-
eral situations where such reference events are commonly
available, such as 1) partial failures, where the problem ap-
pears in some instances of a service but not in others (Exam-
ple: DNS servers A and B are returning stale records, but
not C); 2) intermittent failures, where a service is available
only some of the time (Example: a BGP route flaps due to a
“disagree gadget” [12]); and 3) sudden failures, where a net-
work component suddenly stops working (Example: a link
goes down immediately after a network transition). As long
as the faulty service has worked correctly at some point, that
point can potentially serve as the needed reference.

At first glance, it may seem that that differential prove-
nance merely requires finding the differences between two
provenance trees, perhaps with a tree-based edit distance al-
gorithm [5]. However, this naive approach would not work
well because small changes in the network can cause the
provenance to look wildly different. To see why, suppose
that the operator of an SDN expects two packets P and P’ to
be forwarded along the same path S1-S2-S3-S4-S5, but that
a broken flow entry on S2 causes P’ to be forwarded along
S1-S2-S6 instead. Although the root cause (the broken flow
entry) is very simple, the provenance of P and P’ would
look very different because the two packets traveled on very
different paths. (We elaborate on this scenario in Section 2.)
A good debugger should be able to pinpoint just the broken
flow entry and leave out the irrelevant consequences.

In this paper, we present a concrete algorithm called Diff-
Prov for generating differential provenance, as well as a pro-
totype debugger that leverages such information for root-
cause analysis. We report results from two diagnostic sce-
narios: software-defined networks and Hadoop MapReduce.
Our results show that differential provenance can explain
network events in far simpler terms than existing systems:
while the latter often return elaborate explanations that con-
tain hundreds of events, DiffProv can usually pinpoint one
critical event which, in our experience, represents the “root
cause” that a human operator would be looking for. We also
show that the cost for the higher precision is small: the run-
time overheads are low enough to be practical, and diagnos-
tic queries can usually be answered in less than one minute.
We make the following contributions:

e The concept of differential provenance (Section 3);

o DiffProv, a concrete algorithm for generating differen-
tial provenance (Section 4);

e a DiffProv debugger prototype (Section 5); and
e an experimental evaluation in the context of SDNs and
Hadoop MapReduce (Section 6).

We discuss related work in Section 7, and conclude the paper
in Section 8.
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Figure 1: Example scenario (SDN debugging).

2. OVERVIEW

Figure 1 shows a simple example of the problem we are ad-
dressing. The illustrated network consists of six switches,
two HTTP servers, and one DPI device. The operator wants
web server #2 to handle most of the HTTP requests; how-
ever, requests from certain untrusted subnets should be pro-
cessed by web server #1, because it is co-located with the
DPI device that can detect malicious flows based on the mir-
rored traffic from S6. To achieve this, the operator config-
ures two OpenFlow rules on switch S2: a) a specific rule
R, that matches traffic from the untrusted subnets and for-
wards it to S6; and b) a general rule R, that matches the
rest of the traffic and forwards it to S3. However, the op-
erator made I?; overly specific by mistake, writing the un-
trusted subnet 4.3.2.0/23as4.3.2.0/24. Asaresult,
only some of the requests from this subnet arrive at server #1
(e.g., those from 4.3 .2. 1), whereas others arrive at server
#2 instead (e.g., those from 4 . 3. 3. 1). The operator would
like to use a network debugger to investigate why requests
from 4.3.3.1 went to the wrong server. One example of
a suitable reference event would be a request that arrived at
the correct server —e.g., one from4.3.2.1.

2.1 Background: Provenance

Network provenance [36] is a way to describe the causal
relationships between network events. At a high level, the
provenance of an event e is simply a tree of events that has
e at its root, and in which the children of each vertex repre-
sent the direct causes of that vertex. Figure 2(a) sketches the
provenance of the packet P from Figure 1 when it arrives
at web server #1. The direct cause of P’s arrival is that P
was sent from a port on switch S6 (vertex V1); this, in turn,
was caused by 1) P’s earlier arrival at S6 via some other port
(V2), in combination with 2) the fact that P matched some
particular flow entry in S6’s flow table (V3), and so on.

To answer provenance queries, systems use the abstrac-
tion of a provenance graph, which is a DAG that has a vertex
for each event and an edge between each cause and its direct
effects. To find the provenance of a specific event e, we can
simply locate e’s vertex in the graph and then project out the
tree that is rooted at that vertex. The leaves of the tree con-
sist of “base events” that cannot be further explained, such
as external inputs or configuration states.

Provenance itself is not a new concept; it has been ex-
plored by the database and networking communities, and
there are techniques that can track it efficiently by maintain-
ing some additional metadata [6, 11, 30].
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(a) Provenance example

(b) Full provenance of P’ at server #2

(c) Full provenance of P at server #1

Figure 2: Simplified excerpt from a provenance tree (a) and the full provenance trees for P’ (b) and P (c) from Figure 1. Each
circle in (b) and (c) corresponds to a box in (a), but the details have been omitted for clarity. Although the two full trees have
some common subtrees (green), most of their vertexes are different (red). Also shown is the single vertex in (b) that represents

the root cause of the routing error that affected P’.

2.2  Why provenance is not enough

Provenance can be helpful for diagnosing a problem, but
finding the actual root cause can require substantial addi-
tional work. To illustrate this, we queried the provenance of
the packet P’ in our scenario after it has been (incorrectly)
routed to web server #2. The full provenance tree, shown in
Figure 2(b), consists of no less than 201 vertexes, which is
why we have omitted all the details from the figure. Since
this is a complete explanation of the arrival of P’, the oper-
ator can be confident that the information in the tree is “suf-
ficient” for diagnosis. However, the actual root cause (the
faulty rule; indicated with an arrow) is buried deep within the
tree and is quite far from the root, which corresponds to the
packet P’ itself. This is by no means unusual: in other sce-
narios that were discussed in the literature, the provenance
often contains tens or even hundreds of vertexes [30]. Hence,
extracting a concise root cause from a complex causal expla-
nation remains challenging.

2.3 Key idea: Reference events

Our key idea is to use a reference event to improve the di-
agnosis. A good reference event is one that a) is as similar
as possible to the faulty event that is being diagnosed, but
b) unlike that event, has produced the “correct” outcome.
Since the reference event reflects the operator’s expectations
of what the buggy network ought to have done, we rely on
the operator to supply it together with the faulty event.

The purpose of the reference event is to show the debug-
ger which parts of the provenance are actually relevant to
the problem at hand. 1f the provenance of the faulty event
and the reference event have vertexes in common, these ver-
texes cannot be related to the root cause and can therefore be
pruned without losing information. If the reference event is
sufficiently similar to the faulty event, it is likely that almost
all of the vertexes in their provenances will be shared, and
that only very few will be different. Thus, the operator can
focus only on those vertexes, which must include the actual
root cause.

For illustration, we show the provenance of the reference
packet P from our scenario in Figure 2(c). There are quite
a few shared vertexes (shown in green), but perhaps not as
many as one might have expected. This is because of an
additional complication that we discuss in Section 2.5.

2.4 Are references typically available?

To understand whether reference events are typically avail-
able in practical diagnostic scenarios, we reviewed the posts
on the Outages mailing list from 09/2014—-12/2014. There
are 89 posts in total, and 64 of them are related to network
diagnosis. (The others are either irrelevant, such as com-
plaints about a particular iOS version, or are lacking infor-
mation that is needed to formulate a diagnosis, such as a
news report saying that a cable was vandalized.) We found
that 45 of the 64 diagnostic scenarios (70.3%) contain both
a fault and at least one reference event; however, in ten of
the 45 scenarios, the reference event occurred in another ad-
ministrative domain, so we cannot be sure that the operator
would have had access to the corresponding diagnostic data.
Nevertheless, even if we ignore these ten events, this leaves
us with 35 out of 64 scenarios (or slightly more than half) in
which a reference event would have been available.

We further classified the 45 scenarios into three categories:
partial failures, sudden failures, and intermittent failures. The
most prevalent problems were partial failures, where oper-
ators observed functional and failed installations of a ser-
vice at the same time. For instance, one thread reported
that a batch of DNS servers contained expired entries, while
records on other servers were up to date. Another class
of problems were sudden failures, where operators reported
the failure of a service that had been working correctly ear-
lier. For instance, an operator asked why a service’s status
suddenly changed from “Service OK” to “Internal Server
Error”. The rest were intermittent failures, where a ser-
vice was experiencing instability but was not rendered com-
pletely useless. For instance, one post said that diagnostic
queries sometimes succeeded, sometimes failed silently, and
sometimes took an extremely long time.



In most of the scenarios we examined, the reference event
could have been found in one of two ways: either a) by tak-
ing the malfunctioning system and looking back in time for
an instance where that same system was still working cor-
rectly, or b) by looking for a different system or service that
coexists with the malfunctioning system but has not been
affected by the problem. Although our survey is far from
universal, these strategies are quite general and should be
applicable in many other scenarios.

2.5 Why not compare the trees directly?

Intuitively, it may seem that the differences between two
provenance trees could be found with a conventional tree
comparison algorithm — e.g., some variant of tree edit dis-
tance algorithms [5] — or perhaps simply by comparing the
trees vertex by vertex and picking out the different ones.
However, there are at least two reasons why this would not
work well. The first is that the trees will inevitably differ
in some details, such as timestamps, packet headers, packet
payloads, etc. These details are rarely relevant for root cause
analysis, but a tree comparison algorithm would nevertheless
try to align the trees perfectly, and thus report differences al-
most everywhere. Thus, an equivalence relation is needed to
mask small differences that are not likely to be relevant.
Second, and perhaps more importantly, small differences
in the leaves (such as forwarding a packet to port #1 in-
stead of port #2) can create a “butterfly effect” that results
in wildly different provenances higher up in the tree. For in-
stance, the packet may now traverse different switches and
match different flow entries that in turn depend on differ-
ent configuration states, etc. This is the reason why the two
provenances in Figures 2b and 2c still have considerable dif-
ferences: the former has 201 vertexes and the latter 156, but
the naive “diff” has as many as 278 — even though the root
cause is only a single vertex! Thus, a naive diff may actu-
ally be larger than the underlying provenances, which com-
pletely nullifies the advantage from the reference events.

2.6 Approach: Differential provenance

Differential provenance takes a fundamentally different ap-
proach to identifying the relevant differences between two
provenance trees. We exploit the fact that a) each provenance
describes a particular sequence of events in the network, and
that b) given an initial state of the network, the sequence of
events that unfolds is largely deterministic. For instance, if
we inject two packets with identical headers into the network
at the same point, and if the state of the switches is the same
in each case, then the packets will (typically) travel along
the same path and cause the same sequence of events in the
network. This allows us to predict what the rest of the prove-
nance would have been if some vertex in the provenance tree
had been different in some particular way.

This enables the following three-step approach for com-
paring provenance trees: First, we locate a pair of “seed”
vertexes that triggered the diagnostic event and the refer-
ence event. We then conceptually “roll back™ the state of
the network to the corresponding point, make a change that

transforms some “bad” vertex into a good one, and then “roll
forward” the network again while keeping track of the new
provenance along the way. Thus, the provenance tree for the
diagnostic event will become more and more like the prove-
nance tree for the reference event. Eventually, the two trees
are equivalent. At this point we output the set of changes (or
perhaps only one change!) that transformed the one tree into
the other; this is our estimate of the “root cause”.

3. DIFFERENTIAL PROVENANCE

In this section, we introduce the concept of differential prove-
nance. For ease of exposition, we adopt a declarative system
model that is commonly used in database systems when rea-
soning about provenance. This model describes a system’s
states as fuples, and its algorithm as derivation rules that
process the tuples. The key advantage of using this model is
that provenance is very easy to see in the syntax. Although
one can directly program with such rules and then compile
them into an executable [18], few deployed systems are writ-
ten that way today. However, DiffProv is not specific to the
declarative model: in Section 5, we describe several ways
in which rules and tuples can be extracted from systems that
are written in other languages, and our prototype debugger
has a front-end that accepts SDN programs that are written
in Pyretic [21], an imperative language.

3.1 System model

We assume that the system that is being diagnosed consists
of multiple nodes that run a distributed protocol, or a com-
bination of protocols. System states and events are repre-
sented as fuples, which are organized into fables. For in-
stance, the model for an SDN switch would have a table
called FlowEnt ry, where each row encodes an OpenFlow
rule and each column encodes a specific attribute of it, e.g.,
incoming port (in_port), match fields (nw_dst), actions
(actions), and others. As a simplified example, a tuple
FlowEntry (5,8,1.2.3.4) may indicate that packets
with destination IP 1. 2. 3. 4 that arrive on port 5 should be
sent out on port 8.

The algorithm of the system is described by a set of deriva-
tion rules, which encodes how tuples could be derived when
and where. External events to the system, such as incoming
packets, are modeled as base tuples. Whenever a base tu-
ple arrives, it will trigger a set of derivation rules and cause
new derived tuples to appear; the derived tuples may in turn
trigger more rules and produce other derived tuples. Rules
have the foom A :- B, C, ..., which means that a tuple
A will be derived whenever tuples B, C, ... are present;
for instance, the model for an SDN switch would have a
rule that derives PacketOut tuples from Packet In and
FlowEntry tuples. Rules can also specify tuple locations
using the @ symbol to encode a distributed operation: for in-
stance, A (i, J)@X :— B(i)@X,C(7J)QY indicates that
an A (i, j) tuple should be derived on node X whenever a)
node X has a B (i) tuple and b) node Y has a C () tuple.
Here, 1 and j are variables of certain types, e.g., IP ranges,
switch ports, etc.



The provenance system observes how the primary system
runs, keeps track of its derivation chains, and uses them to
explain why a particular system event occurred. The prove-
nance of a tuple is very easy to explain in terms of the deriva-
tion rules: a base tuple’s provenance is itself, since it cannot
be explained further; a derived tuple’s provenance consists
of the rule(s) that have been used to derive it, as well as the
tuples used by the rule(s). For instance, if a tuple A was
derived using some rule A :- B, C, D, then A exists sim-
ply because tuples B, C, and D also exist. Without loss of
generality, we model tuple deletions as insertions of special
“delete” tuples; this results in an append-only maintenance
of the provenance graph.

3.2 The provenance graph

There are different ways to define provenance, and our ap-
proach does not depend on the specific details. For concrete-
ness, we will use a simplified version of the temporal prove-
nance graph from [35]. We chose this graph because its
temporal dimension enables the graph to “remember” past
events; this is useful, e.g., when the reference event is some-
thing that happened in the past. The graph from [35] consists
of the following seven vertex types:

e INSERT(n,T,t), DELETE(n, 7,t): Base tuple 7 was in-
serted (deleted) on node n at time t;

e EXIST(n, T, [t1,t2]): Tuple 7 existed on node n from
time t1 to to;

e DERIVE(n, T, R,t), UNDERIVE(n, 7, R, t): Tuple 7 was
derived (underived) via rule R on n at time ¢;

e APPEAR(n,T,t), DISAPPEAR(n, T, 1): Tuple T appeared
(disappeared) on node n at time ¢;

The provenance graph is built incrementally at runtime. When
a base tuple is inserted, this causes an INSERT to be added to
the graph, followed by an APPEAR (to reflect the fact that a
new tuple appeared), and finally an EXIST (to reflect that the
tuple now exists in the system). Having three separate ver-
texes may seem redundant, but will be useful later — for ex-
ample, when DiffProv must find tuples that “appeared” last.
If the appearance of a tuple triggers a derivation via a rule,
a DERIVE vertex is added to the graph. The remaining three
“negative” vertexes (DELETE, UNDERIVE, and DISAPPEAR)
are analogous to their positive counterparts.

3.3 Towards a definition

We are now ready to formalize the problem we have moti-
vated in Section 2. For clarity, we start with the following
informal definition (which we then refine in several steps):

DEFINITION ATTEMPT 1. Given a “good” provenance tree
Tea with root vertex vg and a “bad” provenance tree Tp
with root vertex vp, differential provenance is the reason
why the two trees are not the same.

More precisely, we adopt a counterfactual approach to define
“the reason”: although the actual provenance of v¢ is clearly

different from that of vp, we can look for changes to the
system that would have caused the provenances to be the
same. For instance, in the example from Section 2, the actual
reason why the packets P and P’ were routed differently was
an overly specific flow entry; by changing that flow entry
into a more general one, we can cause the two packets to
take the same path. Since any change can be captured by
a combination of changes to base tuples, we can restate our
goal as finding some set Ap_, of changes to base tuples
that would transform the “bad” tree into the “good” one.

Refinement #1 (Mutability): Importantly, not all changes
to base tuples make sense in practice. For instance, in our
SDN example, it is perfectly reasonable to change base tu-
ples that represent configuration states, but it is not reason-
able to change base tuples that represent incoming packets,
since the operator has no control over the kinds of packets
that arrive at her border router. Thus, we distinguish between
mutable and immutable base tuples, and we do not consider
changes that involve the latter. (Note that this restriction im-
plies that a solution does not always exist.) We thus arrive at
our next attempt:

DEFINITION ATTEMPT 2. Given two provenance trees Tg
and Tpg, their differential provenance is a set of changes
Ap_,q to mutable tuples that transforms Tg into Tg.

Refinement #2 (Preservation of seeds): Even when restric-
ted to mutable tuples, the above definition is not quite right,
because we are not looking to transform 75 into T ver-
batim: this contradicts our intuition that 7’z is about a dif-
ferent event, and that a meaningful solution must preserve
the events whose provenance the trees represent. To formal-
ize this notion, we designate one leaf tuple in each tree as
the seed of that tree, to reflect that the tree has “sprung”
from that event, and we require that the seeds be preserved
while the trees are being aligned. To identify the seed, ob-
serve that, whenever a tuple A is derived through some rule
A:-B,C,D, ..., one of the underlying tuples B, C, D, ...
was the last one to appear and thus has “triggered” the deriva-
tion. Thus, we can follow the chain of triggers from the root
to exactly one of the leaves, which, in a sense, triggered the
entire tree.

Refinement #3 (Equivalence): If the changes to 75 must
preserve its seed, the question arises how the two trees could
ever be “the same” if their seeds are different. Therefore,
we need a notion of equivalence. For instance, suppose that
pkt(1.2.3.4,80,X) and pkt (1.2.3.5,80,Y) are
the seeds, representing two HTTP packets for two different
interfaces of the same server. Then, when aligning the two
trees, we must account for the fact that the IP addresses and
payloads are different. In simple cases, this might simply
mean that all the occurrences of 1.2.3.4 in T are re-
placed with 1.2.3.5 in Tz, but there are more compli-
cated cases — e.g., when the controller program computes
different flow entries for the two IPs, perhaps even with dif-
ferent functions. We will discuss this more in Section 4.3.
With these refinements, we arrive at our final definition:



function DIFFPROV(T¢, TB)

Sa < FINDSEED(1)

sp < FINDSEED(1B)

if sg % sp then FAIL

AB*}G — @

while Ty # T do
(G, TB) ¢ FIRSTDIV(Sc, SB)
T¢ < APPLYTAINT(7¢)
MAKEAPPEAR(T(;, Tc)
T < UPDATETREE(TB, Ap_.q)

return Ag_.¢g

return (7¢,7TB)

function FIRSTDIV(sg, SB)

for each field sg[i] # spli
CREATETAINT(s¢[i], spi])

TG < SG,TB < SB

while 7¢ ~ 75 do
PROPTAINT(7¢ — PARENT(7q))
PROPTAINT(TB — PARENT(TR))
T < PARENT(7T¢)
TB < PARENT(TR)

function MAKEAPPEAR(T/, T¢)
if BaseTuple(7(;) then
if ImmutableTuple(7;) then FAIL
ApLg + ApogU{TL}
else
for 7; € CHILDREN(7g) do
PROPTAINT(7g — T;)
T/ <— APPLYTAINT(7;)
if i/ then MAKEAPPEAR(7/,T;)
return

Figure 3: Pseudocode of the DiffProv algorithm. The FINDSEED, FIRSTDIV, MAKEAPPEAR, and UPDATETREE functions are
explained in Sections 4.2, 4.4, 4.5, and 4.6 respectively. The CREATETAINT, PROPTAINT, and APPLYTAINT functions are
introduced to establish equivalence between corresponding tuples in T and T’z (Section 4.3).

DEFINITION 1 (DIFFERENTIAL PROVENANCE). Given two
provenance trees Tg and Tp with seed tuples sq and sp,
the differential provenance of T and Ty is a set of changes
Ap_,¢ to mutable tuples that 1) transforms Tg into a tree
that is equivalent to T, and 2) preserves sp.

Figure 4 illustrates this definition with a simple derivation
rule C (x, y2, z+1) :-A(x,vy),B(x,v,z) and three ex-
ample tuples. The seeds A (1,2) and A(2,2) are con-
sidered to be equivalent (and immutable). To align the two
provenance trees, the differential provenance of T's and T
would be a change from the mutable base tuple B (1, 2, 3)
inTptoB(1,2,4), which makes it equivalent to its corre-
sponding tuple B (2, 2, 4) in T. This update will be prop-
agated and further change C (1, 4,4) toC(1,4,5) inTp,
which now becomes equivalent to tuple C (2, 4, 5) in T.

4. THE DIFFPROV ALGORITHM

In this section, we present DiffProv, a concrete algorithm
that can generate differential provenance. Initially, we will
assume that the two trees are completely materialized and
have been downloaded to a single node; however, we will
remove this assumption at the end of this section.

4.1 Roadmap

The DiffProv algorithm is shown in Figure 3. We begin with
an intuitive explanation, and then explain each step in more
detail.

When invoked with two provenance trees — a “good” tree
T and a “bad” tree T’z — DiffProv begins by identifying the
seed tuples of both trees (Section 4.2). DiffProv then verifies
that the two seed tuples are of the same type; if they are
not, T and T are not really comparable, and the algorithm
fails. Otherwise, DiffProv defines an equivalence relation
that maps the seed of the “bad” tree to the seed of the “good”
tree (Section 4.3). This helps DiffProv to align a first tiny
subtree of the two trees, which provides the base case for the
following inductive step.

Starting with a pair of subtrees that are already aligned,
DiffProv then identifies the parent vertexes 7 and 75 of
the two trees and checks whether they are already the same
under the equivalence relation defined earlier (Section 4.4).
If so, DiffProv has found a larger pair of aligned subtrees,

c(1,4/4) C(2,4[9)_
/‘\ diff /\ diff
v v
AL2)  BL2B) AR2) B2
1 4 4
immutable mutable equivalent tuple
T Ta

Figure 4: A simplified example showing the differential
provenance for a one-step derivation. A (1,2),A (2, 2) are
the seeds; equivalent fields are underlined, and differences
are boxed. Differential provenance transforms B (1, 2, 3)
intoB (1,2, 4) to align this derivation.

and repeats. If not, DiffProv checks which children of 74
are not present in 7z, and then attempts to make changes
so as to make these children appear (Section 4.5-4.6). In
doing so, DiffProv heavily relies on the “good” tree T(; as a
guide: rather than trying to guess combinations of base tuple
changes that might cause the missing tuples to be created,
DiffProv creates them in the same way that they were created
in Tz (modulo equivalence), which reduces an exponential
search problem to a linear one.

During alignment, DiffProv accumulates a set of base tu-
ple changes. Once the roots of T and T's have been reached,
DiffProv outputs the accumulated changes as Ap_,s and
terminates.

4.2 Finding the seeds

Given the two provenance trees T and Tz, DiffProv’s first
step is to find the seed of each tree. To do this, DiffProv
uses the following insight: unlike databases, distributed sys-
tems and networks usually do not perform one-shot compu-
tations; rather, they respond to external stimuli. For instance,
networks route incoming packets, and systems like Hadoop
process incoming jobs. Thus, the provenance of an output is
not a uniform tree; rather, there will be one “special” branch
of the tree that describes how the stimulus made its way
through the system (say, the route of an incoming packet),
while the other branches describe the reasons for what hap-
pened at each step (say, configuration states). The seed of
the tree is simply the external event, which can be found at
the bottom of this “special” branch.



At first glance, it may seem difficult to find this stimulus
in a given provenance tree, but in fact there is an easy way to
do this. Notice that each derivation is triggered because its
last precondition has been satisfied; for instance, if a tuple A
was derived through arule A: -B, C, D, then one of the three
tuples B, C, and D must have appeared last, when the other
two were already present. Thus, this last tuple represents the
stimulus for the derivation. Conveniently, the provenance
graph we have adopted (see Section 3.2) already has a spe-
cial vertex — the APPEAR vertex — to identify this tuple.

Thus, DiffProv can find the seed as follows. Starting at
the root of each tree, it performs a kind of recursive descent:
at each vertex v, it scans the direct children of v, locates
the APPEAR vertex with the highest timestamp, and then de-
scends into the corresponding branch of the tree. By repeat-
ing this step, DiffProv eventually reaches a leaf that is of
type INSERT, which it then considers to be the seed.

4.3 Establishing equivalence

Next, DiffProv checks whether the seeds of T and T'g are of
the same type. It is possible that they are not; for instance,
the operator might have asked DiffProv to compare a flow
entry that was generated by the controller program to one
that was hard-coded. In this case, the two trees are not really
comparable, and DiffProv fails.

Even if the seeds s and sp do have the same type, some
of their fields will be different. For instance, s might be a
packet pkt (1.2.3.4,80,2), and sp might be a packet
pkt (1.2.3.5,80,B);in this case, the two packets have
the same port number (80) but different IP addresses and
payloads. This is not a problem for the seeds themselves,
since they are equivalent by definition (Section 3.3); how-
ever, it is a problem for tuples that are — directly or indi-
rectly — derived from the seeds. For instance, if a tuple
T:=portAndLastOctet (80, 4) was derived from s via
a chain of several different rules, how can DiffProv know
what tuple would be the equivalent of 7 in T3? A human di-
agnostician could intuitively guess that it should be port And
LastOctet (80, 5), since the last octet in sg was 5, but
DiffProv must find some other way.

To this end, DiffProv taints all the fields of tuples in T
that have been computed from fields of s in some way, and
maintains, for each tainted field, a formula that expresses
the field’s value as a function of fields in sg. In the above
example, both fields of 7 would be tainted. If X, Y, and Z are
the three fields of s, then the formula for the first field of 7
would simply be Y (since it is just the port number from the
original packet), and the formula for the second field would
be X&0xFF (since it is the last octet of the IP address in s¢).
With these formulae, DiffProv can find the equivalent of any
tuple in Tz simply by plugging in the values from sp. This
will become important in the next step, where DiffProv must
make missing tuples appear in T'z.

DiffProv computes the taints and formulae incrementally
as it works its way up the tree, as we shall see in the next
step. Initially, it simply taints each field in s and annotates
each field with the identity function.

4.4 Aligning larger subtrees

Next, DiffProv attempts to align larger and larger subtrees of
T and Ts. Each step begins with a pair of subtrees that are
already aligned (modulo equivalence); initially, this will be
just the two seed tuples.

First, DiffProv propagates the taints to the parent vertex
of the good subtree, while updating the attached formulae
to reflect any computations. For instance, suppose the root
of the subtree was APPEAR (foo (1,2, 3) ), its parent was
DERIVE (bar (1, 7), R), and that we have a derivation rule
that states bar (a,d) : —foo (a, b, c),d=2xc+1. Then
DiffProv would propagate the taint from the 1 in foo to the
1 in bar and leave its formula unmodified. DiffProv would
also propagate the taint from the 3 in foo to the 7 in bar,
but it would attach a different formula to the 7: if £ was the
formula used to compute the 3 in the good tree from some
field(s) of s that were different in s (see Section 4.3), then
DiffProv would attach g:=2+f+1 to the 7, to reflect that it
was computed using d=2+c+1.

Then, DiffProv evaluates the formulae for all the tainted
tuples in the parent to compute the tuple that should exist in
the bad tree. For instance, in the above example, suppose the
formulae that are attached to the 1 and the 7 inbar (1, 7)
are H+1 and 2 (G+1) +1, where H=9 and G=0 are the val-
ues of some fields in T’g’s seed (see Section 4.3). Then Diff-
Prov would conclude thatabar (10, 3) tuple ought to exist
in T’g, since this would be equivalent to the bar (1, 7) in
T based on the equivalence relation.

If the expected tuple exists in 75 and has been derived
using the expected rule, DiffProv adds the parent vertexes
to both subtrees (as well as any other subtrees of those ver-
texes) and repeats the induction step with the larger subtrees.
If the expected tuple does not exist in Tz, DiffProv detects
the first “divergence”, and will try to make the tuple appear
using the procedure we describe next.

4.5 Making missing tuples appear

At first glance, it is not at all clear how to create an arbitrary
tuple. The tuple might be indirectly derived from many dif-
ferent base tuples, and attempting random combinations of
changes to these tuples would have an exponential complex-
ity. However, DiffProv has a unique advantage in the form
of the “good” tree T(;, which shows how an equivalent tuple
has already been derived. Thus, DiffProv uses T as a guide
in its search for useful tuple changes.

DiffProv begins by propagating the taints from the parent
of the current subtree in T to the other children of that par-
ent. For instance, suppose that the current parent in T is
aflowEntry(1.2.3.4,5,8) that has been derived us-
ing flowEntry (ip, s, d) : - pkt (ip, s),cfg(s,d)
onapkt(1.2.3.4,5), which is the root of the current
subtree. Then, DiffProv can simply propagate any taints,
and their formulae, from the 5 and the 8 inthe flowEntry
to the corresponding fields in the config tuple.

Note that, in general, propagating taints from a vertex
v to one of its children can require inverting computations
that have been performed to obtain a field of v. For in-



stance, if a tuple abc (5, 8) has been derived using a rule
abc (p,q) :—foo (p), bar (x), g=x+2, DiffProv must
invert g=x+2 to obtain x=g-2 and to thus conclude that
a bar (6) is required. While not all rules are injective or
surjective, or are simple enough to be inverted, in practice,
the rules we have encountered are usually simple enough to
permit this. In cases when automatic inverting is not possi-
ble, we depend on the model to provide inverse rules. When
there are several preimages (for example, if g=x2+4), Diff-
Prov can try all of them.

DiffProv then uses the formulae to compute, for each child
in Tz, the equivalent tuple in 75, and it checks whether this
tuple already exists. The tuple may exist even if it is not
currently part of T'z: it may have been derived for other rea-
sons, or it may have been created by earlier changes to base
tuples (see Section 4.6). If a tuple does not exist, DiffProv
checks whether it is a base tuple. If not, DiffProv looks up
the rule that was used to derive the missing tuple in 7, and
then recursively invokes the current step to make the missing
children of that tuple appear. If the missing tuple is indeed a
base tuple, DiffProv adds that base tuple to Apg_, & and then
performs the step we discuss next.

4.6 Updating 7 after tuple changes

Once a new change has been added to A g_, ¢, DiffProv must
update T'p to reflect the change. Since DiffProv is meant to
be purely diagnostic, we do not want to actually apply the
new update directly into the running system, since this would
affect its normal execution. Rather, DiffProv clones the cur-
rent state of the system when it makes the first change, and
applies its changes only to the clone. (Cloning can be per-
formed efficiently using techniques such as copy-on-write.)

The obvious consequence of each update is that one miss-
ing tuple in T appears. However, the update might cause
other missing tuples to appear elsewhere that have not yet
been encountered by DiffProv, or remove existing tuples that
transitively depend on the original base tuple. Therefore,
DiffProv allows the derivations in the cloned state to pro-
ceed until the state converges. These updates only affect the
cloned state, and are not propagated to the runtime system.

If the seeds of the two trees are of the same type, and
if DiffProv can successfully invert any computations it en-
counters while propagating taints, it returns the set of tuple
changes Ap_,¢ as the estimated root cause.

4.7 Properties of DiffProv

Complexity: The number of steps DiffProv takes is linear
in the number of vertexes in Tz. This is substantially faster
than a naive approach that attempts random changes to mu-
table base tuples (or combinations of such tuples), which
would have an exponential complexity. DiffProv is faster
because of a) its use of provenance, which allows it to ig-
nore tuples that are not causally related to the event of inter-
est, and b) its use of taints and formulae, which enables it to
find, at each step, a specific tuple change that will have the
desired effect — it never needs to “guess” a suitable change.

False positives: When DiffProv outputs a set of tuple changes,

this set will always satisfy our definition from Section 3.3,

that is, it will transform T’p into a tree that is equivalent to
Te, while preserving the seed sp. There are no “false posi-
tives” in the sense that DiffProv would recommend changes
that have no effect, or recommend changes to tuples that are
not related to the problem. However, there is no guarantee
that the output will match the operator’s intent: if the oper-
ator inputs a packet P and a reference packet P’, DiffProv
will output a change that will make the network treat P and
P’ the same, even if, say, the operator would have preferred
P to take a different path. For this reason, it is best if the
operator carefully inspects the proposed changes before ap-
plying them.

False negatives: DiffProv can fail for three reasons. First,
the seeds of Tz and T’ have different types — for instance,
the “good” event is a packet and the “bad” event is a flow
entry. In this case, there is no valid solution, and the op-
erator must pick a suitable reference. Second, the solution
would involve changing an immutable tuple — for instance,
a static flow entry that the operator has declared off lim-
its, or the point at which a packet entered the network. In
this case, there is again no valid solution, but DiffProv can
show the operator what would need to be changed, and why;
this should help the operator in picking a better reference.
Third, DiffProv fails if it encounters rules that cannot be in-
verted (say, a SHA2 56 hash). We have not encountered non-
invertible rules in our case studies. However, if such a rule
prevents DiffProv from going further, DiffProv can output
the “attempted change” it would like to try, which may still
be a useful diagnostic clue.

4.8 Extensions

Distributed operation: So far, we have described DiffProv
as if the entire provenance trees Tz and T’z are materialized
on a single node. We note that, in actual operation, DiffProv
is decentralized: it never performs any global operation on
the provenance trees, and all steps are performed on a spe-
cific vertex and its direct parent or children. Therefore, each
node in the distributed system only stores the provenance of
its local tuples. When a node needs to invoke an operation
on a vertex that is stored on another node, only that part of
the provenance tree is materialized on demand.

Temporal provenance: When DiffProv tries to make tuples
appear, it must consider the state of the system “as of” the
time at which the missing tuple would have had to exist, and
it must apply the new updates to base tuples “early enough”
to be present at the required time. DiffProv accomplishes the
former by keeping a log of tuple updates along with some
checkpoints, similar with DTaP [35], so that the system state
at any point in the past can be efficiently reconstructed. Diff-
Prov accomplishes the latter by applying the updates shortly
before they are needed for the first time.

4.9 Limitations and open problems

We now discuss a few limitations of the DiffProv algorithm,
and potential ways to mitigate some of them in future work.
Minimality: We note that the set of changes returned by
DiffProv is not necessarily the smallest, since it attempts to
derive missing tuples only via the specific rule that was used



to derive their counterpart in T¢z. Other derivations may be
possible, and they may require fewer changes. This is, in
essence, the price DiffProv pays for using T¢; as a guide.
Reference events: DiffProv currently relies on the operator
to supply the reference event. This works well for the major-
ity of the diagnostic cases we have surveyed (Section 2.4),
where the operators have explicitly mentioned some poten-
tial reference events as starting points. But we are also ex-
ploring to automate this process using inspirations from Au-
tomatic Test Packet Generation [32] and the “guided probes”
idea in Everflow [37].

Performance anomalies: Provenance in its plainest form
works aims to explain individual events. We note that debug-
ging performance anomalies, e.g., high per-flow latencies,
resembles answering aggregation queries, and may require
similar extensions to the current provenance model [2] that
considers provenance for explaining aggregation results.
Non-determinism: Replay-based debuggers such as Diff-
Prov, ATPG [32], etc., assume that the network is largely
deterministic. In the presence of load-balancers that make
random decisions, e.g., ECMP with a random seed, Diff-
Prov would need to reason about the balancing mechanism
using the seed. Under race conditions, DiffProv would abort
at the point where applying the same rule does not result in
the same effect, and suggest that point as a potential race
condition.

5. IMPLEMENTATION

Next, we present the design and implementation of our Diff-
Prov prototype. We have implemented a DiffProv debugger
in C++ based on RapidNet [1], with five major components:
a) a provenance recorder, b) a front-end, c) a logging engine,
d) a replay engine, and e) the DiffProv reasoning engine.

Provenance recorder: The provenance recorder can extract
provenance information from the primary system in three
possible modes. First, it can directly infer the provenance
if the primary system explicitly captures data dependencies,

e.g., itis compiled into running code from declarative rules [18].

Since RapidNet is a declarative networking engine based on
Network Datalog (NDlog) rules, DiffProv can infer prove-
nance directly from any NDlog program; we applied this
technique to the first three SDN scenarios.

Alternatively, the primary system can be instrumented with

hooks that report dependencies to the recorder, e.g., as in [22].

We applied this to MapReduce by instrumenting Hadoop
MapReduce v2.7.1 to report its internal provenance to
DiffProv. Our instrumentation is moderate: it has less than
200 lines of code, and it reports dependencies at the level of
individual key-value pairs (e.g., words and their counts), as
well as input data files, Java bytecode signatures, and 235
configuration entries.

Finally, we can treat the primary system as a black box,
and use external specifications to track dependencies between
inputs and outputs, e.g., as in [34]. We applied this to the
complex SDN scenario in Section 6.7, where the recorder
tracks packet-level provenance in Mininet [20] based on the
packet traces it has produced, as well as an external specifi-
cation of OpenFlow’s match-action behavior.

Front-end: For our SDN scenario, we have built a front-end
for controller programs that accepts programs written either
in native NDlog or in NetCore (part of Pyretic [21]). When a
NetCore program is provided, our front-end internally con-
verts it to NDlog rules and tuples using a technique from
Y! [30].

Logging and replay engines: The logging and replay en-
gines are needed to support temporal provenance as described
in Section 4.8, and they assist the recorder to capture prove-
nance information in one of the following two approaches:
a) in the runtime based approach, the logging engine writes
down base events and all intermediate derivations, so that
the provenance is readily available at query time; b) in the
query-time based approach, the logging engine writes down
base events only, and the replay engine then reconstructs
derivations using deterministic replay. Although our proto-
type supports both approaches, we have opted for the latter
in our experiments as it favors runtime performance — diag-
nostic queries would take longer, but they are relatively rare
events; moreover, it enables an optimization that allows the
replay engine to selectively reconstructs relevant parts of the
provenance graph only.

Reasoning engine: The DiffProv reasoning engine retrieves
the provenance trees from the recorder, performs the Diff-
Prov algorithm we described in Section 4, and then issues
replay requests to update the trees.

6. EVALUATION

In this section, we report results from our evaluation of Diff-
Prov in two sets of case studies centered around software-
defined networks and Hadoop MapReduce. We have de-
signed our experiments to answer four high-level questions:
a) how well can DiffProv identify the actual root cause of
a problem?, b) does DiffProv have a reasonable cost at run-
time?, c) are DiffProv queries expensive to process?, and d)
does DiffProv work well in a complex network with realistic
routing policies and heavy background traffic?

6.1 Experimental setup

The majority of our SDN experiments are conducted in Rapid-
Net v0. 3 on a Dell OptiPlex 9020 workstation with an 8-
core 3.40 GHz Intel i7-4770 CPU, 16 GB of RAM, a 128 GB
OCZ Vector SSD, and a Ubuntu 13.12 OS. They are based on
a 9-node SDN network setup similar with that in Figure 1,
where we replayed an OC-192 packet trace obtained from
CAIDA [7], as well as several synthetic traces with different
traffic rates and packet sizes.

We further carry out an experiment on a larger and more
complex SDN network, replicating ATPG’s [32] setup of
the Stanford backbone network. We replicated this setup
because it is a network with complex policies and heavy
background traffic, thus a suitable scenario to evaluate Diff-
Prov’s capability of finding root causes in a realistic set-
ting. Since their setup involves a different platform (emu-
lated Open vSwitch in Mininet [20] with a Beacon [4] con-
troller), we defer the discussion of this experiment to Sec-
tion 6.7.



Our MapReduce experiments are conducted in Hadoop
MapReduce v2.7.1, on a Hadoop cluster with 12 Dell
PowerEdge R300 servers with a 4-core 2.83 GHz Intel Xeon
X33363 CPU, 4GB of RAM, two 250 GB SATA hard disks
in RAID level 1 (mirroring), and a CentOS 6.5 OS. As a fur-
ther point of comparison, we also re-implemented the MapRe-
duce scenarios in a declarative implementation, and evalu-
ated them in RapidNet.

6.2 Diagnostic scenarios

For our experiments, we have adapted six diagnostic scenar-
ios from existing papers and studies of common errors. Our
four SDN scenarios are:

e SDN1: Broken flow entry [23]. An SDN switch is
configured with an overly specified flow entry. As a re-
sult, traffic from certain subnets is mistakenly handled
by a more general rule, and routed to a wrong server
(T's), while other traffic from other subnets continues
to arrive at the correct server (1). This is the scenario
from Section 2.

o SDN2: Multi-controller inconsistency [10]. An SDN
switch is configured with two conflicting rules by dif-
ferent controller apps that are unaware of each other.
The lower-priority rule sends traffic to a web server
(T¢), and the higher-priority rule sends traffic to a scrub-
ber. However, the header spaces of the rules overlap,
so some legitimate traffic is sent to the scrubber acci-
dentally (T'p).

e SDN3: Unexpected rule expiration [25]. An SDN
switch is configured with a multicast rule that sends
video data to two hosts (T;). However, when the mul-
ticast rule expires, the traffic is handled by a lower-
priority rule and is delivered to a wrong host (1'z). No-
tice that in this case the “good” example is a packet that
was observed in the past.

e SDN4: Multiple faulty entries. In this scenario, we
extended SDN1 with a larger topology and injected
two faulty flow entries on two consecutive hops (S2—
S3). Although some traffic can always arrive at the
correct server (1), traffic from certain subnets is orig-
inally misrouted by S1 (71), and then by S2 after
the first fault is corrected (I'z2). As a result, DiffProv
needs to proceed in two rounds to identify both faults.

Our MapReduce scenarios are inspired by feedback from
an industrial collaborator about typical bugs he encounters
in his workflow. Since the workflow is proprietary, we have
translated the problems to the classical WordCount job ex-
ample, which counts the number of occurrences of each word
in a text corpus. We have evaluated them with a declara-
tive implementation in RapidNet (MR1-D and MR2-D) and
an imperative implementation in Hadoop’s native codebase
(MR1-I and MR2-I). The MR1 and MR2 scenarios are:

e MRI1-D and MRI1-I: Configuration changes. The
user sees wildly different output files (75) from a Map-
Reduce job he runs regularly, because he has acciden-
tally changed the number of reducers. Because of this,

Query SDN1 | SDN2 | SDN3 | SDN4
Good example (1z)| 156 156 156 (201/201
Bad example (15) 201 156 201 |156/145
Plain tree diff 278 238 74 |278/218
DiffProv 1 1 1 1/1

Query MR1-D | MR2-D |MR1-1| MR2-1

Good example (1T¢)| 1051 1001 588 588
Bad example (15) 1051 848 588 438
Plain tree diff 164 306 240 216
DiffProv 1 1 1 1

Table 1: Number of vertexes returned by five different diag-
nostic techniques; for SDN4, the two rounds of DiffProv are
shown separately. DiffProv was able to pinpoint the “root
causes” with one or two vertexes in each case, while the
other techniques return more complex responses.

almost all the emitted words end up at a different re-
ducer node than before (1¢).

o MR2-D and MR2-I: Code changes. The user deploys
a new implementation of the mapper, but it has a bug
that causes the first word of each line to be omitted. As
a result, the job now produces a different output (7z)
than before (T;) for a previously used input file.

6.3 Usability

We begin with a series of experiments to verify that differ-
ential provenance indeed provides a more concise explana-
tion of the “root cause” than classical provenance. For this
purpose, we ran two conventional provenance queries using
Y! [30] to obtain the “good” and the “bad” provenance trees
for each of the five diagnostic scenarios, as well as a differ-
ential provenance query using DiffProv. We also evaluated
a simple strawman from Section 2.5, where we performed a
plain tree diff based on the number of distinct nodes, in the
hope that the querier would recognize suspicious gaps. We
then counted the number of vertexes in each result.

Table 1 shows our results. As expected, the plain prove-
nance trees typically contain hundreds of vertexes, which
would have to be navigated and parsed by the human querier
to extract the actual root cause. The plain diff is not signifi-
cantly simpler — in fact, it sometimes contains more vertexes
than either of the individual trees! (We have discussed the
reason for this in Section 2.5.) Therefore, it would still re-
quire considerable effort to identify tuples that should not
be there (e.g., flow entries that should not have been used)
or to guess tuples that are missing. In contrast, differential
provenance always returned very few tuples.

In more detail, for SDN1-SDN4, DiffProv returned the
missing (or broken) flow entries as the root cause; for MR1-
I, DiffProv returned mapreduce. job.reduces — the
field in the configuration file that specifies the number of
reducers; for MR2-1, though DiffProv cannot reason about
the internals of the actual mapper code, it was still able to
pinpoint the version of the mapper code (identified by the
checksum of its Java bytecode) that caused the error; for
MR1-D and MR2-D, DiffProv returned those fields’ declar-
ative equivalents in the NDlog model.



300 | iy
Q
m L
s 100
[0} 28.4
©
2 10f
k=)
g 28

1 .?3 .‘29 ’_‘

1Mbps 10Mbps 100Mbps  1Gbps 10Gbps

Traffic rate

Figure 5: Logging rate for different traffic rates.

To test how DiffProv handles unsuitable reference events,
we issued ten additional queries in the SDN1 and MR1-
D scenarios for which we picked a reference event at ran-
dom. (We applied a simple filter to avoid picking events
that we knew were suitable references.) As expected, Diff-
Prov failed with an error message in all cases. In three of
the cases, the supplied reference event was not comparable
with the event of interest because their seeds had different
types; for instance, one seed was a MapReduce operation but
the other was a configuration entry. In the remaining seven
cases, aligning the trees would have required changes to “im-
mutable” tuples; for instance, the packet of interest entered
the network at one ingress switch and the reference packet
at another. In all cases, DiffProv’s output clearly indicated
what aspect of the chosen reference event was causing the
problem; this would have helped the operator pick a more
suitable reference.

6.4 Cost: Latency

Next, we evaluated the runtime costs of our prototype, start-
ing with the latency overhead incurred by logging. For the
SDN setup, we streamed 2.5 million 500-byte packets through
the SDN1 scenario, and measured the average latency infla-
tion of our prototype to process one packet when logging is
enabled. For the MapReduce setup, we processed a 12.8 GB
Wikipedia dataset in the MR1-I scenario, and recorded the
extra time it took to run the same job with logging enabled.
We observed that the latency is increased by 6.7% in the first
experiment, and 2.3% in the second.

We note that our prototype was not optimized for latency,
so it should be possible to further reduce this cost. For in-
stance, the Y! system [30] was able to record provenance in
a native Trema OpenFlow controller with a latency overhead
of only 1.6%, and a similar approach should work in our set-
ting. In the MapReduce scenario, the dominating cost was
getting the checksums of the data files in HDFS. Instead of
computing these checksums every time a file is read (as in
our prototype), it would be possible to compute them only
when files are created or changed. We tested this optimiza-
tion in our prototype, and it reduced the latency cost to 0.2%.

6.5 Cost: Storage

Next, we evaluate the storage cost of logging at runtime. We
varied the traffic rates in the SDN1 scenario from 1 Mbps to
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Figure 6: Logging rate with different packet sizes at 1Gbps.

10 Gbps, with the packet size fixed at 500 bytes, and then
measured the rates of log size growth at the border switch.
Figure 5 shows that the logging rate 1) scales linearly with
the traffic rate, and 2) is well within the sequential write rate
of our commodity SSD (400 MB/s), even at 10 Gbps. We
also note that DiffProv does not maintain a log for every sin-
gle switch, but only for border switches: a packet’s prove-
nance can be selectively reconstructed at query time through
replay (Section 5). Therefore, if DiffProv is deployed in
a 100-node network with three border switches, we would
only need three times as much storage, not 100 times.

We performed another experiment in which we fixed the
traffic rate at 1 Gbps and varied the packet sizes from 500
bytes to 1,500 bytes. Figure 6 shows that the logging rate
decreases as the packet size grows. This is because 1) a
dominating fraction of the log consists of the incoming pack-
ets, and 2) we only store fixed-size information for each
packet, i.e., the header and the timestamp, not unlike in Net-
Sight [13] or Everflow [37]: the latter has shown the feasi-
bility of logging packet traces at data-center level with Tbps
traffic rates. Moreover, the logs do not necessarily have to be
maintained for an extensive period of time, and old entries
can be gradually aged out to reduce the amount of storage
needed.

Finally, we measured the storage cost in our MapReduce
scenarios, where the logs were very small — 26 kB for the
12.8 GB Wikipedia dataset, and 1.5 kB for the 1 GB text
corpus. This is because our logging engine records only the
metadata of input files, not their contents: our replay engine
can identify input files by their checksums upon a query, as
long as those files are not deleted from HDFS.

6.6 Query processing speed

Diagnostic queries do not typically require a real-time re-
sponse, although it is always desirable for the turnaround
time to be reasonably low. To evaluate DiffProv’s query pro-
cessing speed, we measured the time DiffProv took to an-
swer each of the queries. As a baseline, we measured the
time Y! [30] took to answer each of the individual prove-
nance queries for the “bad” tree only.

We first ran our SDN queries on a replay of an OC-192
capture from CAIDA, and the declarative MapReduce queries
on a 1 GB text corpus. Figure 7 shows our result: except for
SDN4, all other queries were answered within one minute;
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Figure 7: Turnaround time for answering differential prove-
nance queries (left), and Y! queries (right). DiffProv’s rea-
soning time (shown as “Other”) is too small to be visible.

the most complex DiffProv query (SDN3) was answered in
53.5 seconds. As the breakdown in the figure shows, query
time is dominated by the time it takes to replay the log and
to reconstruct the relevant part of the provenance graph. As
a result, in each case, DiffProv queries took about twice
as long as classic provenance queries using the Y! method:
both DiffProv and Y! need a replay to query out the trees,
but DiffProv replays a second time to update the bad tree af-
ter inserting the new tuple. Moreover, for SDN4, both Y!
and DiffProv need to repeat this twice, once for each fault;
therefore, both tools spent about twice as long on SDN4 as
SDNI1-SDN3.

If the reference event is contained in a separate, T”-second
execution, DiffProv would take an additional 7" seconds to
replay and construct the reference tree. This is the case for
our MapReduce queries that use a reference from a separate
job. DiffProv performs three replays for those queries: once
on the correct job, another on the faulty job, and a final one
to update the tree. (In Figure 7, we have batched the first
two replays to run in parallel, as they are independent jobs.)
We then ran the imperative MapReduce queries on a larger,
12.8 GB Wikipedia data, without any batching: this time,
Y! spent 349 seconds on MR1-1, and 336 seconds on MR2-
I; DiffProv took three times as long as Y! in both cases.

We also observe that the actual DiffProv reasoning takes
a negligible amount of time — 3.8 milliseconds in the worst
case, as shown in a further decomposition in Figure 8. We
can see that detecting the first divergence and making miss-
ing tuples appear took more time, because they involve track-
ing taints and evaluating their formulae. The SDN cases
took more time in making tuples appear, because the missing
(broken) flow entries were generated with more derivation
steps. MR1-D took the longest time in divergence detection
because its trees are deeper than those in all other cases.

6.7 Complex network diagnostics

Now that we have shown that DiffProv has a reasonably
small overhead, we turn to evaluating the effectiveness of
DiffProv’s diagnostics on a complex network with real-world
configurations and realistic background traffic.

Basic setup: Our scenario is based on the Stanford Univer-
sity network setup obtained from ATPG [32]; it represents
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Figure 8: Decomposition of DiffProv’s reasoning time. For
SDN4, we have stacked its two rounds together.

a realistic campus network setting with complex forwarding
policies and access control rules. The network has 14 Oper-
ational Zone (OZ) routers and 2 backbone routers that form
a tree-like topology, and they are configured with 757,000
forwarding entries and 1,500 ACL rules. The routers are
emulated with Open vSwitch (OVS) in Mininet [20], and
controlled by a Beacon [4] controller. We also replicated
their “Forwarding Error” scenario that involves two hosts
and two switches, which we will refer to as H1, H2, and
S1, S2, respectively: in the error-free setting, H1 should be
able to reach H2 via a path H1-S1-S2-H2; however, S2 con-
tains a misconfigured OpenFlow entry that drops packets to
172.20.10.32/27, which is H2’s subnet. Please refer to [32]
for a more detailed description on the configurations and the
diagnostic scenario.

Multiple faults: Large networks are often misconfigured
in more than one place, and their configuration tends to be
changed frequently. The resulting “noise” can be challeng-
ing for debuggers that simply look for anomalies or recent
changes. To demonstrate that DiffProv’s use of provenance
prevents it from being confused by bugs or changes that are
not causally related to the queried event, we injected 20 addi-
tional faulty OpenFlow rules; 10 of them were on-path from
H1 to H2, and the other 10 were on other OVS switches.
We verified that the original fault we wanted to diagnose re-
mained reproducible after injecting these additional faults.
Background traffic: To obtain a realistic data-plane envi-
ronment, we ran three different applications in the network,
and injected a mix of background traffic: 1) an HTTP client
that fetches the homepage from a remote server periodically;
2) a client that downloads a large data file from a file server;
3) an NFS client that crawls the files in the root directory
exported by a remote NFS server; and 4) we streamed the
OC-192 trace from CAIDA through the network. The exper-
iments took about 10 minutes, and produced 12GB packet
captures, in which the t shark protocol analyzer detected
69 distinct protocol types.

Result: To diagnose the faulty event (i.e., a packet that is
dropped midway from H1 to 172.20.10.32/27), we provided
DiffProv with a reference event, which is a packet from H1
to 172.19.254.0/24: this is because we noticed that the sub-
nets 172.19.254.0/24 and 172.20.10.32/27 are co-located
in S2’s operational zone, yet H1 is only able to reach the for-



mer. We queried out the provenance trees of the faulty event
and the reference event. The trees are smaller than those in
previous SDN scenarios, as this fault only involves two in-
termediate hops: they contain 67 and 75 nodes, respectively.
Nevertheless, their plain differences contain as many as 108
nodes. We then used DiffProv to diagnose the fault - it cor-
rectly identifies the misconfigured OpenFlow entry on S2 to
be the “root cause”, despite the 20 other concurrent faults
and the heavy background traffic.

At first glance, DiffProv’s resilience to environments with
substantial background traffic might seem surprising; in fact,
DiffProv inherits this from the use of provenance, which
captures true causality, not merely correlations. Note that
this property sets our work apart from heuristics-based de-
buggers, e.g., DEMi [26] that is based on fuzzy testing, Peer-
Pressure [29] that uses statistical analysis to find the likely
value of a configuration entry, NetMedic [14] that ranks likely
causes using statistical abnormality detection, and others.
Those debuggers do not incur the overhead of accurately
capturing causality, but may introduce false positives or neg-
atives in their diagnostics as a result.

7. RELATED WORK

Provenance: Provenance is a concept borrowed from the
database community [6], but it has recently been applied in
several other areas, e.g., distributed systems [36, 34, 30],
storage systems [22], operating systems [11], and mobile
platforms [9]. Our work is mainly related to projects that
use network provenance for diagnostics. In this area, Ex-
SPAN [36] was the first system to maintain network prove-
nance at scale; SNP [34] added integrity guarantees in adver-
sarial settings, DTaP [35] a temporal dimension, and Y! [30]
support for missing events. However, those systems focus on
the provenance of individual events, whereas DiffProv uses
an additional reference event for root-cause analysis. We
have previously sketched the concept of differential prove-
nance in a HotNets paper [8], but that paper did not contain
a concrete algorithm or an implementation.

Network diagnostics: A variety of diagnostic systems have
been developed over time. For instance, Anteater [19], Header
Space Analysis [16], and NetPlumber [15] rely on static anal-
ysis, while OFRewind [31], Minimal Causal Sequence anal-
ysis [27], DEMi [26], and ATPG [32] use dynamic analy-
sis and probing. Unlike DiffProv, many of these systems
are specific to the data plane and cannot be used to diag-
nose other distributed systems, such as MapReduce. Also,
none of these systems use reference events. As a result, they
have the same drawback as the earlier provenance-based sys-
tems: they return a comprehensive explanation of each ob-
served event and cannot focus on specific differences be-
tween “good” and “bad” events.

A few existing systems do use some form of reference: for
instance, PeerPressure [29], EnCore [33], ClearView [24],
and Shen et al. [28] use statistical analysis or data mining
to learn correct configuration values, performance models,
or system invariants. But none of them accurately capture
causality, or leverage causality to reduce the space of can-

didate diagnoses. Attariyan and Flinn [3] does take causal-
ity into account, but it can only compare equivalent systems
(e.g., “sick” and “healthy” computers), not events. NetMedic
[14] also models dependencies, but it relies on statistical
analysis and learning to infer the likely faulty component.

The idea of identifying the specific moment when a sys-
tem “goes wrong” has appeared in other papers, e.g., in [17],
which diagnoses liveness violations by finding a critical state
transition. However, [17] does not use reference events, and
its technical approach is completely different from ours.

Some existing solutions have packet recording capabili-
ties that resemble the logging in DiffProv. For instance, Net-
Sight [13] records traces of packets as they traverse the net-
work, and Everflow [37] provides packet-level telemetry at
datacenter scales. These systems reproduce the path a packet
has taken, but not the causal connections, e.g., to configura-
tion states. Provenance offers richer diagnostic information,
and is applicable to general distributed systems.

8. CONCLUSION

Differential provenance is a way for network operators to
obtain better diagnostic information by leveraging additional
information in the form of reference events — that is, “good”
and “bad” examples of the system’s behavior. When refer-
ence events are available, differential provenance can reason
about their differences, and produce very precise diagnostic
information in return: the output can be as small as a sin-
gle critical event that explains the differences between the
“good” and the “bad” behavior. We have presented an algo-
rithm called DiffProv for generating differential provenance,
and we have evaluated DiffProv in two sets of case studies:
SDNs and Hadoop MapReduce. Our results show that Diff-
Prov’s overheads are low enough to be practical.
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