
Ripple: A Programmable, Decentralized Link-Flooding Defense

Against Adaptive Adversaries

Jiarong Xing Wenqing Wu Ang Chen

Rice University

Abstract

Link-flooding attacks (LFAs) aim to cut off an edge network

from the Internet by congesting core network links. Such an

adversary can further change the attack strategy dynamically

(e.g., target links, traffic types) to evade mitigation and launch

persistent attacks.

We develop Ripple, a programmable, decentralized link-

flooding defense against dynamic adversaries. Ripple can be

programmed using a declarative policy language to emulate a

range of state-of-the-art SDN defenses, but it enables the de-

fenses to shapeshift on their own without a central controller.

To achieve this, Ripple develops new defense primitives in

programmable switches, which are configured by the policy

language to implement a desired defense. The Ripple com-

piler generates a distributed set of switch programs to extract

a panoramic view of attack signals and act against them in

a fully decentralized manner, enabling successive waves of

defenses against fast-changing attacks. We show that Ripple

has low overheads, and that it can effectively recover traffic

throughput where SDN-based defenses fail.

1 Introduction

Distributed denial-of-service (DDoS) attacks [5, 9, 10] have

always been a significant threat, but as of late, adversaries

have taken DDoS attacks to the next level. In a link-flooding

attack (LFA), an attacker can surgically remove an edge net-

work from the Internet without it perceiving any attack traffic.

Such an adversary identifies a set of network links that serve

the victim edge, and orchestrate attack traffic to congest these

links [40]. Victim destinations may experience severe perfor-

mance degradation or complete disconnection. To mitigate

these new attacks, traditional endpoint-based DDoS protec-

tions [26, 29, 50, 61] are fundamentally handicapped—since

attack traffic never has to reach endpoint destinations, de-

fenses must be deployed inside the network core.

Link-flooding attacks are significantly more challenging

than traditional volumetric DDoS in their detection, classifica-

tion, and mitigation. (a) Unlike volumetric attacks, which are

easy to detect by thresholding, LFAs can leverage low-rate

flows to stay under the detection threshold [40]. (b) Classi-

fication algorithms are also challenging to design: although

some LFA traffic has distinctive features (e.g., spoofed or

UDP-based flows) [53], more advanced attacks rely entirely

on legitimate flows that are indistinguishable from normal

traffic [40]. (c) Adversaries can launch adaptive attacks [40]

that dynamically change target links or traffic types while

targeting the same victim network. An effective LFA defense

must simultaneously match the significant diversity and dy-

namicity of the attacks.

A promising line of work has developed link-flooding de-

fenses [4,28,39,43,55,61] based on software-defined network-

ing (SDN) [46]. In this architecture, defense algorithms run

as software apps in a centralized controller; this programma-

bility is key to implementing a wide range of LFA defenses in

an otherwise fixed-function network. Although SDN switches

are hardwired for packet forwarding, the software defense

apps can receive OpenFlow messages from the switches at

runtime, construct a global defense view, and compute new de-

fense decisions when needed. This feedback loop enables the

hardwired switches to work with the controller for dynamic

defenses. The switches send traffic samples or statistics to the

software apps, which run detection, classification, and mitiga-

tion algorithms. The defense decisions are then populated to

each switch for link-flooding defense.

However, these defenses share a common assumption and

limitation—the efficacy of the feedback loop itself. After the

controller samples, recomputes, and reinstalls defense deci-

sions to the switches, the decisions must remain effective for

a sufficiently long period of time. If the adversary rapidly

changes her attack strategies, e.g., traffic types or target links,

then the controller decisions would constantly lag behind.

Such dynamic adversaries can force the defense apps to al-

ways act on stale data, which would in turn result in subopti-

mal defenses or even additional harm. These TOCTOU-style

strategies have been proven effective and are known as rolling

attacks [40]. Developing effective defenses against adaptive

adversaries remains an open research question.

In this paper, we propose Ripple, a programmable and

decentralized link-flooding defense against adaptive adver-

saries. Like OpenFlow-based SDN defenses, Ripple can be

programmed to implement a wide range of defenses; however,

the defenses can shapeshift on its own without centralized

software control. This makes Ripple a powerful match against

dynamic attacks. In fact, Ripple can activate new defenses as

fast as attack waves propagate. Defense decisions only take

RTT-timescale—the diameter of the network—to take effect.

This enables successions of defense waves to replace older

ones as the attacks change. The technology enabler for Ripple

is the emergence of programmable switches [18, 19], which

Ripple leverages to develop new defense primitives in switch

hardware. However, raw hardware speeds are only a starting

point; there is a range of challenges in the Ripple defense.

The key challenge Ripple needs to address is decentral-

ization; the same factor that enables rapid attack responses

also brings new design challenges. In traditional SDN, the

software controller has a centralized view, so it has a global

vantage point to enforce network-wide defense. Ripple, how-

ever, eliminates central control, so it needs to choreograph

the switch-local decisions carefully for synchronized defense.

To this end, Ripple develops a policy language, a compiler,

and a distributed runtime for link-flooding defense. The Rip-

ple language exports a key abstraction that we call a defense

panorama, whose goal is to precisely extract network-wide

threat signals from high-speed traffic. Users of Ripple pro-

gram against this panoramic view, and the compiler generates

switch programs that implement the panoramic defense in a

fully distributed manner. Attack signals are first extracted by

switch-local primitives, and then propagated by the distributed

runtime protocol for view synchronization.

In summary, we make the following contributions:

• A decentralized defense architecture for mitigating adap-

tive link-flooding attacks.

• The Ripple system, which develops defense primitives in

programmable switch hardware. It can be programmed

by a policy language to emulate state-of-the-art SDN

defenses. The compiler generates switch programs to im-

plement the policy. The defense programs run in a fully

distributed manner to react to changing attacks with-

out central control. The runtime protocol synchronizes

switch-local views for panoramic defense.

• Hardware and software prototypes1, and extensive eval-

uation that demonstrates defense effectiveness.

We then describe related work and conclude the paper.

2 Overview

Figure 1 illustrates the key mechanisms of link-flooding at-

tacks [39, 40, 53]. The adversary controls a large botnet, and

she constructs a link map using traceroute-like utilities. Next,

she identifies a set of critical links that carry all or most of the

victim destination’s traffic. She creates congestion at some or

all of the critical links using her botnet to degrade the victim’s

network performance.

2.1 Key challenges

Diversity. The first challenge in link-flooding attacks is the

wide range of possible attack strategies [4, 28, 39, 40, 43, 53,

55, 61]. We describe three representative attacks and their ad-

versary assumptions [39,40,53]. In all cases, the attack traffic

always originates from the bots controlled by the adversary,

but traffic types and patterns vary: (a) Coremelt [53] uses

1https://github.com/jiarong0907/Ripple

bots

users public/decoy

servers

victim

network

target

links

normal traffic malicious traffic

Figure 1: Link-flooding attacks congest network links to dis-

connect a target victim edge.

bot-to-bot traffic patterns, and the attack flows are volumet-

ric in nature (i.e., UDP or spoofed TCP traffic). (b) Cross-

fire [40] generates traffic from bots to public servers that

are not controlled by the adversary; the attack traffic con-

sists of normal web requests, which are typically low-rate and

regulated by TCP congestion control. Since these flows are

protocol-conforming TCP requests, the attack traffic is “indis-

tinguishable” [40] from flash crowds. (c) SPIFFY [39] falls

somewhere between (a) and (b). It assumes a “cost-sensitive”

adversary [39] that generates as much traffic as possible from

each bot—for instance, because the attacker wants to maxi-

mize the utility of a moderate-sized botnet. The individual

attack flows are TCP-conforming instead of volumetric floods.

Takeaway: Although all these attacks aim to congest net-

work links, they require different detection, classification, and

mitigation algorithms. This calls for a programmable defense

that can be customized to mitigate a host of different attacks.

Dynamicity. Another formidable feature of link-flooding at-

tacks is dynamicity. The feasibility of rolling attacks was first

identified and validated by Crossfire [40], but it remains an

open question to this day. (a) Changing targets: An adversary

can dynamically shifts its attack traffic to a different set of

critical links while attacking the same victim destination. The

attack can therefore evade non-adaptive defenses and persist

for a long time [40]. (b) Mix-vectored attacks: The adversary

can easily change the attack traffic and patterns, or use mix-

vectored attacks—related to the diversity of attack strategies

discussed above. (c) Pulsewave attacks: The adversary can

generate short-lived attack pulses, which may have already

subsided by the time that defense algorithms are activated [2].

Recent results have also shown that pulses can be synchro-

nized to arrive at the same location very precisely [49].

Takeaway: Link-flooding attacks can rapidly change. De-

fenses against adaptive adversaries must explicitly account

for such dynamicity. This is a key design goal of Ripple.

2.2 State of the art

State-of-the-art defenses developed in the security community

are based on OpenFlow SDN [4,28,39,43,55,61]. At the heart

of SDN-based defenses is a central controller that can host a

range of “defense apps”. These apps receive traffic samples

or statistics from the OpenFlow switches, perform detection

and classification, and installs new mitigation decisions back

to the switches. The operator can customize each step using

attack-specific algorithms.

Detection can be achieved by collecting link utilization data

from all switches to the SDN controller, either periodically or

when certain links are overwhelmed. The SDN apps have a

global view of the network by virtue of running in the central

controller. This provides a useful vantage point to collect

network-wide traffic statistics and detect which parts of the

network are congested.

Classification algorithms implement attack-specific logic

for identifying malicious traffic—e.g., volumetric flows in

Coremelt [53], or cost-sensitive flows in SPIFFY [39]. At-

tempts to classify Crossfire-like attacks must be aware of false

positives and negatives that may result, as the attack flows are

indistinguishable from flash crowds [40].

Mitigation algorithms include dropping malicious packets

if attack traffic has distinguishable features [53], or more con-

servative strategies that reroute traffic away from congested

links—e.g., for “indistinguishable” attack flows where classi-

fiers inevitably produce inaccuracy [40].

Compared to traditional networks, SDN-based solutions

enable programmable defenses that can be customized for

different types of link-flooding attacks.

2.3 Limitations of existing work

However, SDN-based defenses also have notable limitations,

and they stem from the fact that a feedback loop is required

for the defense.

Rolling attacks [40] remain a prominent open question

in link-flooding defense. An adaptive adversary can rapidly

change her attack strategies to prevent an effective feedback

loop from forming—e.g., by dynamically changing victim

links, attack traffic types, patterns, or by using short-lived

pulses. SDN apps are forced to always use an outdated view

of the attack. Concretely, the defense lags behind due to three

latency components: a) sampling latency from OpenFlow

switches to the controller, b) computing new responses in

the SDN apps using traffic engineering algorithms [34, 36],

and c) installing the decisions back to the network. When

defense decisions are installed back to the switches, the attack

strategies may have already changed. Moreover, detection

algorithms that desire higher accuracy may require higher

sampling rates for fine-grained analysis; but this in the case

of rolling attacks may further increase defense latency.

2.4 A programmable, decentralized defense

The key contribution of Ripple is to address the limitations of

existing work in mitigating changing attacks. The design of

Ripple involves a number of techniques.

#1: Programmable data planes. Ripple leverages an emerg-

ing technology trend in the networking community. Pro-

grammable switches have reconfigurable data planes, which

can be programmed in P4 [12] for flexible packet process-

ing. A P4 program can customize the switch pipeline with

new protocols, header types, and sophisticated processing

logic. Ripple develops defense primitives that directly run

in programmable switch hardware. Unlike SDN apps that

can only process downsampled traffic or aggregate statistics,

programmable switches can inspect every single packet with

nanoseconds of extra latency at full linespeed.

#2: Decentralized defense. Raw hardware speed, by itself,

is far from sufficient for mitigating adaptive attacks. This

is because a link-flooding defense requires a network-wide

view—the detection, classification, and mitigation policies

need to precisely identify the locations and types of attack

waves, which propagate across switches and change over time.

If every switch simply takes actions based on its local view,

the collective effect may be incoherent or even chaotic. Ripple

addresses this by developing a policy language to precisely

capture a defense panorama—a global, real-time view of

attack waves and how they propagate through the network.

Users of Ripple program against this panoramic view with-

out having to reason about switch-local actions; rather, our

compiler automatically generates the defense programs at ev-

ery switch. To match the dynamicity of adaptive adversaries,

Ripple constructs this panoramic view in a fully decentralized

manner, using a distributed protocol to synchronize switch-

local views. This enables successive defense waves to take

effect against fast-changing attacks as they propagate.

3 Programming the Panoramic Defense

The first set of challenges in Ripple stems from the need for

programmable defense. In OpenFlow-based SDN, the defense

apps are simply software modules that can be plugged into

the SDN controller platform—e.g., OpenDaylight [16]/Bea-

con [14] supports Java apps, POX [15] supports Python apps,

and NOX [13] supports C++. However, the P4 programming

model is highly restricted; it does not support familiar pro-

gram constructs such as loops or recursions. The program also

needs to fit in tight hardware resource constraints. Therefore,

defenses mostly have to work with compact, array-like data

structures. Moreover, a P4 program only specifies per-switch

processing, but Ripple needs a panoramic view of the entire

network. This leads to design challenges for a) providing a

panoramic view of the network, b) emulating state-of-the-

art SDN defenses in a restricted programming model, and c)

shielding switch programming details from the defense.

3.1 The panoramic view

Ripple proposes a new abstraction, the defense panorama,

which describes the types of signals that are relevant for link-

• Crossfire flows

• 4Kbps per flow

• 1000 flows / sec

Panorama:

Figure 2: Ripple provides a defense panorama for network

operators to program defense policies easily.

flooding defense. A panorama extracts network-wide threat

signals from switch-local traffic using the defense policy, and

it abstracts away unrelated signals so that they do not clutter

the defense view. More concretely, Ripple captures a series

of panoramic snapshots of the entire network, and precisely

zooms in on the attack signals. These snapshots present a

global view of attack waves, including their current location,

traffic composition, trajectory through the network, and how

they evolve over time. Under the hood, the defense policy is

compiled to a distributed set of P4 programs by the Ripple

compiler. Users of Ripple only need to program against the

panoramic view, without having to directly reason about P4-

level switch programs.

Ripple takes inspiration from recent work on network

telemetry [30, 48] that customizes Spark-style functional op-

erators [60] for traffic measurements and monitoring. Table 1

shows the key primitives in Ripple, which are customized to

support detection, classification, and mitigation algorithms

for link-flooding defense. The input to a Ripple policy is (log-

ically) every single packet in the network and its trajectory

over time. The Ripple operators record and transform the

packet headers at every switch locally, filtering out attack-

unrelated signals. Link-flooding attack signals, on the other

hand, are promoted from a switch-local view to be globally

visible. They are materialized as a set of panoramic variables

by a distributed runtime protocol. From Ripple’s perspective,

a packet has physical headers such as TCP/IP, but it has ad-

ditional “virtual” headers such as timestamps, link locations,

or any attack signals as defined by the policy. A parameter

w specifies the frequency at which the panoramic snapshot

should be taken. Each snapshot is captured by executing the

policy body, which consists of a series of functional operators.

In the following subsections, we showcase the expressive-

ness of Ripple by first emulating a range of SDN-based de-

fenses in recent work and then developing new defenses.

3.2 The Crossfire defense

We start by describing how Ripple supports the Crossfire

defense using the panoramic view.

Detection. The detection policy looks for significant con-

gestion (>80% link utilization) anywhere in the network, and

it populates the panoramic variable ‘victimLks’ every 100 ms:

Primitive Description

panorama(w) The panorama abstraction (w: time window)

map(key, vh, f) Apply f to key, and emit virtual header vh

reduce(key, vh, agg) Aggregate by key and emit virtual header vh

filter(p) Apply predicate p to the packet

distinct(key) Emit unique headers as defined by key

when(pred, f) If pred is true, apply f

zip(key, l1, l2) Join two lists l1 and l2 by key

Table 1: The key language constructs in Ripple.

1 victimLks = panorama(100ms)

2 .map(link , ld, f_load)

3 .filter(ld > 80)

Line 2 maps the virtual header field ‘link’, which indicates

the location of the packet, into its current link load ‘ld’. By de-

fault, header fields that are not referred to by the policy, such

as TCP/IP headers in this policy, are left untouched. Here,

the link load computation uses an intrinsic function ‘f_load’,

which will be expanded by the compiler; internally, it com-

putes an Exponentially Weighted Moving Average (EWMA)

of the traffic rate at ‘link’. Line 3 checks the newly generated

virtual header ‘ld’ against a threshold. A packet’s headers

(virtual and physical) are kept strictly local unless ‘ld’ passes

the filter, in which case they are populated as panoramic vari-

ables and can be accessed by all switches via the ‘victimLks’

variable. In fact, the Ripple compiler later will see that only

the size of ‘victimLks’ is needed, so it only propagates data

needed for computing the set size; all other header fields are

abstracted away from the panorama.

Classification. The Crossfire flows [40] are low-rate HTTP

requests. One could identify such flows for special treatment

(e.g., rerouting these flows), as long as we are aware that

Crossfire classifiers may result in false positives/negatives:

1 suspicious = panorama(100ms)

2 .filter(victimLks.sz > 3)

3 .reduce([sip,dip,sport ,dport], flowsz , f_sum(sz))

4 .filter(flowsz < 1KB)

5 .distinct([sip,dip,sport ,dport])

6 .map([sip,dip,sport ,dport], one, f_id)

7 .reduce([sip, dip], cnt, f_sum(one))

8 .filter(cnt > 1000)

At a high level, line 2 specifies that classification will be

triggered if there is significant congestion (more than three

congested links). Further, lines 3-4 select low-rate flows; lines

5-7 counts the number of distinct flows for each source and

destination IP address pair. Line 8 selects IP address pairs

with more than 1000 such flows, and populates the selected

headers to a panoramic variable ‘suspicious’. Notice that,

‘victimLks’ in line 2 is defined in the detection policy, but it

is panoramic thus accessible by any switch in the network.

Lines 3 and 7 use ‘reduce’ to aggregate packet headers per-

flow and per-IP pair, respectively; the aggregation function

‘f_sum’ aggregates packet sizes into flow sizes at line 3, and it

counts the number of distinct flows at line 7 after the ‘distinct’

operator. The ‘map’ operator at line 6 invokes ‘f_id’, which

produces a virtual header that always evaluates to 1, a constant.

The compiler will later recognize that only ‘sip’ and ‘dip’ are

needed for ‘suspicious’.

Mitigation. Since Crossfire flows are indistinguishable

from flash crowds, simply blocking the traffic will result in col-

lateral damage. Existing work has proposed to reroute flows to

less congested regions of the network for mitigation [43, 51]:

1 mitigation = panorama (100ms)

2 .when([sip , dip] in suspicious , fwd=f_reroute)

As before, ‘f_reroute’ is an intrinsic function. It forwards

packets to a switch’s least-utilized ports by setting the virtual

header ‘fwd’ to the outgoing port. The compiler will recognize

that ‘mitigation’ is never accessed by another policy, so it is

filtered from the panoramic view.

Summary. The mitigation policy can be easily modified to

invoke ‘f_drop’ as a more aggressive defense, if so desired.

The detection policy can also be parameterized to use differ-

ent thresholds, as can the classification policy for different

numbers of congested links or different types of attack flows.

Users operate at a higher level of abstraction, and our com-

piler automatically ensures that the panoramic view will be

implemented in the switch programs.

3.3 The Coremelt defense

Next, we show how one can implement a defense against vol-

umetric Coremelt attack flows. Assuming the same detection

policy as before, we can classify volumetric flows and drop

them.

Classification. Line 2 remains the same as before.

Line 3 aggregates the traffic volume for each source IP,

and line 4 selects the ones with high traffic volume:

1 suspicious = panorama(100ms)

2 .filter(victimLks.sz > 3)

3 .reduce([sip], flowsz , f_sum(sz))

4 .filter(flowsz > 100MB)

The mitigation policy will use the panoramic variable ‘suspi-

cious’, which is keyed on ‘sip’.

Mitigation. The operator could specify a more aggressive

defense against volumetric flows by dropping such packets:

1 mitigation = panorama(100ms)

2. when([sip] in suspicious , fwd=f_drop)

The mitigation policy highly resembles that in Crossfire, ex-

cept that suspicious traffic will be dropped.

3.4 The SPIFFY defense

SPIFFY [39] proposes a more advanced classification algo-

rithm to identify cost-sensitive attackers—i.e., adversaries

that generate protocol-conforming traffic from their bots at

their highest possible rates. The key mechanism of SPIFFY

classification is a rate change test, which reroutes traffic to

less congested regions and checks whether the aggregate

throughput for a source IP address increases or not. Nor-

mal TCP flows typically will ramp up, because they were

originally bottlenecked at the network link. In contrast, attack

flows will have stable rates as each bot has already been uti-

lized to the full. SPIFFY identifies IP addresses with stable

rates after rerouting, and drops their traffic. We can spec-

ify this rerouting based classification in Ripple as follows.

‘flowsz1’ and ‘flowsz2’ policies compute the traffic rate of

each source IP address before and after rerouting, respec-

tively. The ‘rerouteip’ policy reroutes traffic once the attack is

detected, and records the source IP addresses that have experi-

enced rerouting. The ‘suspicious’ policy implements the rate

change test for classification. The ‘drop’ policy implements

the defense.

1 flowsz1 = panorama(100ms)

2 .when(rerouteip.isempty)

3 .reduce([sip], flowsz1 , f_sum(sz))

4 flowsz2 = panorama(100ms)

5 .when(!rerouteip.isempty)

6 .reduce([sip], flowsz2 , f_sum(sz))

7 rerouteip = panorama(100ms)

8 .when(victimLks.sz>3, fwd=f_reroute)

9 .distinct([sip])

10 suspicious = panorama(100ms)

11 .filter(!rerouteip.isempty)

12 .zip([sip], flowsz1 , flowsz2)

13 .filter(flowsz2 -flowsz1 < 100KB)

14 drop = panorama(100ms)

15 .when([sip] in suspicious , fwd=f_drop)

The functional operator ‘zip’ performs a join between two sets

of tuples. A zip join between (ka,a) and (kb,b) will produce

(k,a,b) if ka = kb = k; otherwise, the result is empty. Line

12 above performs a join between ‘flowsz1’ with ‘flowsz2’.

Ripple also supports self-joins that join a panoramic variable

with its previous snapshot in the last time window: ‘zip([sip],

flowsz)’ would join the flow sizes in two consecutive time

windows. Similarly, this can also be extended to support joins

across multiple windows, using a similar syntax: ‘.zip([sip],

flowsz, t)’ would zip join the flow sizes in t adjacent windows.

Line 13 takes in the list of (sip, f lowsz1, f lowsz2) tuples, and

selects those with negligible rate differences.

3.5 New defense policies

So far, we have shown how Ripple can support several

state-of-the-art defenses that are developed in the context of

OpenFlow-based SDN. Next, we present a few new policies

that can be supported in Ripple.

P1: Blocking pulsewaves. The following policy identi-

fies flows that generate high-rate, short-lived pulsewaves

to the victim. It relies on detecting significant rate dif-

ferences across time windows, and uses 10ms for cap-

turing the panorama. It can be further extended to mon-

itor t consecutive windows at line 3, and by counting

the number of pulses across these windows after line 4.

1 pulsewaves = panorama(10ms)

2 .reduce([sip, dip], flowsz , f_sum(sz))

3 .zip([sip, dip], flowsz , flowsz)

4 .filter(flowsz1/flowsz2 < 1/16)

P2: Victim detection. The next policy distinguishes normal

congestion from link-flooding attacks by examining whether

congestion affects all IP ranges roughly evenly, or if there

are victim IPs that experience significantly higher packet loss.

Traffic to victim IP ranges will be rerouted to least congested

links for special protection:

1 inflowsz = panorama(100ms)

2 .filter(link==0 || link==1)

3 .reduce([dip], inflowsz , f_sum(sz))

4 egflowsz = panorama(100ms)

5 .filter(link==2 || link==3)

6 .reduce([dip], egflowsz , f_sum(sz))

7 victim = panorama(100ms)

8 .zip([dip], inflowsz , egflowsz)

9 .filter(egflowsz/inflowsz < 0.5)

10 mitigation = panorama (100ms)

11 .when([dip] in victim , fwd=f_reroute)

Assuming links 0-1 are the network ingress and links 2-3

are the egress, the ‘inflowsz’ and ‘egflowsz’ policies mea-

sure the incoming and outgoing traffic volume for each IP

address, respectively. The ‘victim’ policy performs a zip join

on ‘inflowsz’ and ‘egflowsz’, and identifies IP addresses that

experience 50%+ loss rate. The ‘mitigation’ policy reroutes

such traffic.

P3: Protecting key networks. The operator could further

customize the ‘victim’ policy above to specifically protect

key customers as a value-add service:

7 keyflows = panorama(100ms)

8 .zip([dip], inflowsz , egflowsz)

9 .filter(egflowsz/inflowsz < 0.5)

10 .filter([dip] in 1.2.0.0/16)

P4: Multi-vectored attacks. Multiple defense policies can

co-exist in Ripple:

1 coremelt_sip = panorama(100ms)

.. //omitted for brevity

2 xfire_flow = panorama(100ms)

.. //omitted for brevity

3 mitigation = panorama(100ms)

4 .when([sip] in coremelt_sip , fwd=f_drop)

5 .when([sip, dip] in xfire_flow , fwd=f_reroute)

Summary. Users of Ripple can easily customize the

panoramic view needed for defense, without having to reason

about how the view will be captured locally at each switch

or reconstructed globally. Rather, the Ripple compiler au-

tomatically infers the required header fields for populating

panoramic variables. At runtime, the protocol only synchro-

nizes the data required by the defense across the network.

4 Decentralized Panorama Construction

Next, we describe how the Ripple compiler generates switch

programs to enforce the defense policies in a fully decentral-

ized manner. The compiler analyzes the policy to generate

switch-local defense programs in P4, and it augments these

programs with a runtime protocol that synchronizes switch-

local views and constructs the network-wide panorama.

4.1 Programmable switch primitives

Ripple compiles switch-local defense programs leveraging the

following hardware primitives. The Ripple switch programs

can process every single packet without downsampling.

Stateful registers. A programmable switch has several

megabytes of SRAM, and a P4 program can allocate register

arrays from stateful memory. The registers can be indexed,

read from, and written to on a per-packet basis.

ALUs and hash units. Programmable switches have Arith-

metic Logic Units (ALUs) that can operate on packet headers

and register data. P4 programs can perform arithmetic and

bitwise operations, as well as CRC hash and checksum func-

tions at Tbps linespeed. Ripple uses these building blocks to

compute defense decisions locally at every switch.

Ripple generates the runtime synchronization protocol using

the following hardware features. The synchronization proto-

col runs between the programmable switches to construct the

panoramic view.

Programmable parsers. P4 programs can define new header

and protocol types using programmable switch parsers and

deparsers. New protocols are fully compatible with TCP/IP

traffic, as a P4 switch recognizes each protocol type when

parsing packet headers, and activate different processings as

needed.

Traffic generator. Programmable switches have hardware-

based traffic generators that can serve as an out-of-band traffic

source. The generators can further be configured to send

packets of customized formats at prescribed rates. Ripple

uses this for generating synchronization protocol messages.

4.2 Panoramic data structures

All panoramic variables are backed by a uniform represen-

tation: key/value stores (KVS). Switch-local programs can

access any panoramic variable as if it is locally present using

KVS-based APIs. Concretely, a panoramic variable pv can

be indexed by a key k: pv(k) returns a value v associated

with that key, or nil if k does not exist. The KVS size can be

obtained by pv.sz, which returns the number of distinct keys

in the KVS. An API call pv.isempty will return a binary value

indicating whether or not the KVS size is zero. In the policy

language, the panoramic variables are accessed in a declar-

ative though equivalent form—e.g., k in pv is equivalent to

pv(k). The key k to the pv is a vector of packet headers. In

fact, a policy may potentially reference pv using any header

field; so by default, k contains all physical headers and virtual

headers that are defined by the policy as relevant to the attack.

However, under the hood, not all headers will be materialized

in pv—the Ripple compiler chooses the best implementation

for each variable, depending on its size, access methods, and

the packet headers referenced.

Inferring access keys. Although policy programs can

freely access any virtual/physical header in a pv, in practice

most headers may not be relevant to the policy. Therefore, the

Ripple compiler optimizes away unreferenced header fields

and only preserves the access keys. For instance, most de-

tection policies produce a pv called ‘victimLks’, which in

principle contains all packet headers on congested links; how-

ever, the compiler will detect that only link IDs (a virtual

header) are accessed elsewhere in the policies, so the result-

ing pv is only keyed on link ID. This minimizes the amount

of data that needs to be synchronized, and also guides the

compiler to infer how large the KVS may be.

Inferring sizes. The Ripple compiler infers the size of the

panoramic KVS by checking which packet headers are used

as access keys. The key range (e.g., link IDs vs. source IPs)

will determine the upperbound of a KVS size, and Ripple uses

this as optimization hints to choose the best implementation.

In its simplest form, a KVS is backed by a register array,

which is natively supported by programmable switches. Here,

the KVS size grows linearly with the number of keys, but

it maintains exact information for each key. If larger KVS

sizes are needed, Ripple will dynamically choose between

a count-min sketches (CMS) [23] or bloom filters (BF) [17],

which are approximate data structures that trade off accuracy

for space efficiency. These data structures support count and

membership queries, respectively, but their sizes do not in-

crease with key insertions. Rather, they use constant memory

and may produce overcounting (in CMS) or false positives (in

BF). Nevertheless, the accuracy/efficiency tradeoff provides

strong theoretical guarantees and has been proven effective

for network monitoring tasks [23]. The Ripple compiler uses

them to back pv’s with arbitrary key counts. It further chooses

an implementation based on the access methods.

Inferring access methods. The Ripple compiler checks

how a panoramic variable pv is accessed by the policies. (a)

If pv is never accessed in any policy body—e.g., ‘mitiga-

tion’ in most of the policies is not further accessed by other

policies—no panoramic KVS will be instantiated by the com-

piler. (b) If pv is only accessed by .isempty, the compiler

only maintains a binary value using a single register. (c) If

pv is further accessed by .sz, Ripple maintains the distinct

keys and key counts but it abstracts away the values using the

BF implementation. (d) If pv(k) is invoked in a policy, then

depending on whether pv(k) is used as a binary check or for

arithmetic computation, Ripple uses a BF or CMS:

register array 0

register array k

…

crc0

crck

…

hdr min/andinput output

For both BF and CMS, the input key is a set of packet headers.

The headers are hashed using k CRC functions to produce an

index to each register array. CMS arrays contain counts, and

an insertion will increment k elements, one in each array. BF

arrays have binary entries, and an insertion will set k elements

to one. The same headers are used for querying the KVS, and

the same k indexed will be computed by the hash units. The

CMS will return the minimum of all k counts as the estimated

count, and the BF will return the logical AND of the queried

values (1: key exists, 0: key does not exist).

4.3 Extracting local panorama fragments

Next, we describe how the Ripple compiler generates P4 pro-

grams to extract switch-local threat signals. These fragments

will later be synchronized across the network to construct the

global panorama. The compiler analyzes each operator in the

policy sequentially, and generates P4 programs to examine

every single packet and filter out attack-unrelated signals.

map applies a function to input packet headers, and

generates one or more new headers. For instance,

‘map(sip,pref,f_pref24)’ takes the source IP of a packet, ap-

plies ‘f_pref24’ to identify the /24-prefix, and generates a

virtual header ‘pref’ for the output:

h
e

a
d

e
rs

_
in

sip

dip

lnk

struct metadata {

bit<24> pref;

}

if (hdr.sip.isValid()){

pref=sip&0xffffff00

} // control ingress

sz

…

sip

dip

lnk

sz

pref h
e

a
d

e
rs

_
o

u
t

In the input and output header stacks, italic variables (lnk,

pref) are virtual headers. We also show (much simplified) P4

program snippets for computing the IP prefix from source IP

and generating a new header.

filter checks header values against a predicate, and generates

a binary header f t that indicates whether or not the current

packet is relevant for the defense. The Ripple policy acts on

every single packet, so all packets have f t = T when they

enter the switch. Once a filter decides that the packet does not

require further consideration, it sets the virtual header to F :

h
e
a
d
e
rs
_
in

sip

spt

lnk

if (hdr.ft == true) {

if (hdr.spt != 80) {

hdr.ft = false

}

} /* if ft == false

skip defense logic */

sz

sip

spt

lnk

sz

ft h
e
a
d
e
rs
_
o
u
t

ft

The switch program always checks the f t header before any

defense processing. Packets that are filtered out will only

receive forwarding related processing.

when is a control flow operator used for branching behaviors.

All following statements after a ‘when’ (and before the next

‘when’) are only executed if the condition evaluates to true.

Consider ‘when(sport==80, foo)’ and ‘when(sport==22, bar)’:
h
e
a
d
e
rs
_
in

sip

spt

lnk

if(hdr.spt == 80){

hdr.br = 0

}elif(hdr.spt == 22){

hdr.br = 1

} //chooses branch

if(hdr.br == 0) foo()

elif(hdr.br == 1) bar()

sz

sip

spt

lnk

sz

br

h
e
a
d
e
rs
_
o
u
t

pref
br

pref

It sets a virtual header that indicates which branch is taken.

Later statements check against the branch header, and only

activate defense processing for that branch.

Virtual headers are carried on a special metadata bus in switch

hardware, and they have the same lifetime as a physical packet.

In other words, virtual headers will disappear after the packet

leaves the switch, unless the policy uses one of the following

operators to track cross-packet state:

reduce takes in a set of headers as the key, and aggregate

all packets with the same key using the reduce function. In

addition to producing a virtual header as output, it also stores

the current aggregation result into a count-min sketch to per-

sist the state. For instance, ‘reduce(sip,tot,f_sum(sz))’ groups

packets by their source IP addresses, aggregates packet sizes,

and computes the total volume per source IP:

h
e

a
d

e
rs

_
in

sip

spt

lnk

key = hdr.sip

cur = hdr.sz

cmsketch(key) += cur

hdr.tot = cmsketch(key) sz

sip

spt

lnk

sz

tot h
e

a
d

e
rs

_
o

u
t

… Per-IP traffic volume

count-min sketch

The aggregation runs throughout the current time window,

and resets when a new panoramic snapshot begins. The same

time window applies to ‘distinct’ and ‘zip’ below.

distinct avoids double-counting of the same key by first

checking if the program has already recorded it in a bloom

filter. It sets a virtual header to indicate whether the current

packet carries the first distinct key in the same time window.

Every unique key triggers an insertion to the bloom filter.

Consider ‘distinct(sport)’:

h
e

a
d

e
rs

_
in

sip

spt

lnk

key = hdr.sport

if (bfilter(key)== 0) {

hdr.dis = 1

bfilter(key) = 1

}

sz

sip

spt

lnk

sz

dis h
e

a
d

e
rs

_
o

u
t

… Per-IP bloom filter

zip performs a join between two sets of headers using a com-

mon key. Internally, the compiler generates two sketches (or

bloom filters), and a packet triggers two queries, one to each

sketch. Consider ‘zip(sip,tot,cnt)’, which produces a total traf-

fic volume and a packet count for each source IP:

h
e

a
d

e
rs

_
in

sip key = hdr.sip

hdr.tot = cms_tot(key)

hdr.cnt = cms_cnt(key)

sip
tot

cnt

h
e

a
d

e
rs

_
o

u
t

sketch: tot

…

sketch: cnt

A self-join on a header field can be performed across two or

more adjacent time windows, and the compiler generates one

sketch for each window. A join that acts on t windows will

generate t sketches overall.

Summary. Applying the sequence of operators to each packet

will result in a set of relevant packet headers that are needed

for the defense. Logically, all selected packets’ headers are

accessible in the policy return value—i.e., the panoramic

variable; however, as discussed, the compiler performs opti-

mizations to abstract away most physical and virtual headers.

4.4 Constructing the panorama

So far, we have described how the Ripple compiler identifies

relevant attack signals and extracts them from switch-local

traffic. The Ripple compiler also augments each switch pro-

gram, so that they run a distributed protocol for view synchro-

nization. Local fragments will be carried by this synchroniza-

tion protocol to all switches, and switches will construct a

global view based on the panorama definition. The runtime

protocol executed once per time window.

Goal: At the beginning of each time window, each switch has

extracted a fragment of the panorama pv from the traffic in

the past period based on the policy program. Therefore, pv is

initially distributed across all switches and sharded by switch

IDs: pv[s1], pv[s2], · · · , pv[sk], where si is a switch identifier.

Implementing the panoramic view, therefore, requires Ripple

to merge all switch-local fragments pv[si], i ∈ [1..k]. The goal

of the Ripple protocol is to merge these fragments in a fully

distributed manner.

Querying pv. In OpenFlow-based SDN, the controller can

naturally serve as a vantage point to query switch data, per-

form the merge, and install the aggregates back; however, this

would create a centralized component. Instead, we borrow

recent proposals that query and synchronize switch state en-

tirely in the data plane [45, 56]. At a high level, Ripple uses

the packet generator to generate a stream of packets, whose

destination IP addresses are the intended receiver switches.

The switch program attaches the register values to the packets

as customized header fields, and sweeps through all registers

that need to be synchronized. Figure 3(a) illustrates the packet

format for synchronizing pv.

Disseminating pv. The programmable switches disseminate

pv fragments by routing the packets through the network to

all switches. Ripple has 1) a spanning tree mode, and 2) a

multicast mode, as shown in Figure 3.

In mode 1), the switches run a spanning tree protocol to

identify a root switch, and all other switches use this root as a

rendezvous point. Across different rounds, different switches

can act as the root. Each switch sends its pv fragment along

edges of this tree to the root. The root merges all fragments

and distributes the panoramic view back to the switches. Com-

pared to the multicast mode, this saves traffic overhead, since

each pv fragment is only propagated in the network once. It

takes roughly one round-trip time (RTT) for each synchroniza-

tion round. In mode 2), the switches multicast the pv packets

S1 S2

S3

S4 S5

①
①

② ②

②

②

③

③

80

4060

50

50

60

S0

S1 S2

S3

S4 S5

S0

Ether(0x800) IPv4(proto=251) field1, field2, …, fieldn

(a) Customized headers for synchronization packets

(c) Multicast mode(b) Spanning tree mode

40

50

Root

Download

Upload

Figure 3: The packet format for synchronizing panoramic

views and the two modes of the Ripple protocol.

to all neighbors, and every switch will receive all fragments

from all other switches. This incurs higher traffic overhead,

since each fragment is multicast to multiple neighbors. How-

ever, synchronization finishes within 0.5×RTT time.

By default, Ripple uses mode 1) to synchronize most types

of pv in favor of traffic savings. The only exception is for

implementing the rerouting-based defense, in which case it fa-

vors response time and uses mode 2) to compute least-utilized

paths (i.e., in the f_reroute function). This essentially imple-

ments a distance-vector protocol that discovers best paths

using probes [35, 42]. Probes are generated from each egress

switch, and they are tagged with switch identifiers. The probes

identify best paths in the current network to each destination

switch. Data packets are forwarded from the ingress switches

to the egress switches along the current best paths. A new

round of probes may update the routing decisions across the

network. Figure 3(b) shows an example where links are asso-

ciated with costs (utilization), and probes propagate link costs

across the network to identify least-utilized paths.

Merging pv. When a switch receives a pv fragment, it merges

it with its local copy by simply adding up all the register values

(for CMS) or preforming an OR (for BF) at the same indexes.

Because of the linearity of these data structures, they can be

easily combined by this merge [22]. When a switch receives

all fragments, pv becomes panoramic.

5 Security Considerations

Next, we discuss potential ways that an attacker might disrupt

the Ripple defense, and outline self-defense techniques. As

discussed in Section 2, link-flooding adversaries are typically

at the Internet edge, so in addition to launching link-flooding

attacks, these adversaries can also inject crafted packets to

manipulate Ripple. Attackers that can actively compromised

network switches, eavesdrop, or modify existing traffic are

outside the threat model.

Disrupting the synchronization protocol. The synchroniza-

tion protocol in Ripple propagates panoramic variables across

the network. If an attacker can disrupt this protocol—e.g., by

creating congestion in the network to drop synchronization

packets in a targeted manner, then this would prevent the Rip-

ple switches from constructing a panoramic view. However,

precisely disrupting the Ripple protocol is not easy, since the

synchronization schedule is unknown to the attacker. There-

fore, such an adversary can at best resort to congesting edges

of the spanning tree to delay or prevent view synchronization.

As a possible defense, Ripple could use the multicast mode

for synchronization when the panoramic view cannot be con-

structed for multiple time windows. Since the multicast traffic

does not follow spanning tree edges, the attacker can only

disconnect the network by taking down a much larger portion

of network links, which is inherently difficult. As another al-

ternative, Ripple could dynamically rebuild spanning trees by

changing the root switches, so that the attacker cannot predict

which links are part of the spanning tree.

Spoofing synchronization packets. A strong adversary that

has knowledge of synchronization packets could potentially

inject spoofed packets into the network to “poison” the switch

views. A classic defense is to use cryptography, where a

message carried a MAC (Message Authentication Code) for

source authentication; the MAC could also include times-

tamps or sequence numbers to prevent replay attacks. How-

ever, as a practical challenge, today’s P4 programming model

does not support cryptographic operations natively. To solve

this, there are two possible approaches. (a) Crypto modules

can be integrated to programmable data planes as “extern”

hardware modules and invoked by P4 programs [1]. (b) Re-

cent work has designed different cryptographic primitives

using P4 [31,32], including AES [21]; another related project

explicitly considers authenticating inter-switch communica-

tion in the data plane [56]. These techniques are all useful

building blocks for packet authentication.

6 Evaluation

We have evaluated Ripple in order to answer three research

questions: a) How well does the Ripple compiler work? b)

How much overhead do the Ripple defense programs incur? c)

How effective can Ripple defend against link-flooding attacks,

especially in the presence of adaptive adversaries?

6.1 Prototype and setup

Software and hardware prototypes. We have developed our

Ripple compiler in ∼ 6000 lines of code in C++. It currently

supports the bmv2 [11] switch backend, which is a widely used

software P4-16 switch model [25,27,35,42,45]. Our compiler

takes in a Ripple policy, a network topology, and emits a P4

program for each switch. We have also developed a hardware

prototype by converting one of the generated P4-16 programs

to P4-Tofino—a special P4 dialect for Intel/Barefoot Tofino

hardware switches—in 1600 line of P4 code.

Baseline defenses. To understand the benefits of Ripple, we

have evaluated it against three SDN-based defenses as base-

line systems. SDN-S and SDN-R are representative of classic

SDN setups: SDN-S samples traffic from OpenFlow switches

at a prespecified sampling rate to the controller; the controller

runs classification algorithms on the traffic sample, and in-

stalls OpenFlow rules to reroute suspicious traffic. SDN-R,

on the other hand, does not perform sampling or classifica-

tion; rather, it collects link load data from all switches, and

computes rerouting decisions for all flows at congested links.

In addition, we have created a third baseline SDN++ to give

SDN defenses an extra advantage—it enhances OpenFlow

switches with an extra module that can run classification al-

gorithms in the data plane without involving a controller. We

use SDN++ as a baseline to demonstrate the “upperbound” of

centralized defenses; in practice, such a module is only imple-

mentable in P4 switches. In all cases, the SDN controller uses

SOL [33], a state-of-the-art traffic engineering framework, for

traffic engineering and computing rerouting decisions.

Attacks. We use similar strategies as in Crossfire [40] for bot

distribution, flow density, and attack target links. Attackers

generate Crossfire, Coremelt, and SPIFFY flows in differ-

ent experimental setups. Normal users employ regular TCP

connections for file downloads. One of the main evaluation

metrics is the ability for a defense to mitigate attacks and

recover normal user throughput.

Experimental platforms. Most existing work on link-

flooding defense [39, 40, 53] use flow-level simulation, where

traffic patterns are simulated at a coarse, flow-level granular-

ity for scalable evaluation. We adopt the same strategy by

extending an existing flow-level simulator for Ripple [20]. In

addition, we have also evaluated Ripple in two other platforms

to understand the fine-grained behaviors that flow-level simu-

lators cannot capture. Concretely, we have used packet-level

simulation using a version of ns3 [8] that is integrated with

bmv2 support, which can faithfully simulate how P4 switches

process every single packet. Since fine-grained simulation

comes at the cost of higher simulation time, packet-level sim-

ulation is only feasible on smaller networks. Both packet- and

flow-level simulators run in a Ubuntu 18.04 server with six

Intel Xeon E5-2643 Quad-core 3.40 GHz CPUs and 128 GB

RAM. To demonstrate real hardware feasibility, we have also

used a Wedge 100BF hardware switch, whose bandwidth is

100Gbps per port and 1.6 Tbps in aggregate. We flash the

switch hardware with the manually converted P4-Tofino pro-

gram for this evaluation. In the following subsections, when

reporting a set of results we also clarify which platform(s) the

experiments have been conducted on.

6.2 Overhead

Our first set of experiments measures the overhead of Ripple

defense programs. Most of the results are obtained using the

P4-Tofino defense program on a real hardware switch.

Resources Detection Classification Mitigation Protocol All

Stages 6 6 3 6 12

VLIWs (%) 2.86 5.99 1.82 3.65 10.68

ALU (%) 18.75 29.17 10.42 14.58 43.75

Hash unit (%) 4.17 15.28 4.17 2.78 25.00

SRAM (%) 4.17 11.98 5.38 4.48 15.62

Table 2: Resource utilization on the Tofino hardware switch

(policy: Coremelt).

0

100

200

300

400

500

Fwd. Detect. Class. Mitig. Proto. All

L
a
te
n
c
y

Defense

(a) Latency (nanoseconds)

0

50

100

Fwd. Detect. Class. Mitig. Proto. All

P
e
r-
p
o
rt

 t
h
ro
u
g
h
p
u
t

Defense

(b) Throughput (Gbps)

Figure 4: Ripple incurs extra latency on the order of nanosec-

onds, and it achieves linespeed throughput.

 0

 0.5

 1

 1.5

 2

 2.5

50 100 150 200 250 300 350 400 450 500

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

M
u
lt
ic
a
s
t
(k
B
p
s
)

S
p
a
n
n
in
g
 t
re
e
 (
M
B
p
s
)

Synchronization period (ms)

Multicast mode
Spanning tree mode

Figure 5: Traffic overheads of Ripple’s distributed protocol at

different synchronization periods.

Hardware utilization. Table 2 shows the hardware re-

source utilization for each program component. As we can

see, the classification pipeline incurs the highest resource uti-

lization, because it is the most complex component of the

policy. Overall, the defense program uses 10.68% VLIWs

(Very Long Instruction Words) and 43.75% ALUs (Arith-

metic Logical Units) for header computation, 25% of the

CRC hash units, as well as 15.62% SRAM (Static RAM).

All these hardware resources are spread across 12 hardware

stages. We note that more recent switch models (e.g., Tofino

2) have higher resource provisions for all types of resources.

Another important takeaway is that the defense program is

implementable in today’s programmable switch hardware.

Latency. Next, we evaluate the extra latency incurred by

the Ripple defense, using a baseline switch program “Fwd”,

which is a minimal P4 program that only forwards traffic with-

out any other processing. As Figure 4(a) shows, the Ripple

defense program incurs 139 nanoseconds of latency compared

with the baseline. Interestingly, we found that the classifica-

tion component incurs the least latency overhead, and the

detection component incurs the most overhead. This is be-

cause the classification component is dominated by a set of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
D
F

 (
%
)

Hop count

Before rerouting
After rerouting

Figure 6: SDN-R reroutes all traffic, and normal user flows

experience an average path length increase of 31%.

register operations, which are parallelized by switch hard-

ware; on the other hand, the detection component involves

sequential processing. Overall, the extra latency is negligible,

as network RTTs are typically on the order of milliseconds in

the Internet core.

Throughput. Next, we evaluate the throughput of Ripple

using the on-switch hardware packet generator, which can gen-

erate full linespeed traffic (100Gbps per port). Our baseline

program is still “Fwd”. As Figure 4(b) shows, the through-

puts of Ripple and of the baseline are very close, at about

99.52 Gbps per port. This is because of the pipelined na-

ture of the switch hardware, which is designed to mask small

latency increases by massive parallelism.

The above results demonstrate that Ripple defenses are

practical on today’s hardware switches, and that they incur

relatively low overhead. Next, we turn to measure the traffic

overhead due to the Ripple distributed protocol using packet-

level simulation:

Traffic overhead. Figure 5 presents the results for different

synchronization periods for a single link. For both synchro-

nization modes (spanning tree vs. multicast), the overheads

are low enough to be practical. Concretely, the multicast mode

only propagates link utilization metrics, and it incurs 2.1 KBps

overhead at a period of 50 ms. The spanning tree mode prop-

agates all other metric types and generates more traffic: the

overhead is 1.4 MBps at 50 ms. More frequent synchroniza-

tion also leads to higher overhead. Overall, the overhead is

low since today’s network linkspeeds are 40-100Gbps.

6.3 The Ripple Compiler

Table 3 shows the number of lines of code that Ripple uses

to capture state-of-the-art policies. The policy programs are

much more concise than the generated P4 programs. Ripple

also works efficiently, generating switch programs within

one second in all cases. We have manually verified that the

programs can successfully mitigate Crossfire, Coremelt, and

SPIFFY attacks by deploying them to the ns3 simulator and

evaluating them against real attacks.

Policy LoC of policies LoC of P4 Compilation time

Crossfire 13 1509 68ms

Coremelt 9 924 37ms

SPIFFY 18 1516 69ms

Multi-vector 18 1910 85ms

Table 3: Ripple captures state-of-the-art defenses within 20

lines of code; the compiler works efficiently and generates P4

programs for each policy within one second. Multi-vector is

a combination of Crossfire and Coremelt.

Topo Name ANS CRL Bell Canada SurfNet UUNet

#switches 18 33 48 50 49

#links 25 38 65 68 84

Table 4: Topology setups used in large-scale simulation. All

topologies are from Topology Zoo [7].

6.4 Defense effectiveness

Next, we evaluate the effectiveness of the defenses on three

topologies with increasing sizes and traffic complexities. We

use the packet-level simulator for the small network; we use

flow-level simulator for medium and large networks because

fine-grained simulation does not scale to large setups. Table 4

shows the topology setups that we have used for evaluation.

Figures 7(a)-(i) present the defense effectiveness of all

tested systems, as measured by the throughput degradation the

attack causes over time. We normalize the aggregate through-

put of normal users over that before the attack, so a higher

percentage indicates a stronger defense, and 100% means a

full recovery. We also plot a “no defense” baseline that shows

the attack impact without deploying any defense. There are

four key takeaways: (1) Compared to SDN-R, which reroutes

all flows from the congested links, Ripple achieves a simi-

lar level of throughput recovery but it acts much faster. This

is because Ripple directly reroutes traffic in the data plane

without a central controller. As the network becomes larger,

the advantage of Ripple also becomes more prominent. (2)

SDN-S only samples and reroutes 1% flows, so it acts faster

than SDN-R; compared to SDN-S, Ripple recovers throughput

much more effectively. This is because the SDN controller

only sees heavily downsampled traffic. The defense decisions

cannot take action on the majority of malicious flows, as they

are not included in the samples. (3) SDN++ is the most pow-

erful SDN variant, and it can recover throughput with similar

effectiveness as SDN-R. It also responds faster, as classifi-

cation is done in the extra switch module and the controller

performs traffic engineering on reported suspicious flows. (4)

Overall, Ripple outperforms all three SDN baselines.

We quantify the effectiveness of a defense system by mea-

suring the attack impact on normal user throughput. For each

defense, we measure the throughput degradation ratio per unit

time, and compute the aggregate degradation until throughput

recovers to a stable state. This aggregate A denotes the attack

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(a) SDN-R (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(b) SDN-R (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-R

No defense

(c) SDN-R (large network, flow-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(d) SDN-S (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(e) SDN-S (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN-S

No defense

(f) SDN-S (large network, flow-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(g) SDN++ (small network, packet-level)

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(h) SDN++ (medium network, flow-level)

0

20

40

60

80

100

 0 10 20 30 40 50 60 70

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t
(%
)

Time (seconds)

Ripple
SDN++

No defense

(i) SDN++ (large network, flow-level)

Figure 7: Ripple can mitigate attacks faster than all SDN baselines, and it recovers normal throughputs effectively. Small:

customized topology with 10 switches and 15 links; Medium: Bell Canada; Large: UUNet. Table 4 summarizes the topologies.

impact, and a larger A means that the attack is more effective.

We found that under the Ripple defense, we have A = 0.17 in

the worst-case scenario; this can be interpreted as “the attack

degrades the throughput for 17% for 1 second”. For SDN

baselines, on the other hand, we have A = 10, 30, and 15 for

SDN++, SDN-S, and SDN-R on average, respectively, which

are orders of magnitude larger. As another interesting finding,

SDN-R performs worse than SDN++ and SDN-S in terms of

protecting normal user flows. This is because the latter two

defenses use a classifier to identify and then only reroute po-

tentially suspicious flows; user flows still follow the original

routing. In contrast, SDN-R reroutes all flows, which leads to

higher hop counts and increased latency for user flows (Fig-

ure 6). This means that even an “best-effort” classifier is still

useful for increasing defense effectiveness. The modularity

of Ripple language allows the defense to incorporate such

defense optimizations very easily.

6.5 Mitigating rolling attacks

The next set of experiments are designed to evaluate how

well the defenses can handle adaptive adversaries. Before

evaluating rolling attacks, we start by performing a set of mi-

crobenchmarks on attack response time, which is defined as

the time for a defense to take effect after the attack begins. We

further use a wider range of of topologies (Figures 8(a)-(c))

and traffic complexities (Figures 8(d)-(e)). As the microbench-

mark shows, Ripple always produces the fastest response.

Faster response time is a key enabler for Ripple to mitigate

rolling attacks. We launch rolling attacks using Crossfire flows

in the largest topology, and compare Ripple with SDN++ as

the baseline defense. Concretely, the adversary dynamically

shifts the attack traffic to different links to evade mitigation.

Figures 9(a)-(c) present the normal user throughput under the

attack, and they further test different rolling attack strengths as

measured by the frequency for shifting attacks. As we can see,

Ripple can always detect the changing targets very quickly,

and recover the throughput soon afterwards using a suitable

defense strategy. However, for SDN++, the defense decisions

are always lagging behind. For fast-changing attacks, the

SDN defense experiences a constant throughput degradation

during the attack. This confirms the effectiveness of rolling

attacks for increasing attack persistence (as first identified

by Crossfire) [40]; it also shows that Ripple can effectively

mitigate rolling attacks and break such persistence.

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN-R

(a) Ripple vs. SDN-R

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN-S

(b) Ripple vs. SDN-S

10-3

10-2

10-1

100

101

102

ANS CRL Bell SurfNet UUNet

T
im
e
 (
m
s
)

Different topologies

Ripple
SDN++

(c) Ripple vs. SDN++

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN-R
Ripple

(d) Ripple vs. SDN-R

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN-S
Ripple

(e) Ripple vs. SDN-S

10-2

10-1

100

101

102

150 250 350 450 550 650 750

T
im
e
 (
s
)

Num. of traffc classes

SDN++
Ripple

(f) Ripple vs. SDN++

Figure 8: The attack response time of the defense systems with different topology sizes and traffic complexities as measured by

the number of traffic classes. A traffic class is a collection of flows that arrive at the same ingress and are routed by the network

in the same way to the same egress.

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(a) Rolling attacks (slow)

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(b) Rolling attacks (medium)

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

N
o
rm
a
liz
e
d
 t
h
ro
u
g
h
p
u
t

Time (seconds)

Ripple SDN++ No defense

(c) Rolling attacks (fast)

Figure 9: Ripple is effective against fast-changing rolling attacks. SDN baselines constantly lag behind.

7 Related Work

Link-flooding attacks. Existing work has demonstrated a

range of effective link-flooding attacks [39, 40, 53], and simi-

lar real-world incidents have been reported in the wild [3, 6].

State-of-the-art defenses are based on OpenFlow SDN, which

run defense algorithms as software SDN apps at a centralized

controller [39, 43, 51, 61]. Ripple is the first decentralized

defense based on programmable switches, and it achieves

similar programmability as existing SDN defenses while out-

performing them on fast-changing attacks.

Programmable switches. Programmable switches have

found use in network measurement [27, 30, 48, 52, 59], load

balancing [35, 42, 47], application-level acceleration [24, 37,

38, 44], and security [41, 57]. Recent work has also consid-

ered synchronizing or replicating switch states across the net-

work [45, 54, 56]. Ripple is inspired by these work, but uses

programmable switches to design a decentralized defense

against link-flooding attacks. A position paper has argued for

the advantage of programmable switches for link-flooding

defense, but it only outlines a design sketch [58].

8 Conclusion

In this paper, we have presented Ripple, a decentralized

defense against adaptive link-flooding attacks using pro-

grammable switches. Ripple has a policy language that speci-

fies a defense panorama, and its compiler can generate switch-

local programs in P4 that extract attack signals from network

traffic. Moreover, the Ripple runtime uses a distributed pro-

tocol to synchronize local views and construct a network-

wide panorama. Our evaluation shows that Ripple can be pro-

grammed for a range of defenses, and that it can outperform

SDN defenses significantly in mitigating adaptive adversaries.

9 Acknowledgments

We thank the anonymous reviewers for their valuable feed-

back. This work was partially supported by NSF grants CNS-

1942219 and CNS-1801884.

References

[1] Add crypto extern to behavioral-model. https://gith

ub.com/p4lang/behavioral-model/pull/834.

[2] Attackers Use DDoS Pulses to Pin Down Multiple Tar-

gets. https://www.imperva.com/blog/pulse-wav

e-ddos-pins-down-multiple-targets/.

[3] Can a DDoS break the Internet? Sure, just not all of it.

https://arstechnica.com/information-techno

logy/2013/04/can-a-ddos-break-the-internet

-sure-just-not-all-of-it/.

[4] Detecting and mitigating target link-flooding attacks

using SDN.

[5] Dyn analysis summary of Friday October 21 at-

tack. https://dyn.com/blog/dyn-analysis-summ

ary-of-friday-october-21-attack/.

[6] How extorted e-mail provider got back on-

line after crippling DDoS attack. https:

//arstechnica.com/information-technology

/2015/11/how-extorted-e-mail-provider-got-

back-online-after-crippling-ddos-attack/.

[7] The Internet Topology Zoo. http://www.topology-z

oo.org/.

[8] NS-3 simulator. https://www.nsnam.org/.

[9] Nsfocus identifies DDoS attack trends in new 2018

insights report. https://nsfocusglobal.com/nsfo

cus-identifies-ddos-attack-trends-new-2018

-insights-report/.

[10] OVH hosting hit by 1Tbps DDoS attack, the largest one

ever seen. https://securityaffairs.co/wordpre

ss/51640/cyber-crime/tbps-ddos-attack.html.

[11] P4 behavioral model. https://github.com/p4lang/

behavioral-model.

[12] The P4 language repositories. https://github.com

/p4lang.

[13] Nox. https://github.com/noxrepo/nox, 2012.

[14] Beacon. https://www.sdxcentral.com/projects/

beacon/, 2013.

[15] Pox. https://noxrepo.github.io/pox-doc/html

/, 2017.

[16] OpenDaylight. https://www.opendaylight.org/,

2018.

[17] Burton H. Bloom. Space/time trade-offs in hash coding

with allowable errors. In Communications of the ACM,

volume 13, 1970.

[18] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick

McKeown, Jennifer Rexford, Cole Schlesinger, Dan

Talayco, Amin Vahdat, George Varghese, and David

Walker. P4: Programming protocol-independent packet

processors. ACM SIGCOMM CCR, 44(3), 2014.

[19] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-

ese, Nick McKeown, Martin Izzard, Fernando Mujica,

and Mark Horowitz. Forwarding metamorphosis: Fast

programmable match-action processing in hardware for

SDN. ACM SIGCOMM CCR, 43(4):99–110, 2013.

[20] Kuan-yin Chen, Anudeep Reddy Junuthula, Ishant Ku-

mar Siddhrau, Yang Xu, and H Jonathan Chao.

SDNShield: Towards more comprehensive defense

against DDoS attacks on SDN control plane. In Proc.

CNS, 2016.

[21] Xiaoqi Chen. Implementing AES encryption on pro-

grammable switches via scrambled lookup tables. In

Proc. SIGCOMM SPIN Workshop, 2020.

[22] Graham Cormode. Count-min sketches. Encyclopedia

of Database Systems, 2009.

[23] Graham Cormode and S. Muthukrishnan. An improved

data stream summary: The count-min sketch and its

applications. J. Algorithms, 55(1):58–75, April 2005.

[24] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-

nando Pedone, and Robert Soulé. NetPaxos: Consensus

at network speed. In Proc. SOSR, 2015.

[25] Trisha Datta, Nick Feamster, Jennifer Rexford, and

Liang Wang. SPINE: Surveillance protection in the

network elements. In Proc. FOCI, 2019.

[26] Seyed K Fayaz, Yoshiaki Tobioka, Vyas Sekar, and

Michael Bailey. Bohatei: Flexible and elastic DDoS

defense. In Proc. USENIX Security, 2015.

[27] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rex-

ford. Dapper: Data plane performance diagnosis of TCP.

In Proc. SOSR. ACM, 2017.

[28] Dimitrios Gkounis, Vasileios Kotronis, and Xenofontas

Dimitropoulos. Towards defeating the crossfire attack

using SDN. arXiv preprint arXiv:1412.2013, 2014.

[29] Garegin Grigoryan and Yaoqing Liu. LAMP: Prompt

layer 7 attack mitigation with programmable data planes.

In Proc. ANCS, 2018.

[30] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-

ster, Jennifer Rexford, and Walter Willinger. Sonata:

Query-driven streaming network telemetry. In Proc.

SIGCOMM, 2018.

[31] F. Hauser, M. Schmidt, M. Häberle, and M. Menth. P4-

MACsec: Dynamic topology monitoring and data layer

protection with MACsec in P4-based SDN. IEEE Ac-

cess, 8, 2020.

[32] Frederik Hauser, Marco Häberle, Mark Schmidt, and

Michael Menth. P4-IPsec: Implementation of IPsec

gateways in P4 with SDN control for host-to-site scenar-

ios. arXiv preprint arXiv:1907.03593, 2019.

[33] Victor Heorhiadi, Michael K Reiter, and Vyas Sekar.

Simplifying software-defined network optimization us-

ing SOL. In Proc. NSDI, 2016.

[34] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming

Zhang, Vijay Gill, Mohan Nanduri, and Roger Watten-

hofer. Achieving high utilization with software-driven

WAN. In Proc. SIGCOMM, 2013.

[35] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-

ford, Praveen Tammana, and David Walker. Contra: A

programmable system for performance-aware routing.

In Proc. NSDI, 2020.

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon

Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,

Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Expe-

rience with a globally-deployed software defined WAN.

In Proc. SIGCOMM, 2013.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,

Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion

Stoica. NetChain: Scale-free sub-rtt coordination. In

Proc. NSDI, 2018.

[38] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,

Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion

Stoica. NetCache: Balancing key-value stores with fast

in-network caching. In Proc. SOSP, 2017.

[39] Min Suk Kang, Virgil D Gligor, and Vyas Sekar.

SPIFFY: Inducing cost-detectability tradeoffs for per-

sistent link-flooding attacks. In Proc. NDSS, 2016.

[40] Min Suk Kang, Soo Bum Lee, and Virgil D Gligor. The

crossfire attack. In Proc. S&P, 2013.

[41] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang

Chen, and Xiapu Luo. Programmable in-network secu-

rity for context-aware BYOD policies. In Proc. USENIX

Security, 2020.

[42] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh

Sivaraman, and Jennifer Rexford. Hula: Scalable load

balancing using programmable data planes. In Proc.

SOSR, 2016.

[43] Soo Bum Lee, Min Suk Kang, and Virgil D Gligor.

CoDef: collaborative defense against large-scale link-

flooding attacks. In Proc. CoNEXT, 2013.

[44] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li,

Changhoon Kim, Vladimir Braverman, Xin Jin, and Ion

Stoica. Distcache: Provable load balancing for large-

scale storage systems with distributed caching. In Proc.

FAST, 2019.

[45] Shouxi Luo, Hongfang Yu, and Laurent Vanbever.

Swing State: Consistent updates for stateful and pro-

grammable data planes. In Proc. SOSR, 2017.

[46] Nick McKeown, Tom Anderson, Hari Balakrishnan,

Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott

Shenker, and Jonathan Turner. OpenFlow: Enabling

innovation in campus networks. ACM SIGCOMM CCR,

38(2):69–74, 2008.

[47] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun

Lee, and Minlan Yu. Silkroad: Making stateful layer-4

load balancing fast and cheap using switching asics. In

Proc. SIGCOMM, 2017.

[48] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan,

Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-

malkumar Jeyakumar, and Changhoon Kim. Language-

directed hardware design for network performance mon-

itoring. In Proc. SIGCOMM, 2017.

[49] Ryan Rasti, Mukul Murthy, Nicholas Weaver, and Vern

Paxson. Temporal lensing and its application in pulsing

denial-of-service attacks. In Proc. S&P, 2015.

[50] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-

tenstreich, Shan Muthukrishnan, and Jennifer Rexford.

Heavy-hitter detection entirely in the data plane. In Proc.

SOSR, 2017.

[51] Jared M Smith and Max Schuchard. Routing around

congestion: Defeating DDoS attacks and adverse net-

work conditions via reactive BGP routing. In Proc. S&P,

2018.

[52] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller,

and Jonathan M Smith. Scaling hardware accelerated

network monitoring to concurrent and dynamic queries

with* flow. In Proc. USENIX ATC, 2018.

[53] Ahren Studer and Adrian Perrig. The coremelt attack.

In Proc. ESORICS, 2009.

[54] German Sviridov, Marco Bonola, Angelo Tulumello,

Paolo Giaccone, Andrea Bianco, and Giuseppe Bianchi.

LOcAl DEcisions on Replicated states (LOADER)

in programmable data planes: programming abstrac-

tion and experimental evaluation. arXiv preprint

arXiv:2001.07670, 2020.

[55] Lei Wang, Qing Li, Yong Jiang, Xuya Jia, and Jian-

ping Wu. Woodpecker: Detecting and mitigating link-

flooding attacks via SDN. Computer Networks, 147:1–

13, 2018.

[56] Jiarong Xing, Ang Chen, and T.S. Eugene Ng. Secure

state migration in the data plane. In Proc. SIGCOMM

SPIN Workshop, 2020.

[57] Jiarong Xing, Qiao Kang, and Ang Chen. NetWarden:

Mitigating network covert channels while preserving

performance. In Proc. USENIX Security, 2020.

[58] Jiarong Xing, Wenqing Wu, and Ang Chen. Architecting

programmable data plane defenses into the network with

FastFlex. In Proc. HotNets, 2019.

[59] Nofel Yaseen, John Sonchack, and Vincent Liu. Syn-

chronized network snapshots. In Proc. SIGCOMM,

2018.

[60] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient dis-

tributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In Proc. NSDI, 2012.

[61] Jing Zheng, Qi Li, Guofei Gu, Jiahao Cao, David KY

Yau, and Jianping Wu. Realtime ddos defense using cots

sdn switches via adaptive correlation analysis. IEEE

Transactions on Information Forensics and Security,

13(7):1838–1853, 2018.

	Introduction
	Overview
	Key challenges
	State of the art
	Limitations of existing work
	A programmable, decentralized defense

	Programming the Panoramic Defense
	The panoramic view
	The Crossfire defense
	The Coremelt defense
	The SPIFFY defense
	New defense policies

	Decentralized Panorama Construction
	Programmable switch primitives
	Panoramic data structures
	Extracting local panorama fragments
	Constructing the panorama

	Security Considerations
	Evaluation
	Prototype and setup
	Overhead
	The Ripple Compiler
	Defense effectiveness
	Mitigating rolling attacks

	Related Work
	Conclusion
	Acknowledgments

