
Probabilistic Profiling of Stateful Data Planes
for Adversarial Testing

Qiao Kang

Rice University

Houston, TX, USA

Jiarong Xing

Rice University

Houston, TX, USA

Yiming Qiu

Rice University

Houston, TX, USA

Ang Chen

Rice University

Houston, TX, USA

ABSTRACT
Recently, there is a flurry of projects that develop data plane systems
in programmable switches, and these systems perform far more

sophisticated processing than simply deciding a packet’s next hop

(i.e., traditional forwarding). This presents challenges to existing

network program profilers, which are developed primarily to handle

stateless forwarding programs.

We develop P4wn, a program profiler that can analyze program

behaviors of stateful data plane systems; it captures the fact that

these systems process packets differently based on program state,

which in turn depends on the underlying stochastic traffic pattern.

Whereas existing profilers can only analyze stateless network pro-

cessing, P4wn can analyze stateful processing behaviors and their

respective probabilities. Although program profilers have general

applications, we showcase a concrete use case in detail: adversarial

testing. Unlike regular program testing, adversarial testing distin-

guishes and specifically stresses low-probability edge cases in a

program. Our evaluation shows that P4wn can analyze complex pro-

grams that existing tools cannot handle, and that it can effectively

identify edge-case traces.

CCS CONCEPTS
•Networks→Network security; • Software and its engineer-
ing→ Software verification and validation.

KEYWORDS
Programmable data planes, symbolic execution, adversarial testing

ACM Reference Format:
Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. 2021. Probabilistic

Profiling of Stateful Data Planes for Adversarial Testing. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.

3446764

Kang and Xing contributed to this work equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00

https://doi.org/10.1145/3445814.3446764

1 INTRODUCTION
One recent advance in networking technology is the design of

programmable data planes. Unlike traditional networking devices,

emerging hardware can be reprogrammed in P4 for customized

packet processing [17]. This has motivated many in-network func-

tions to be developed in the switch data plane, such as caching [44],

load balancing [47, 60], link failure detection [38], and security [46,

75]. These data plane systemsmake far more sophisticated decisions

in-network than just computing a packet’s next hop (i.e., traditional

forwarding).
Recent projects have developed program profiling support for

P4 programs [23, 24, 55, 61, 69, 71] in order to achieve a compre-

hensive understanding of complex program behaviors; however,

existing profilers suffer from two key limitations. First, they only

perform stateless analysis for simple forwarding programs, but

cannot handle stateful data plane systems [38, 44, 46, 47, 60, 75].
Stateful P4 programs extract state from historical traffic, and they

process packets differently when program state changes. Consider

the Blink [38] link failure detector. It randomly samples a set of TCP

flows, tracks per-flow retransmissions, keeps a sliding window for

monitoring, and activates backup paths in a round-robin manner.

Existing profilers [24, 61, 71] cannot track program state, so they

are fundamentally handicapped in analyzing fine-grained stateful

processing in data plane systems.

Second, network processing is always non-deterministic in na-

ture, e.g., due to traffic changes, load balancing, and failures; for

stateful P4 programs, their probabilistic nature is even more fun-

damental. Their internal state may take a distribution of possible

values depending on past traffic patterns, and this will further influ-

ence future processing behaviors in a stochastic manner. In recent

years, the networking community has been paying increased at-

tention to probabilistic analysis [33, 66, 67, 70, 73], e.g., analyzing

network failure probabilities [70] or the likelihood for load viola-

tion [73]. However, this line of work so far has only considered

network configurations [70, 73] and new probabilistic network

languages [33, 66, 67]; neither can analyze today’s data plane pro-

grams.

We develop P4wn, a program profiler that addresses both limita-

tions. P4wn efficiently analyzes how stateful P4 programs change

behaviors over a packet sequence, characterizes the probability for

each processing behavior, and generates concrete test traces for

validation. This new capability is useful for many applications. (a)
Stateful testing: Existing tools [24, 71] are restricted to stateless

program testing, but P4wn can perform stateful testing of com-

plex P4 programs. (b) Offloading hints: Recent systems partition

network functions between servers and a P4 switch for accelerated

performance [50, 77]; P4wn can pinpoint frequent “hotspots” for

offloading, and/or reason about probabilistic SLA properties. (c)

https://doi.org/10.1145/3445814.3446764
https://doi.org/10.1145/3445814.3446764
https://doi.org/10.1145/3445814.3446764

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

Anomaly detection: Operators can profile common- and corner-case

network behaviors to catch and guard against unexpected events.

We demonstrate a concrete use case—adversarial testing—which
combines (a) and (c), and provide preliminary results on (b).

Unlike basic program testing, adversarial testing distinguishes

and specifically focuses on edge cases [10, 18, 37, 39, 41, 42, 49, 52,

53, 63, 74]. Data plane systems—and packet processing programs

in general—are particularly vulnerable to adversarial inputs, as

even unprivileged network clients can influence the input traffic

pattern; as an example, an adversarial trace for Blink might be

one that contains high-volume TCP retransmissions. This risk has

been recognized by the research community in multiple recent

projects [37, 45, 59, 63]; but so far, data plane system designers

have resorted to manual analysis for adversarial testing (e.g., in

Blink [38] and others [46, 75]). P4wn contributes an automated

technique towards this goal—a probabilistic profiler is a natural fit

for pinpointing edge cases, and it can further analyze how likely

each case would occur, and precisely generate packet sequences to

exercise them.

Challenges and techniques. P4wn uses symbolic execution

(symbex) as a starting point for program analysis. Unlike program

fuzzing or dynamic testing, which generates random or concrete in-

puts to a program but cannot provide coverage guarantees, symbex

is a static analysis technique that enumerates program execution

paths exhaustively for high coverage [19, 24, 64, 71]. However, exist-

ing P4 symbex tools can only perform stateless analysis [24, 31, 71].

In order to achieve our goal, P4wn needs to take a few more steps

forward—it performs probabilistic analysis of stateful programswith

complex data structures. This requires a range of new techniques to

be developed.

The first challenge we tackle is computing probabilities. Existing
P4 symbex engines [24, 71] target qualitative analyses, i.e., they

check whether a program behavior occurs or not, but cannot ana-

lyze how likely a behavior would occur under a certain network

scenario. P4wn builds upon an advanced form of symbex, known as

probabilistic symbex [35], and draws inspiration from two threads

of work: header space analysis (HSA) [48], and model counting [20].

P4wn first relies on traditional symbex to collect header constraints

for program execution paths. It then analyzes the resulting header

space enclosed by these constraints, using model counting to com-

pute the volume of this multi-dimensional polytope. Given a set of

constraints, SAT/SMT solvers can produce a concrete set of satisfy-

ing assignments; model counting solvers, on the other hand, can

count the number of all possible satisfying assignments. Dividing

this count over the size of the solution space would yield the proba-

bility for the given set of constraints to hold. As another twist, the

header space for most real-world networks is not evenly distributed

(e.g., more TCP traffic than UDP), and the distribution could further

vary from one network to another. Since such information cannot

be obtained from the solver, P4wn instead formulates interactive
queries about the target network at runtime and issue these queries

to an “oracle” instead of a solver, which could be a simple spec, a

human analyst, or a trace she has collected.

The second challenge we address is that data plane programs

have very complex state. Existing P4 symbex engines, on the other

hand, can only perform stateless analysis of simple programs [24, 31,

61, 71], where the processing behaviors do not depend on historical

traffic. Since stateful programs may change behaviors per packet,

P4wn needs to profile a program using a sequence of symbolic

packets, effectively simulating a loop where one symbolic packet is

analyzed per iteration [26, 63]. However, loops are notoriously hard

to handle, because each iteration could fork multiple paths, and the

size of the symbex state would grow exponentially. Since data plane

programs are designed to process “infinite” packet sequences, some

code blocks require very long sequences to exercise. Moreover, we

do not know in advance how long this sequence should be. To

address this, P4wn checks in real time whether the current profile

has converged, and selectively refines the unconverged portion

of the profile further. We also propose a new technique called

telescoping, which can handle a common class of “deep” code blocks

in data plane systems. It can detect stateful but periodic program

behaviors using a short sequence, and generalize that behavior to a

much longer sequence for program analysis.

P4wn also handles approximate data structures common to data

plane systems, such as hash tables, Bloom filters, and sketches,

none of which is supported by existing tools [24, 71]. These data

structures are analogous to arrays or sets, but they use a very large

state space to reduce inaccuracy. One solution is to handle them

as symbolic arrays, by modeling the uncertainty of the locations

and values of reads/writes [19, 32], but this scales very poorly with

the array size. Furthermore, approximate data structures heavily

rely on hash functions for computing indexes of reads/writes; this

creates complicated constraints that cannot be solved efficiently.

We develop a novel technique called greybox analysis, leveraging
the insight that these data structures have well-established statisti-

cal properties (e.g., collision rates of CRC functions). This enables

P4wn to analyze their probabilities without tracking every state

variable and read/write operations, so the resulting profiling algo-

rithm scales independently of the data structure size.

We detail these challenges and solutions in the rest of this paper,

and present a comprehensive evaluation.

2 MOTIVATION
Observing that programmable data plane behaviors are governed

by complex programs, researchers have taken significant interest

in customizing program profiling and analysis techniques for the

network data plane [24, 55, 61, 71, 72]. In particular, several tools [24,

61, 71] leverage symbolic execution to perform stateless analysis of
P4 programs.

2.1 Limitations of existing work
Existing P4 symbex tools suffer from two limitations.

Stateful analysis.We have seen a flurry of data plane systems
that perform sophisticated stateful processing in-network, which
are far more complex than stateless forwarding programs. Data

plane systems are essentially an infinite loop of the following proce-

dure. They 1) accept a network packet pi as input, and 2) generate

a decision di based on the headers of pi and the current state of

the switch si . The decision further includes two parts: a) some

action on the packet, e.g., forwarding to a certain port, and b)

some modification to the switch state. Since the state si accumu-

lates over the sequence of packets p0–pi−1, the decision di would

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

Data plane program
......

If (cond)
foo ()

Else
bar ()

......

Output: Probabilistic profile Other apps: Offloading hotspots

If (cond)

bar()

Control.ingress:

foo()

Else

Pr(foo) = 0.9 Pr(bar) = 0.1

Application: Adversarial testing

Expected distribution

Adversarial distribution

Inputs

100%

90% 10%

foo bar

foo bar

Model
Counter

Trace PCAP query
as needed

CPU processing

Offloaded processing

Figure 1: The workflow of our P4wn system and its target applications. P4wn takes a P4 program as input, and outputs its
probabilistic profile. When necessary, P4wn performs interactive queries to the operator or a network trace to obtain the
target network profile. Our primary application focuses on adversarial testing, but probabilistic profiling can enable other use
cases, such as providing offloading hints based on program hotspots. The conceptual ideas behind P4wn are also generalizable
to other data plane languages, such as NPL and eBPF/C.

Network configurations Network programs

Qualitative

Probabilistic

ARC

This
Work

NetDice

MineSweeper

Batfish ERA

QARC

Vera

Netdiff CASTAN

P4pktgen

Earlier work

SIGCOMM + PLDI 2020

Earlier work

Figure 2: P4wn as compared against existing work.

similarly depend on the history of packets. This stands in stark con-

trast to stateless forwarding programs, which process every single

packet independent of each other—i.e., decision di only depends

on the current packet pi ; state si is non-existent. Existing symbex

tools [24, 61, 71] only perform single-packet analysis from pi to
di assuming empty state. They cannot analyze program behaviors

over a stateful packet sequence.

Probabilistic analysis. Second, while researchers have been
actively working towards probabilistic program analysis [33, 66,

67, 70, 73], existing work has only considered network configu-

ration analysis [70, 73] and designing new probabilistic network

languages from scratch [33, 66, 67]. Network environments are in-

herently non-deterministic—traffic composition, link failures, ran-

dom load balancing, and many other factors contribute to their

probabilistic behavior. In the case of data plane systems, the most

prominent factor is the traffic composition—the packet sequence

p0–pi is probabilistic in nature, and this will drive si to different

statistical distributions. However, existing profilers [24, 61, 71] for

data plane programs are qualitative, and they cannot capture prob-

abilistic properties.

2.2 Our contributions
P4wn addresses both limitations of existing profilers. It performs

probabilistic profiling for stateful data plane systems. Figure 1 shows

its workflow. P4wn takes in the source code of a data plane system as

input, and performs program analysis to generate stateful sequences

to trigger all program behaviors in a fully automated manner. P4wn
can further compute the probability for each behavior, either by

querying a model counting solver, or based on a given traffic profile
that captures the traffic composition of the deployment scenario.

Since different programs require knowledge about different aspects

of traffic composition—e.g., retransmission ratios for Blink, but

TCP ratio for others [8], asking the analyst to provide a complete

profile a priori will be burdensome. P4wn draws inspiration from

“oracle-guided” program synthesis [43], which obviates the need for

a complete specification by allowing runtime queries to an oracle,

and enables runtime interactive queries to discover relevant traffic

composition. These queries are issued to pre-collected traffic traces,

e.g., by monitoring systems common in production networks [78].

Figure 2 further positions our work against a set of existing

work [13, 24, 25, 30, 36, 61, 63, 70, 71, 73] along two dimensions: a)

whether a technique analyzes network configurations or network

programs, and b) whether it captures the probabilistic nature of net-

work behaviors. We note that this figure does not comprehensively

show all related work: P4 program analysis tools that do not rely

on symbex [55, 69], and new probabilistic network programming

languages that are designed from the ground up [33, 66, 67], are

not shown.

Applications. Program profilers are general utility tools that

have many applications. We primarily focus on one use case: ad-

versarial testing, which is an important program testing strategy

that specifically stresses edge cases as they may lead to unexpected

behaviors [10, 18, 37, 39, 41, 42, 49, 52, 53, 63, 74]. In previous work,

adversarial testing of network programs has been performed using

machine learning techniques [37] and execution cost aware pro-

gram analysis [63]. However, for data plane systems, automated

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

function ProbProf(prog, tr)

(N, µ̂)← Telescope(prog)

symb.pktseq = ∅

while !(isConverged(µ̂ , α , ϵ) or isTimeout) do
symb.pktseq += {symb_pkt}

P← symb.EnumPaths(prog)

(N, µ̂)← UpdateProb(P, N, tr)

if !(isConverged(µ̂ , α , ϵ)) then
(N, µ̂)← SampPaths(prog, tr)

return Sort(N, µ̂)
function UpdateProb(P, N, tr)

for p ∈ P, N ∈ N do
if p triggers N then

Pr[p]←ModelCnt(p, tr)

µ̂ ← Update(N, Pr[p])
return (N, µ̂)

function SampPaths(prog, tr)

while !(isConverged(µ̂ , α , ϵ)) or isTimeout) do
symb.pktseq += {symb_pkt×δ }
P← symb.InformedSamp(prog, µ̂)
(N, µ̂)← UpdateProb(P, N, tr)

return (N, µ̂)

function Telescope(prog)

R← Registers(prog)

for r ∈ R do
if IsPeriodic(r, prog) then
Rp ← {r}

if IsGuard(r, prog) then
Rд ← {r}

for r ∈ Rp ∩ Rд do
Nr ← r.guarded

for p ∈ r.periodic_paths do
prob←ModelCnt(p, tr)

rept← r.thresh/r.period

µ̂ ← Update(Nr , prob
rept

)

return (N, µ̂)
function IsGuard(r, prog)

op← ">" | ">=" | "=="

for each br ∈ prog.all_branches do
if br == "r op const" then

r.isguard← True

r.guarded← br.code_blk

r.thresh← br.const

return r.isguard

function IsPeriodic(r, prog)

symb.pktseq← {symb_pkt×γ }
P← symb.EnumPaths(prog)

for p ∈ P do
if p modifies r then

pc← symb.ObtainPC(p)

period← BinarySearch(pc, γ)
if period < γ then

r.periodic_paths ∪ = {p}

return !isempty(r.periodic_paths)

function BinarySearch(pc, γ)
for i ∈ [γ

2
..1] do

pref← pc.Prefix(i)

if pc repeats pref then
period← i

return period

functionModelCnt(p, tr)

pc← symb.ObtainPC(p)

if tr , ∅ then
hdr_dist←Query(tr, pc)

vol← ComputeVol(pc, hdr_dist)

return vol/ComputeVol(True, hdr_dist)

Figure 3: The main function ProbProf takes in a P4 program, and optionally a trace, and outputs its probabilistic profile (N, µ̂).
P4wn performs the greybox analysis before the profiling (not shown). Functions with the prefix “symb._” are invocations to
the symbex engine. The initial state of a program is empty.

support for adversarial testing has been lacking; existing work finds

adversarial traces via manual analyses [38, 46, 75]. These manual

efforts call for a principled approach to adversarial testing of data

plane systems, as manually analyzing the systems may not produce

a comprehensive result, and it could also be tedious and error-prone.

In this regard, P4wn contributes a practical approach to adversarial

testing of data plane systems by identifying edge cases based on

probabilities. In Section 6, we also provide brief discussions on

other use cases.

3 THE P4WN SYSTEM
P4wn uses symbolic execution [51] as the starting point for pro-

gram analysis. The symbolic execution engine (SEE) is a special

program interpreter that runs a program with symbolic input val-

ues, representing all possible concrete values that the inputs may

take. As the execution proceeds, the SEE updates program variables

with symbolic expressions. Unlike a regular program execution,

symbolic inputs create uncertainty as to whether a loop or branch

condition holds. The SEE handles this uncertainty by forking one

execution path for each possible outcome. Consider a branch if

(x<=7) then foo() else bar(). The SEE forks two paths and annotates

each with a set of path constraints, representing the conditions for

that path to be exercised: a) the if-branch holds when {x<=7}; and

b) the else-branch holds when {x>7}. Symbolic execution finishes

when all paths have been explored, or, in the case where a program

is very complex, until a timeout threshold. The latter hints at a

practical limitation of symbex: its analysis may not be exhaustive,

unless complete enumeration is feasible within useful time. Upon

exit, the SEE invokes SAT/SMT solvers to solve for concrete inputs

that would satisfy the constraints for certain paths. Innovations in

symbex techniques center around two fronts: a) developing domain-
specific techniques that are customized for new problem domains,

and b) mitigating the state explosion problem as it manifests itself

in these domains. The design of P4wn involves both.

The pseudocode in Figure 3 serves as our technical roadmap.

P4wnmodels a programproд as a Control Flow Graph (CFG), which

is a directed graph where every node represents a code block (i.e.,

a sequence of program statements without branches), and every

directed edge represents a branch. The program is then transformed

into a CFG with t nodes,N = {N1, · · · ,Nt }. The ProbProf function

takes in proд (and optionally, a trace tr) as the input, and outputs its
probabilistic profile (N, µ̂), where µ̂ = {Pr[N1], · · · ,Pr[Nt]}. The

main while loop performs an iterative deepening search, where

ProbProf uses longer and longer sequences of symbolic packets

to exercise proд, and updates the distribution µ̂ in every round of

execution until it converges.

3.1 Computing probabilities
The first property that sets P4wn apart from state-of-the-art net-

work symbex engines [24, 26, 63, 71] is its ability to perform proba-
bilistic profiling for different network scenarios or traffic distribu-

tions.

ProbProf profiles the probability for a CFG node Ni by enumer-

ating all execution paths that exercise Ni , computing the proba-

bility for each path p, and then summing them up. Initially, the

symbolic packet sequence pktseq is empty, and it gets extended

with one additional symbolic packet per loop iteration. For each

iteration, we enumerate all execution paths that can be exercised

by pktseq, and invoke UpdateProb on each path to update µ̂. If
a path p can trigger a CFG Ni , then it is added to Ni ’s pathset.

To obtain Pr[Ni], we compute Pr[p] for each p and sum them

up: Pr[Ni] =
∑
p∈Ni .pathset Pr[p]. To compute Pr[p], we rely on

the path constraints pc collected by the symbex engine—e.g., an

execution path that processes TCP SYN packets might yield pc =
{proto == 6∧syn == 1}. More generally,pc forms a polytope in the
header space, and its enclosed points are the satisfying assignments

to the constraints.

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

This formulation is helpful, because it allows us to compute

the number of satisfying assignments without having to enumer-

ate them all. Supposing for the moment that we do not consider

concrete network traces, then P4wn can compute probabilities by

invoking a model counting solver, an advanced variant of SAT/SMT

solvers. Regular solvers can compute one set of satisfying assign-

ments to a logical formula, but model counting solvers can count or

estimate the total number of solutions. Suppose that there are t sets
of satisfying assignments to pc , and that the space of all possible

assignments has size T , then the probability for pc to hold can be

derived as t/T . The ModelCnt algorithm is similar to a program

analysis technique called probabilistic symbex [35], which applies

model counting to C programs to estimate probabilities.

To handle unevenly distributed header spaces, P4wn needs to

understand the specific network under consideration. In this case,

ModelCnt would instead issue an interactive Query to the trace

tr to discover header distributions. We then compute the poly-

tope volume in a skewed multi-dimensional space, by weighing

the header subspace and its volume according to the distributions.

Alternatively, P4wn could take in a prespecified header distribution,

and use a weighted model counting solver to compute the skewed

polytope volume. Both would capture network and scenario speci-

ficity, but using a trace would enable P4wn to obviate the need for

prespecifying header distributions. Of course, users of P4wn can

supply an initial profile that encodes well-established facts—e.g.,

TCP accounts for 90% traffic in Microsoft data centers [8]; P4wn
can discover the rest at runtime.

3.2 Checking convergence
The state explosion problem manifests particularly severely for

stateful programs. A P4 program itself does not contain loops, but

a stateful program accumulates state over many packets, and it

may behave differently depending on the state. In other words, data

plane systems implicitly run the P4 program in an infinite loop.
Correspondingly, we need to use a sequence of symbolic packets

in a loop to explore such a program [26, 63]. Scaling the analysis

of a symbolic sequence is our focus in this subsection and the next.

State-of-the-art P4 symbex engines [24, 71], only perform state-

less analysis of simple forwarding programs. However, data plane
systems have very complex state, so P4wn needs to handle new

challenges due to stateful processing.

A stateful program may change its behavior per packet, so its

probabilistic profile only stabilizes over a sequence of packets; more-

over, we do not know in advance how long this sequence is. In

ProbProf, the while loop may soon generate an unmanageable

amount of state: if the program has k branches, then t symbolic

packets would fork O(kt) paths. To determine how large t should
be, P4wn relies on a statistical approach—after obtaining new execu-

tion paths in each iteration, it updates the current profile µ̂ and tests
whether it has changed significantly. P4wn continues to update µ̂,
and exits the while loop once the profile has converged.

However, if state size is very large, this loop may never exit. To

handle this, P4wn uses a timeout threshold to enter a sampling

phase (SampPaths). In this function, the length of pktseq increases

much faster (by δ > 1) to trigger deep code blocks. The target of

this phase is to use the current profile as a starting point, and refine

the unconverged portion further. For each pktseq, SampPaths uses a
technique called informed sampling [28], which leverages Bayesian

Inference to draw random samples based on the prior, and then

updates the posterior with the new samples. Suppose the ground

truth is µ, our goal is to obtain an estimate µ̂ with a confidence level

α and an error bound ϵ , i.e., Pr[|µ̂ − µ | < ϵ] ≥ α . ϵ and α can be

further tuned for a closer approximation. Of course, if the program

is of astronomical size, even this sampling might time out. This is

a fundamental challenge in symbolic execution, and in this case a

tool could trade off theoretical guarantees for practical execution

time.

3.3 Telescoping “deep” code blocks
When designing P4wn, we encountered a class of data plane pro-

gram elements that are very hard to analyze, because they can only

be exercised after a very long packet sequence (i.e., very large t).
To see why, consider Blink [38]: it monitors 64 TCP connections

and triggers rerouting if more than 32 connections experience re-

transmission. This code block, Nreroute, is guarded by a conditional

statement that contains a counter: if (retrans_cnt > 32). To trig-

ger Nreroute, we need at least 64 packets (i.e., 32 retransmissions),

and this would fork O(264) execution paths. As another example,

consider a very simple (but stateful) program that processes every

millionth packet specially (e.g., sampling to the CPU); Ncpu cannot

be exercised unless we symbex one million packets (i.e., t = 1M).

In other words, data plane systems are designed to process millions

of packets, so some code blocks are guarded by extremely large

thresholds.

Our key insight for avoiding state explosion is that, fortunately,

these deep loops tend to have regularity. For the above examples,

the processing of thepkti does not directly depend on the individual
packets pkt0–pkti−1. Rather, it only depends on a succinct history

of the previous packets—typically a monitoring state that counts the

occurrences of the same event. This results in execution paths with

periodicity. For Blink, pkt0 and pkt1 need to have identical headers

(i.e., retransmissions), and the same goes for pkt2 and pkt3. In
other words, there exists an execution path whose path constraints

have repeatable patterns: pc = {pkt0.headers == pkt1.headers ∧
pkt2.headers == pkt3.headers ∧ · · · }.

We develop a technique called telescoping (Telescope). At the

heart of this algorithm is IsPeriodic that probes the program with a

short packet sequence of length γ , and analyzes the resulting paths

to detect periodicity in their constraints. It performs a BinarySearch

on a path’s pc , and identifies the shortest repeatable pattern, or the

period of the path. If more than one paths are periodic, IsPeriodic

identifies all of them. The output of this step is Rp , a set of registers
(P4 parlance for state variables) that increment linearly over repeat-

able packet sequences. Telescope then intersects Rp with Rд , which
is the set of registers used as conditional guards. The guarded code

blocks are the target of telescoping, for which we want to obtain a

probabilistic profile without a full symbex.

As the second for-loop in Telescope shows, P4wn computes the

probability for each periodic path when “stretched” far enough

to trigger the target, and uses their sum as the final estimate. We

note on the potential accuracy loss: a) if there are periodic paths

path1,path2, · · · , the telescoping algorithm cannot tell whether

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

5-tuples
Idx Key (5 tuples) Value

0 10.10.0.1:80: ... 15

1 (empty)

2 10.10.0.3:80: ... 0

3 10.10.0.3:22: ... 0
index

CRC hash

[(15, 33.3%) , (0, 66.7%)]
Size = 3, Max_size = 4

Transforming a CRC hash table into a greybox

Prob. data store

Figure 4: We create a probabilistic data store for each hash
table, which encodes the distribution of all possible values
in this greybox. This avoids the need for keeping track of a
large symbolic state space and analyzing complex CRC func-
tions, improving scalability.

alternating appearances of path1, path2, · · · can similarly move us

towards the target; determining this would again require analysis

using a much longer packet sequence, e.g., path1 | |path2; b) it also
cannot identify aperiodic paths that may also trigger the target. As

a result, telescoping may result in an underestimation of the target

probability.

3.4 Approximate data structures
The next challenge we address is approximate data structures, such
as Bloom filters, sketches, and hash tables. These data structures

trade off accuracy for space efficiency, and have found widespread

use in data plane systems. Under the hood, they rely on a set of

arrays and a set of CRC hash functions to compute indexes to

these arrays. For instance, a count-min sketch may hash a flow

ID using k CRC-16 functions, use the hash values as indexes to

retrieve k counters, and return their minimum. The underlying

arrays can cause state explosion; the hash functions would produce

very complicated constraints to solve for or model count. Existing

P4 profilers [24, 61, 71] cannot handle them.

Symbex engines like KLEE symbolically analyze arrays by ac-

counting for the uncertainty of read/write locations and values, e.g.,

using the theory of arrays or by forking execution paths [19, 32].

This scales very poorly with the array size. In data plane systems,

these data structures need to have a large size to reduce inaccuracy—

e.g., a CRC-16 hash table has 216 state. On the other hand, hash func-
tions are usually handled using a technique called havocing [11, 63],
which treats a hash function as a blackbox without collecting its

constraints. It creates a fresh symbolic variable as the hash output,

and continues the symbex with this new variable without repre-

senting the relation between the hash input and output. After the

symbex finishes, it uses a rainbow table [62] to connect an input

with its output. While havocing is enough for generating a concrete

execution, it does not produce path constraints that we need for

profiling.

CRC hash functions, moreover, produce non-linear constraints

that are notoriously difficult to model count [16]. Unlike SAT/SMT

solvers, which are quite mature today (e.g., Z3 [22]), model counters

(also known as #SAT/#SMT solvers) are still in their infancy. Today’s

Pr(Col) =
ColRate(k,N)

Pr(Hit) =
HitRate(k,N)

[(v1, p1), (v2, p2)]
Size = k, max = N

[(v1, p1), (v2, p2), (v3, p3)]
Size = k + 1, max = N

[(v1, p1), (v2, p2), (v3, p3)]
Size = k, max = N

[(v1, p1), (v2, p2), (v3, p3)]
Size = k, max = N

Modeling a ‘write(v3)’ operation

p1 = (p1 * k) / (k + 1)
p2 = (p2 * k) / (k + 1)
p3 = 1 / (k + 1)

Pr(Empty) =
(N-k) / N

Figure 5: For each access to the probabilistic data store,P4wn
forks three paths andupdates the probabilities using the cur-
rent state of the data store. A similar analysis is performed
for sketches and Bloom filters.

model counters can only handle simple #SAT problems [20] and a

restricted number of #SMT theories [2, 56, 57]. Therefore, even if

we have constraints for the CRC functions, efficiently solving them

would first require more advances in model counting.

We develop a new technique called greybox analysis, leveraging
the observation that these data structures have well-established sta-

tistical properties. P4wn only tracks necessary state for computing

probabilities—i.e., the value distribution of the data structure—while
abstracting away all possible permutations of these values and their

indexes. Consider the hash table in Figure 4. P4wn creates a sym-

bolic representation that we call a probabilistic data store. Internally,
it contains a set of (vi ,pi) tuples, where pi is the probability for the
value vi to appear in the table, and

∑
i pi = 1. The data store also

maintains the number of active entries in the table, which P4wn
uses to compute the statistical properties of the table, e.g., collision

rates. For each access to the table, P4wn forks three paths: a) hitting

an empty entry, b) hitting an existing entry, and c) colliding on an

existing entry; and it computes the probability for each path using

the current distribution of the probabilistic data store. P4wn further

updates the distribution and the number of entries after a write:

a) would increase the number of existing entries by one, whereas

b) and c) would maintain the same number of entries in the table.

Figure 5 shows a write operation with a new value v3.
P4wn handles sketches and Bloom filters using similar tech-

niques. For a count-min sketch with k hash tables, P4wn creates a

probabilistic data store for each table, and computes the distribution

of the minimum value based on the distributions of the underlying

data stores. For Bloom filters, P4wn keeps track of the total number

of bits N and the number of insertions k . A membership test on a

Bloom filter results in only two paths, one for miss and another for

hit—their probabilities are determined mathematically by N and k .

3.5 Generating test packet sequences
So far, we have discussed how P4wn generates a probabilistic profile
for a stateful program. Next, we describe how P4wn generates a

concrete packet sequence to trigger a desired code block, e.g., when

concrete packets are desired for testing. Compared to stateless

testing [61, 71], which only needs to generate one single test packet

to trigger a program path, P4wn needs to address new challenges

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

due to stateful sequence generation. P4wn invokes a SAT/SMT

solver one more time using the path constraints collected over the

symbolic sequence. However, our greybox analysis has abstracted

away the internal operations for the corresponding CFGs, so P4wn
does not have path constraints to solve for. (In the case where the

program is too complex to exhaustively analyze, there may also

exist a few CFGs that remain unexplored in the profiling phase.)

P4wn recovers the missing path constraints for these CFGs using

another round of “lightweight” symbex. Since the goal here is not
comprehensive enumeration any more, we can afford to drive the

direction of exploration in a very precise manner using much longer

packet sequences and pruning unfruitful forks aggressively.

P4wn uses two techniques: directed symbex [58] and havoc-
ing [11, 63]. Directed symbex can guide the exploration towards

more likely paths towards a target. It measures the “distance” from

the current state to the target code block by the number of edges

in the CFG. Then, it dives into the shortest-distance path first, and

checks whether the target block is reachable via this path. If this

exploration fails, it backtracks to the previous state, and picks a

slightly longer path to explore. Empirically, this algorithm termi-

nates very fast, as the search space is much smaller than an exhaus-

tive enumeration. Havocing [11, 63], on the other hand, becomes

handy in this step, because one concrete sequence will be sufficient.

4 IMPLEMENTATION
We have implemented a prototype of P4wn in 6500 lines of code

in C++ as pluggable modules in KLEE [19], an industry-strength

symbex engine that has been used inmore than 100 projects [5]. The

source code is available at: https://github.com/qiaokang92/P4wn.

Our prototype consists of four components: a) a profiler, b) an

interactive query processor, c) a test workload generator, and d) a

backtesting engine. The profiler uses LattE [2] for model counting

support, which can compute the volume of multi-dimensional poly-

topes. It can be configured with a time budget for symbex, and can

output a ranked list of CFGs with probabilities. The query processor
can generate queries on packet (header or timestamp) distributions

to human operators or a pcap trace. It loads the trace when P4wn
starts, and pins the trace in memory throughout the analysis. It

also caches and reuses previous query results. The workload gener-
ator produces concrete sequences that trigger target code blocks,
and converts the resulting KTEST files generated by KLEE to pcap

traces. The backtesting engine is a script that can replay pcap traces

to a DUT (device under test), which can be bmv2 [4] P4 switches

or Tofino hardware switches. Our engine can optionally collect

the number of bytes received and sent at each port, link utilization

over time, and CPU+memory usage at the switch control plane;

operators can also easily add metrics of their own. Since P4 is a

recent language, all previous P4 symbex projects need to translate

P4 into some existing language that today’s symbex engines can

support [24, 31, 61, 71]; we follow the same approach and translate

programs to C [31].

5 EVALUATION
Our evaluation seeks to answer three high-level questions: a) How

scalable is P4wn in analyzing stateful programs? b) How effectively

can P4wn perform probabilistic profiling? and c) How effectively

can P4wn perform adversarial testing for complex, real-world data

plane systems?

Programs tested.Wewill first briefly show that P4wn naturally
supports forwarding programs, i.e., those used by a state-of-the-art

profiler, Vera [71], for evaluation. Our focus, however, will be a set

of more complex stateful programs that Vera cannot analyze. Four

of them are programs from the P4 repository.

• S1 (lb.p4): A simple load balancer.

• S2 (flowlet.p4): A flowlet switching program that mitigates

out-of-order delivery.

• S3 (nat.p4): Network address translator.

• S4 (acl.p4): Network access control program.

Seven programs are from recent research projects. They are among

the most complex data plane systems at the time of writing, and

cover popular use cases including network monitoring, security,

and application-level acceleration. We found that S2, S5, S7, S9, and

S10 use CRC hash tables; S6, S8, and S10 contain Bloom filters; S6

and S11 use count-min sketches; and S5, S6, and S11 contain deep

state.

• S5 (Blink [38]): Remote link failure detection.

• S6 (NetCache [44]): In-network key/value cache.

• S7 (*Flow [68]): Network telemetry that provides richer in-

formation than Netflow.

• S8 (p40f [9]): Passive OS fingerprinting inside the switch for

network security.

• S9 (NetHCF [54]): Hopcount-based detection and filtering of

spoofed traffic.

• S10 (Poise [46]): Context-aware access control for enterprise

networks.

• S11 (NetWarden [75]): A defense system against network

covert channels.

We have also created four stateful benchmarks:

• S12 (counter.p4): Counts the number of TCP and UDP pack-

ets, sampling each kind periodically.

• S13 (htable.p4): Monitors (exact) flow sizes using a CRC hash

table.

• S14 (cmsketch.p4): Monitors (approximate) flow sizes using

a count-min sketch.

• S15 (bfilter.p4): Monitors the existence of certain header

values using a Bloom filter.

Appendix A.1 includes more description of these systems.

Setup. By default, we have used the CAIDA trace [1] as the traf-

fic profile, with the following exceptions: a) S10 (Poise [46]) uses

used-defined protocols that are specific to the access control sce-

nario, b) S11 (NetWarden [75]) specifically targets network covert

channels in file transfers, and c) S6 (NetCache [44]) is customized

for key/value workloads with a certain skew. We have obtained

the original evaluation traces for a) and b), and synthesized the

workloads for c). We conducted our experiments on an Ubuntu

18.04 server with six Intel Xeon E5-2643 Quad-core 3.40 GHz CPUs,

128 GB RAM, and 1 TB hard disk. For adversarial testing, we have

used a Tofino hardware switch (for Tofino-P4 programs) and a bmv2

software switch (for P4-16 programs) as DUTs.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

Vera programs LoC Stateful? Vera (sec) P4wn (sec)
copy-to-cpu 70 0.27 0.07

resubmit 70 0.27 0.09

encap 130 0.31 0.04

simple_router 145 0.28 0.08

NAT (S3) 290 0.61 0.25

ACL (S4) 200 0.29 0.13

Axon 100 0.3 0.08

NDP switch 210 0.3 0.12

Beamer mux 340 0.35 0.13

P4xos 260 0.34 0.08

switch.p4 6000 8.5 1.2

New programs LoC Stateful? Vera (sec) P4wn (sec)
lb (S1) 200 ✗ 0.12

flowlet (S2) 250 ✗ 0.26

Blink (S5) 928 ✗ 0.37

NetCache (S6) 674 ✗ 7.50

*Flow (S7) 1728 ✗ 2.15

p40f (S8) 884 ✗ 5.00

NetHCF (S9) 822 ✗ 0.57

Poise (S10) 842 ✗ 0.36

NetWarden (S11) 1332 ✗ 0.60

counter (S12) 90 ✗ 0.1

htable (S13) 160 ✗ 0.06

cmsketch (S14) 225 ✗ 0.17

bfilter (S15) 185 ✗ 0.07

Table 1: Vera, a state-of-the-art P4 profiler, can only perform
stateless analysis; P4wn has similar performance on these
programs. Only P4wn can analyze stateful data plane sys-
tems. Empty circle: stateless; solid circle: stateful; triangle:
stateless, with complex hash functions, diamond: approxi-
mate data structures.

5.1 Stateful analysis
A key metric for program profilers is scalability. We start by bench-

marking against Vera [71], a state-of-the-art P4 symbex engine. As

expected, Vera only supports stateless analysis (Table 1). When

given a stateful program, Vera sets all state variables to empty, and

performs single-packet analysis regardless of state; this does not

exercise stateful program behaviors. P4wn performs similarly with

Vera on these stateless programs. (Anecdotally, an earlier version

of P4wn scaled poorly with switch.p4; we found that this is due to

the many branching behaviors of this program. Vera scaled better

on this because it specifically optimizes for handling branchy pro-

grams. We ported two techniques from Vera to P4wn, namely “drop

optimizations” and “concrete packet layouts” [71, 72], to match the

performance. The measurement shown for switch.p4 is per packet

layout for both Vera and P4wn. Appendix A.2 includes more de-

tailed discussion.) Most of the recent data plane systems are stateful,

containing sophisticated data structures like hash tables or sketches;

only P4wn can support these programs.

Since Vera cannot handle these stateful programs, the rest of our

evaluation uses KLEE as the baseline system for comparison, which

is the general-purpose symbex engine that P4wn builds upon. P4wn
uses telescoping to explore deep code blocks and greybox analysis

to analyze approximate data structures; in contrast, KLEE simply

performs an exhaustive search. We further use a timeout threshold

of one hour for all executions in order to bound the experiment

time. We found that for stateless programs and programs with

comparatively simple state, KLEE and P4wn have similar levels of

performance. The baseline times out for data plane systems with

complex state and deep code blocks (S5, S6, S11). In contrast, P4wn
finishes its analysis for all tested programs within one minute.

Telescoping. Figure 6a shows the results for the benchmark S12,

which monitors the numbers of TCP and UDP packets, and samples

every N -th packet of each kind to the CPU. For a comprehensive

evaluation, we further create eight variants of this program with

N ranging from [1, 128]. As we can see, the baseline times out

when N > 24. This is because every symbolic packet forks two

paths, one for TCP and another for UDP, and N = 24 produces

224 execution paths for the baseline. For N ≤ 4, P4wn takes the

same amount of time as the baseline, because it uses a sequence

of γ = 4 packets for telescoping; P4wn exhaustively analyzes all

paths for this short sequence to detect periodicity. However, as N
grows, P4wn almost stays at a constant time (0.1s), because it can

leverage the periodicity to generalize the results.

Greybox analysis. Figures 6b, 6c, and 6d present the results

for the greybox analysis of hash tables, Bloom filters, and count-

min sketches of varying sizes (S13–S15). The baseline KLEE uses

the theory of arrays [32] to encode uncertainty of every symbolic

access into the path constraints. We fixed the number of symbolic

packets to be 5, and tuned the data structure sizes by changing

the number of entries (for sketches and hash tables, every entry

has four bytes; for Bloom filters, every entry has one single bit).

As we can see, the baseline times out on CRC-16 hash tables with

more than 211 entries, and on Bloom filters and sketches with more

than 210 entries, respectively. P4wn, on the other hand, finishes its

execution again in almost constant time for all three systems, This

is because the greybox analysis only relies the probabilistic data

store, which contains a small number of symbolic state.

Complex data plane systems (S5-S11). We found that the

baseline scales poorly on complex stateful systems with deep code

blocks. Figure 6e compares P4wn with the baseline, and Figure 6f

further shows the detailed results for Blink as the symbolic se-

quence gets longer. Blink requires 64 packets to trigger rerouting,

but the baseline system times out for eight packets, which is far

from enough. Moreover, P4wn has achieved 100% code coverage

for all tested systems.

Model counting vs. trace queries. The above results were

obtained by configuring P4wn to use the LattE model counting

solver. We found the running time to be higher if it is configured

to query the traffic trace instead. This is because the queries to

the solvers are generally simple integer constraints over header

fields (e.g., over source ports for load balancing); the query time

to the LattE solver is on average 0.02s per query, with 6.7 queries

per system on average. In comparison, going through the network

trace took more time, and the execution time would further depend

on the lengths of the collected traces. Figure 7 shows the results.

5.2 Probabilistic analysis
Next, we evaluate P4wn’s probabilistic profiles. Since P4wn is the

first probabilistic P4 profiler, there do not exist off-the-shelf base-

line systems that can provide ground truths to compare against.

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

10-1
100
101
102
103

 1 2 4 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(s

)

Counter threshold

Baseline (KLEE)
Telescoping

(a) Telescoping (S12)

10-1
100
101
102
103

26 27 28 29 210 211 212 213 214 215 216

Ex
ec

ut
io

n
tim

e
(s

)

Hash table size

Baseline (KLEE)
Greybox-HTable

(b) Greybox analysis: hash tables (S13)

10-1
100
101
102
103

26 27 28 29 210 211 212 213 214 215 216

Ex
ec

ut
io

n
tim

e
(s

)

Bloom filter size

Baseline (KLEE)
Greybox-BFilter

(c) Greybox analysis: Bloom filters (S14)

10-1
100
101
102
103

26 27 28 29 210 211 212 213 214 215 216

Ex
ec

ut
io

n
tim

e
(s

)

Count-min sketch size

Baseline (KLEE)
Greybox-CMSketch

(d) Greybox analysis: sketches (S15)

10-1

100

101

102

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11

Ex
ec

ut
io

n
tim

e
(s

)

System

Baseline P4wn

(e) P4wn vs. baseline

10-1
100
101
102
103

 1 2 4 8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(s

)

Number of symbolic packets

Baseline (KLEE)
Telescoping

(f) Telescoping Blink (S5)

Figure 6: The baseline does not scale for programs with complex state or deep code blocks, whereas P4wn finishes within one
minute for all tested systems. The new techniques in P4wn scale well on stateful programs.

10-2

10-1

100

101

102

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11

Ex
ec

ut
io

n
tim

e
(s

)

System

Trace
MC

(a) End-to-end processing time

10-2

10-1

100

101

102

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10S11

Ex
ec

ut
io

n
tim

e
(s

)

System

Trace
MC

(b) Time for ‘updateProb’

Figure 7: P4wn can be configured to issue queries to model
counting solvers or network traces. In both cases, P4wn can
finish within minutes. (a) shows the end-to-end execution
time for querying themodel counting solver vs. the network
trace; (b) shows the time for ‘updateProb’, which performs
probability queries.

Therefore, we had to use reasonable approximations to create two

baseline systems, and measured their relative differences.

First, we created a baseline called ex, which performs an exhaus-

tive symbex search and then model counts the probabilities; it still

relies on greybox analysis for scalability. We use ex’s output as
the ground truth to measure the accuracy of P4wn. If ex estimates

the probability of N to be αN , and P4wn estimates it to be α̂N ,

then we use γN = |α̂N − αN |/αN to compute the inaccuracy ratio.

We found that P4wn achieves γ ≤ 0.04 for all code blocks. P4wn
underestimates the rerouting code block in Blink by 0.04, because
this program has multiple aperiodic paths, which P4wn has missed

in its periodicity analysis. As another note, this ex baseline timed

out on Blink, NetWarden, and NetCache; the above results were

obtained using smaller versions of these programs (e.g., Blink uses

4 instead of 64 retransmissions to trigger rerouting).

To test the original versions, we created another baseline ps that
uses path sampling [28] for scalability. Since ex cannot produce

probability estimates to compare against, we focus instead on the

trend of profiling granularity over time instead of accuracy. For

ps, we set the confidence level to 99%, and tuned the sampling

error bound to obtain multiple data points. Figures 8a-8c present

the results. As we can see, ps can increase its profiling granularity

over a longer running time, achieving finer and finer estimates.

However, the finest granularity it can achieve is still orders of mag-

nitude coarser than P4wn’s estimates. As a concrete example, the

exhaustive baseline ex estimates Pr[Nreroute] in the smaller version

of Blink to be O(10−22), but the path sampling can only achieve

a granularity of O(10−6) on the full program. This coarse-grained

profiling result is due to the fundamental difficulty in sampling

low-probability events [12]—in order to sample rare events, we

need a very large sample size. P4wn, on the other hand, can use

telescoping to achieve much more fine-grained estimates.

5.3 Adversarial testing
Next, we evaluate how effectively P4wn can perform adversarial

testing, by generating concrete packet traces for the top-10 lowest-

probability code blocks for each system.

Efficiency. As Figure 9 shows, P4wn takes within one minute to

generate traces for each tested system. As the decomposition shows,

most of the time was spent in directed symbex, which collects path

constraints, and havocing, which generates concrete sequences for

greyboxes. Solving the path constraints does not take much time.

Adversarial testing traces. In total, P4wn has identified 13

different adversarial inputs that can cause significant performance

disruption. For Blink [38], NetWarden [75], and Poise [46], the

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

10-100

10-6
10-4
10-2
100

 1 10 100 1000

Es
tim

at
e

Execution time (s)

Sampling
P4wn

(a) Sampling baseline (S5)

10-140

10-6
10-4
10-2
100

 0.1 1 10 100 1000

Es
tim

at
e

Execution time (s)

Sampling
P4wn

(b) Sampling baseline (S6)

10-196

10-6
10-4
10-2
100

 0.1 1 10 100 1000

Es
tim

at
e

Execution time (s)

Sampling
P4wn

(c) Sampling baseline (S11)

Figure 8: P4wn can obtain more fine-grained profiling estimates using telescoping.

10-4

10-3

10-2

10-1

100

101

102

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

Ex
ec

ut
io

n
tim

e
(s

)

System

symbex
havocing

solver

Figure 9:P4wn can generate adversarial testing traceswithin
one minute for all tested systems. Most of the execution
time was spent in directed symbex and havocing.

authors have manually analyzed adversarial traffic inputs for their

systems—P4wn has discovered all of them automatically.

Disrupting traffic forwarding.The first class of adversarial workloads
would disrupt normal forwarding decisions, and P4wn discovered

them in S1, S2, and S5.

For S1 (lb), the profile obtained by P4wn shows that the expected

behavior is that traffic will be roughly evenly split across all ports.

On the other hand, the workloads generated by P4wn cause hash

collisions, so the flows are hashed to the same slot. This incurs high

loads in a victim switch port, whereas other ports remain idle.

For S2 (flowlet), the profile is similar as that for S1. Normally,

long flows will be split into flowlets, which are then load balanced

across ports. The test trace generates collisions so that the victim

port has high utilization, causing load imbalance.

For S5 (Blink), the profile shows that it applies forwarding deci-

sions for most traffic, but only reroutes with a very low probability.

The generated trace consists of 32 flows that exhibit retransmis-

sion behaviors—i.e., packets in the same flow have the same TCP

sequence number. Moreover, the retransmissions happen within

the same sliding window of Blink. This causes Blink to mistakenly

infer link failures and trigger rerouting to a backup path.

Control plane disruption. The second class of adversarial workloads

amount to denial-of-service attacks to the switch control plane.

P4wn found these in S3 (nat), S4 (acl), S9 (NetHCF), and S10 (Poise).

Whereas most traffic is directly processed in the data plane, P4wn
identified one low-probability code block in each system that trig-

gers control plane involvement. Packets that trigger these blocks

100

101

102

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S10 S11S11

D
is

ru
pt

io
n

System

Figure 10: The adversarial testing traces cause significant
performance differences than normal traces. The nature of
disruption is system-dependent (e.g., throughput, recircu-
lation); for S5 (Blink), the disruption flips the decision on
which route to use, so we leave out the ratio for clarity.

are sent to the control plane for processing, causing heavy CPU

overheads and overloading the data/control plane channel.

Backend server disruption. The third class of workloads incurs heavy
processing at a backend server; as a side effect, it also causes high

loads at the switch port that is connected to the server. P4wn gen-

erated workloads in S6 (NetCache), S7 (*Flow), S8 (p40f), and S11

(NetWarden).

For S6, the normal behavior is that most key/value requests

would hit the in-switch cache, because the “hot keys” are cached

inside the network; this is meant to reduce the amount of workloads

that reach the backend servers. The adversarial traces cause cache

misses and generate workloads to the backend servers. This would

also trigger hot key reports from NetCache to the server.

For S7, the telemetry data is evicted typically only when the

SRAM buffer is full. The adversarial traces cause hash collisions in

the program logic that maintains the SRAM buffers, so the buffer

content is frequently evicted to the backend servers.

For S8, the normal behavior is that the switch has the needed

OS fingerprints for most traffic, so it rarely contacts the database

for further matching. The adversarial traces generate a SYN packet

with an unrecognized signature, and then a large number of HTTP

packets in the same flow. All such packets are forwarded to the

signature database, causing a high load.

For S11, P4wn has discovered two adversarial traces. The first

trace contains IPD distributions that are significantly larger than

the covert timing channel threshold in S11. This causes such packets

to be sent to the “defense slowpath”, which runs in software, for

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

Tr
affi

c
ra

te
 (K

Bp
s)

Time (seconds)

Port 1
Port 2

(a) S1 (lb)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 2 4 6 8 10 12 14

Tr
affi

c
ra

te
 (K

Bp
s)

Time (seconds)

Port 1
Port 2

(b) S2 (flowlet)

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(c) S3 (nat)

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(d) S4 (acl)

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

Tr
affi

c
ra

te
 (K

Bp
s)

Time (seconds)

Main link
Backup link

(e) S5 (Blink)

 0
 50

 100
 150
 200
 250
 300

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(f) S6 (NetCache)

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(g) S7 (*Flow)

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(h) S8 (p40f)

 0
 100
 200
 300
 400
 500
 600

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(i) S9 (NetHCF)

 0
 100
 200
 300
 400
 500

 0 2 4 6 8 10 12 14

D
ig

es
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(j) S10 (Poise: Control plane disruption)

 0
 100
 200
 300
 400
 500

 0 2 4 6 8 10 12 14Re
ci

re
d.

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(k) S10 (Poise: Switch pipeline disruption)

 0
 1000
 2000
 3000
 4000
 5000
 6000

 0 2 4 6 8 10 12 14

D
ig

es
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(l) S11 (NetWarden: IPD flooding)

0
50k

100k
250k
200k

 0 2 4 6 8 10 12 14

C
PU

 p
ac

ke
ts

 /
se

co
nd

Time (seconds)

Normal
Adversarial

(m) S11 (NetWarden: Duplicate ACK)

Figure 11: The adversarial workloads discovered by P4wn cause significant performance disruption to the tested systems. For
adversarial testing, we started each test with normal workloads and then switched to adversarial traces in the middle of the
test to show the comparison.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

10-160
10-140
10-120
10-100
10-80
10-60
10-40
10-20

100

Pr
ob

ab
ilit

y

Code blocks

Figure 12: P4wn’s probabilistic profiles are a useful guide for
adversarial testing, as there is a strong correlation between
a code block’s probability and the expensiveness of the pro-
cessing behavior. (Top 110 code blocks out of 220 are shown.)

their IPD patterns to be reshaped. The second contains duplicate

ACK packets, which is perceived by S11 as loss signals; this further

causes the defense slowpath to buffer a large amount of packets

perpetually.

Switch pipeline congestion. For S10 (Poise), P4wn identified a work-

load that triggers heavy traffic to be recirculated in the switch

pipeline. S10 handles hash collisions by recirculating traffic in the

data plane until the hash collisions have been resolved by the con-

trol plane. The traces generate a large amount of hash collisions to

cause a large amount of recirculated traffic.

Adversarial trace impacts. Using the backtesting engine, we
have empirically validated that the adversarial testing traces cause

severe performance disruption. Figure 10 shows that they lead to

2-64× degradation compared to normal workloads. For different

systems, the performance metric could be traffic rate, number of

packets sent to the switch control plane or backend server CPUs, or

system-specific metrics. Since most of these systems are written in

the bmv2 version of P4 for software targets, the relative comparison

between normal and adversarial workloads is more informative

than the absolute performance numbers.

Figure 11 shows the impact of the 13 adversarial traces in de-

tail. As we can see, the workloads discovered by P4wn lead to

significant performance disruption compared with normal testing

traces. For Figures 11a, 11b, and 11e, the main performance metric

is the traffic rate per switch port before and after the adversarial

workload injection. For Figures 11c, 11d, 11f, 11g, 11h, 11i, 11m,

the performance metric is the number of packets that the control

plane or backend server CPUs need to process. For Figures 11j and

11l, the performance metric is the number of control plane digests

(a hardware mechanism on Tofino switches to generate messages

from the hardware data plane to the local switch control plane) that

the switch control plane receives. For Figure 11k, the performance

metric is the number of packets that need to go through a dedicated

switch recirculation pipeline.

Usability. By a manual analysis, we found that one adversarial

trace is not discovered from our testing in S7, which also causes data

eviction to the backend server. Figure 12 orders the top 110 (50% of

the total) code blocks by their probabilities and colors those with

expensive processing behaviors in red. Depending on the available

 0
 50

 100
 150
 200

 0 50 100 150 200

Ra
nk

in
g

Ranking

Figure 13: P4wn is robust to natural profile variances.

time for testing, one could increase the coverage by including more

code blocks.

Since a network’s traffic composition may naturally vary from

time to time, we have additionally tested how robust P4wn’s profile
is for adversarial testing based on probabilities. To measure this,

we have used three different CAIDA traces that are collected in

2016, 2018, and 2019, respectively. We have similarly used three

different traces for Poise and NetCache, with different “context

packet” frequencies for the former, and different “workload skews”

for the latter. To ensure profile diversity, we have compared the

interactive query results for the same queries across profiles, and

found that the variance for individual queries can be as high as

two orders of magnitude. The metric we have used to quantify its

robustness is the rankings of code blocks based on their probabilities
across systems.

Figure 13 plots this result across all traffic profiles for all pro-

grams. If a code block has a ranking of a in the first profile, we use

this as the baseline and draw a dot at location (a,b) where b is the

index in other profiles that has maximum movement. A perfectly

robust system would produce results along the the diagonal. As we

can see, most dots fall on the diagonal. For the code blocks whose

rankings have changed, the average movement distance is 3.23.

These results show that prioritizing low-probability edge cases is a

robust method for adversarial testing.

6 DISCUSSIONS
We discuss the limitations of P4wn as well as future directions.

Mitigating adversarial disruptions. Although P4wn does not

actively generatemitigation strategies, its probabilistic profile serves

as a useful guide to craft potential countermeasures. One approach

is to add counters to code blocks and measure their distribution

at runtime. The runtime profile can be compared against some ex-

pected profile for anomaly detection—e.g., excessive occurrences

of edge cases might trigger alarms to the operator or rate limiting

logic. Moreover, relying on code block probability for adversarial

testing does not guarantee a complete discovery of all expensive

behaviors in a program. An adversarial behavior might occur, for

instance, in common-case code blocks, or by combining multiple

code blocks in some nifty manner.

Match/action table entries. As a limitation, P4wn assumes

that match/action table entries are known; our prototype currently

does not handle “symbolic” entries as in Vera [71], although such

integration should be feasible. By making entry fields symbolic and

including them in the symbex analysis, P4wn could similarly reason

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

about their impact on program behaviors and profile their proba-

bilities. Such enhancements would enable P4wn to scale further,

as match/action entries introduce n-way conditionals that lead to

branchy programs.

Testing targets. P4wn currently does not analyze data plane

systems that are distributed across multiple devices, although such

systems are also on the rise [40, 47, 76]. One interesting future

direction is to handle such systems, e.g., by composing multiple

switch programs as onemonolithic system to analyze them together.

Moreover, although our testing is performed against programmable

switches, SmartNICs [3] and software targets [65] are also becom-

ing P4 programmable. P4wn’s techniques are applicable to these

contexts as well.

Conversion to C. P4wn relies on translating P4 programs to C

for symbex. This is an engineering limitation as KLEE does not have

direct support for languages like P4. Interestingly, this conversion

to C can potentially enable a joint control/data plane analysis, since

both components are now in C. This would lead to two interesting

topics: a) we could also profile the performance of the control plane

and discover expensive traffic patterns for both components; and b)

this joint program would essentially be multi-threaded, because the

control and data plane components run asynchronously. It would

be interesting to investigate multi-threaded symbex techniques [15]

to discover race conditions between the two components.

Beyond adversarial testing.As discussed earlier, program pro-

filers have general applications. We have briefly considered another

use case: profile-guided NF offloading. The idea is to partially of-

fload NF logic to a programmable switch to alleviate most critical

performance bottlenecks, if a full offloading is infeasible due to

switch resource constraints.

In this case study, we have used eBPF [7] programs, which are

a popular form of host-based packet processing programs. Since

these programs are written in C, P4wn can analyze them out of the

box. We applied P4wn to an eBPF program in the BEBA project [6]

that implements port knocking. This is a firewall-like NF that re-

quires the sender to generate a predefined sequence of port knocks

(i.e., packets with certain destination ports) before it can initiate

SSH requests. In the initial setup, the middlebox server runs this NF

to examine all incoming traffic before the packets are forwarded

to the final destinations. We used P4wn to analyze this program,

which identified hotspot components that handle non-SSH or port

knocking traffic. We then manually offloaded these components

to a P4 switch, and validated that this led to an average packet

latency improvement of 27% compared to the original eBPF pro-

cessing. We also compared this with a full offloading of the entire

program to the P4 switch by a complete rewrite, but found that it

only resulted in <1% additional improvement; on the other hand,

full offloading has used 12.5× more SRAM, 2× more VLIW (Very

Long Instruction Words), and 3× more stages in the switch than

guided offloading. Using P4wn to guide NF offloading and achieve

performance/resource tradeoffs is an interesting direction of future

work.

7 RELATEDWORK
Probabilistic symbolic execution. P4wn borrows from recent

developments from the program analysis community, especially

probabilistic symbex [35], which can quantify execution proba-

bilities and has found use in reliability analysis [27], measuring

software changes [29], and performance profiling [21]. P4wn devel-

ops a range of domain-specific techniques on top of this for data

plane systems.

Probabilistic network analysis. Observing that networks are

governed by complex programs, researchers have applied program

analysis techniques for network testing and verification. The first

generation of such tools focus on qualitative properties [13, 14, 25,

30, 36], such as whether two nodes can reach each other. How-

ever, these tools cannot analyze quantitative (e.g., probabilistic)

properties that arise due to network failures, traffic changes, or

load balancing. Recognizing that network environments are non-

deterministic in nature, as of late, researchers have been actively

working towards enabling probabilistic analyses for network pro-

grams [33, 66, 67, 70, 73]. Some of these systems enable reasoning of

probabilistic programs written in customized languages [33, 34, 67].

Compared to existing work, P4wn is the first probabilistic profiler

for data plane systems.

Adversarial testing.Adversarial testing has been demonstrated to

be valuable for many scenarios [10, 18, 37, 39, 41, 42, 49, 52, 53, 63,

74]. In this space, CASTAN [63] leverages symbex to identify slow

execution paths in software-based network functions for adversarial

testing. P4wn contributes a new technique that performs adversarial

testing by identifying edge cases, and it looks at a different class

of systems. The most related work is a workshop paper [45], but it

does not contain a complete design or implementation.

8 CONCLUSION
There is increased interest in developing program profiling and

analysis techniques for network data plane programs. However,

existing profilers [24, 61, 71] only support stateless programs. P4wn
enables stateful analysis of data plane systems, and it captures

the probabilistic nature of network processing. We develop novel

symbex techniques in P4wn, and apply it to adversarial testing. Our
evaluation shows that P4wn scales significantly better than the

baseline, and that it can effectively perform adversarial testing for

complex data planes with sophisticated state. The edge-case packet

traces cause 2-64× performance disruption to the tested systems.

9 ACKNOWLEDGMENTS
We thank Nate Foster for shepherding our paper and are grateful

for the reviewers’ insightful feedback. We also thank Bill Hallahan,

Kuo-Feng Hsu, Jennifer Rexford, Dingming Wu, Yifei Yuan, and

Jialu Zhang for their thoughtful comments on earlier versions of

the paper, and Yujian Ou for his contribution in the earlier stage

of the project. We gratefully acknowledge Costin Raiciu and Radu

Stoenescu for providing the source code of Vera and for their help

in the setup. This work was partially supported by NSF grants

CNS-1942219 and CNS-1801884.

A APPENDIX
A.1 Description of the tested systems
We include a more comprehensive description of the tested pro-

grams below.

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

• S1: lb.p4 is a load balancer that computes a hash of a packet’s

flow ID, and evenly distributes traffic to outgoing ports.

• S2: flowlet.p4 implements flowlet switching to mitigate

out-of-order delivery in TCP. It records the elapsed time

between two packets in the same flow, and batches packets

into flowlets and forwards them to the same port if they

arrive closely together. Otherwise, it computes a new for-

warding decision for the new packet based on the current

link utilizations.

• S3: nat.p4 is a network address translator that maps inter-

nal and external IP addresses. The first packet in a flow is

processed by the control plane to compute a mapping, and

subsequent packets will inherit the same mapping.

• S4: acl.p4 performs network access control. It forwards or

drops packets based on the access control list; if packets do

not match on any entry, they are sent to the control plane

for the final decision.

The seven data plane systems are from recent research projects. S5,
S7, S9, and S10 contain hash tables, S6, S8, S10 contain Bloom fil-

ters, and S6, S11 contain sketches. All of these systems are stateful.

• S5: Blink [38] detects remote link failures by examining

TCP retransmission behaviors. It monitors 64 TCP flows and

triggers rerouting to a preconfigured backup path if more

than 32 monitored flows experience retransmission.

• S6: NetCache [44] implements an in-network cache for

key/value pairs. Hot items are cached inside the switch and

served directly from the network.

• S7: *Flow [68] is a network telemetry system. It collects

per-packet telemetry data (e.g., packet timing and size) and

organizes the data in per-flow hash table. Once the buffer is

full, the data is evicted to a backend server.

• S8: p40f [9] performs passive OS fingerprinting by observ-

ing network traffic. It extracts signatures from SYN packets

and matches them against a preloaded table for fingerprint-

ing.

• S9: NetHCF [54] identifies spoofed traffic by detecting in-

consistent TTL fields in packets with the same source ad-

dresses.

• S10: Poise [46] is a context-aware access control system

for mobile clients. Clients generate context signals (e.g., GPS

coordinates) periodically, and the system makes real-time

decisions based on the signals.

• S11: NetWarden [75] mitigates network covert channels.

It detects abnormal packet IPDs (inter-packet delays) for

timing channels, and suspicious header values for storage

channels; upon detection, it further delays the packets to

destroy IPD patterns and rewrite packet headers.

The next four are benchmark programs that we have developed to

evaluate the new techniques of P4wn.

• S12: counter.p4 counts the numbers of TCP and UDP pack-

ets using two stateful counters. It mirrors a packet to a remote

server for every N packet of each kind. We use this program

to measure how well that P4wn can handle deep code blocks.

• S13: htable.p4 uses a CRC-based hash table of size S for

maintaining the number of packets per flow. It mirrors a

packet to a remote server for every N packets of each flow.

We use this program to measure how well that P4wn can

handle complex approximate data structures using greybox

analysis. Benchmarks S14 and S15 serve similar purposes.

• S14: cmsketch.p4 uses a count-min sketch of size S for

counting the number of packets per flow. It similarly mirrors

a packet to a remote server for every N packets of each flow.

• S15: bfilter.p4 uses a Bloom filter of size S to encode approx-
imate membership test. It counts the number of packets that

hits the bloom filter and mirrors a packet to the controller

for every N hits.

A.2 Experience with switch.p4
We report our evaluation experience with switch.p4, which is an

implementation of a full stack of protocols for a network switch.

The most significant difference between forwarding programs (like

switch.p4) and data plane systems (which we specifically optimize

for) is that their scalability bottleneck stems from different sources.

This program has complex branching behaviors for handing a

wide range of different network prototypes and forwarding deci-

sions (several hundred tables), but it has very simple state (tens
of stateful registers), In contrast, the data plane systems we have
focused on have very complex state, because their functions are akin
to “middleboxes” (on the order of 10k stateful registers per approxi-

mate data structure); on the other hand, they have relatively simple
branching behaviors (tens of tables). A significant portion of these

tables and branches are eventually for facilitating state maintenance

and sophisticated stateful processing. Consider a CRC-16 hash table

as an example: one instance alone would have 216 = 65536 stateful
registers. In order to symbex data plane systems, our techniques

are focused on optimizing stateful symbex over a sequence of sym-

bolic packets. Therefore, for all other tested systems that we have

presented in the evaluation section, P4wn can successfully profile

them using primitive techniques in KLEE for handling branching

behaviors, because branching is not the main bottleneck.

As discussed in Section 5.1, our earlier P4wn prototype en-

countered scalability bottlenecks for switch.p4, due to its com-

plex branching behaviors. KLEE’s primitive techniques for cutting

branches lead to a coverage of 25.9% in one hour (the default time-

out threshold we have used for the experiments), and a coverage of

40.3% for 12 hours. This finding is in line with benchmark results

in Symnet (symbex engine for Vera) against KLEE. Symnet/Vera

further proposed branch-cutting optimizations. Consider an intu-

itive example, where a symbolic packet is dropped by an access

control rule. A symbex engine aware of the semantics of “drop-

ping a packet”, such as Symnet, can immediately prune any further

executions, but a general-purpose engine like KLEE will continue

forking execution paths until the program calls “free” on the packet

buffer. Therefore, such domain-specific optimizations enable the

engine to scale better on branchy programs. We have ported two

of these techniques for P4wn to match Vera’s performance. Using

the same setup described in Section 5.1 of Vera [71] with concrete

table entries, P4wn took 1-2 seconds for each packet type (with

200+ execution paths explored), which is comparable to Vera.

Probabilistic Profiling of Stateful Data Planes ASPLOS ’21, April 19–23, 2021, Virtual, USA

REFERENCES
[1] CAIDA: Center for Applied Internet Data Analysis. http://www.caida.org/data/.

[2] Latte - computations with polyhedra - uc davis mathematics. https://www.math

.ucdavis.edu/~latte/.

[3] Netronome Agilio. https://www.netronome.com/products/agilio-cx/.

[4] P4 behavioral model. https://github.com/p4lang/behavioral-model.

[5] Publications and systems using KLEE. https://klee.github.io/publications/.

[6] The BEBA (Behaviorial Based Forwarding) Project. http://www.beba-project.eu/.

[7] What is eBPF? https://ebpf.io/.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. SIGCOMM, 2010.

[9] S. Bai, H. Kim, and J. Rexford. Passive os fingerprinting on commodity switches.

2019.

[10] R. Banabic, G. Candea, and R. Guerraoui. Automated vulnerability discovery in

distributed systems. In Proc. HotDep, 2011.
[11] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: a

modular reusable verifier for object-oriented programs. In Proc. FMCO, 2005.
[12] J. L. Beck and K. M. Zuev. Rare-event simulation. Handbook of Uncertainty

Quantification, 2015.
[13] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach to network

configuration verification. In Proc. SIGCOMM, 2017.

[14] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. Control plane compression. In

Proc. SIGCOMM, 2018.

[15] T. Bergan, D. Grossman, and L. Ceze. Symbolic execution of multithreaded

programs from arbitrary program contexts. In Proc. OOPSLA, 2014.
[16] M. Borges, Q.-S. Phan, A. Filieri, and C. S. Păsăreanu. Model-counting approaches

for nonlinear numerical constraints. In Proc. NFM, 2017.

[17] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-

independent packet processors. ACM SIGCOMM CCR, 44(3), 2014.
[18] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using Frankencerts

for automated adversarial testing of certificate validation in SSL/TLS implemen-

tations. In Proc. IEEE S&P, 2014.
[19] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation

of high-coverage tests for complex systems programs. In Proc. USENIX OSDI,
2008.

[20] S. Chakraborty, K. S. Meel, and M. Y. Vardi. A scalable approximate model counter.

In Proc. CP, 2013.
[21] B. Chen, Y. Liu, andW. Le. Generating performance distributions via probabilistic

symbolic execution. In Proc. ICSE, 2016.
[22] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. TACAS,

2008.

[23] D. Dumitrescu, R. Stoenescu, L. Negreanu, and C. Raiciu. bf4: towards bug-free

P4 programs. In Proc. SIGCOMM, 2020.

[24] D. Dumitrescu, R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Dataplane

equivalence and its applications. In Proc. USENIX NSDI, 2019.
[25] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and G. Varghese.

Efficient network reachability analysis using a succinct control plane representa-

tion. In Proc. OSDI, 2016.
[26] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar. BUZZ: Testing context-

dependent policies in stateful networks. In Proc. NSDI, 2016.
[27] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in symbolic

pathfinder. In Proc. ICSE, 2013.
[28] A. Filieri, C. S. Păsăreanu, W. Visser, and J. Geldenhuys. Statistical symbolic

execution with informed sampling. In Proc. FSE, 2014.
[29] A. Filieri, C. S. Pasareanu, and G. Yang. Quantification of software changes

through probabilistic symbolic execution (n). In Proc. ASE, 2015.
[30] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Mahajan, and

T. Millstein. A general approach to network configuration analysis. In Proc. NSDI,
2015.

[31] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and M. Barcellos.

Uncovering bugs in P4 programs with assertion-based verification. In Proc. SOSR,
2018.

[32] V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In Proc.
CAV, 2007.

[33] T. Gehr, S. Misailovic, P. Tsankov, L. Vanbever, P. Wiesmann, and M. Vechev.

Bayonet: Probabilistic inference for networks. In Proc. PLDI, 2018.
[34] T. Gehr, S. Misailovic, and M. Vechev. Psi: Exact symbolic inference for proba-

bilistic programs. In Proc. CAV, 2016.
[35] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In

Proc. ISSTA, 2012.
[36] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast control

plane analysis using an abstract representation. In Proc. SIGCOMM, 2016.

[37] T. Gilad, N. H. Jay, M. Shnaiderman, B. Godfrey, and M. Schapira. Robustifying

network protocols with adversarial examples. In Proc. HotNets, 2019.
[38] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio, and L. Van-

bever. Blink: Fast connectivity recovery entirely in the data plane. In Proc.
USENIX NSDI, 2019.

[39] M. E. Hoque, H. Lee, R. Potharaju, C. E. Killian, and C. Nita-Rotaru. Adversarial

testing of wireless routing implementations. In Proc. WiSec, 2013.
[40] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and D. Walker. Contra: A

programmable system for performance-aware routing. In Proc. NSDI, 2020.
[41] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino. LTEinspector: A sys-

tematic approach for adversarial testing of 4G LTE. In Proc. NDSS, 2018.
[42] S. Jero, X. Bu, H. Okhravi, C. Nita-Rotaru, R. Skowyra, and S. Fahmy. BEADS:

Automated attack discovery in OpenFlow-based SDN systems. In Proc. RAID,
2017.

[43] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based

program synthesis. In Proc. ICSE, 2010.
[44] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica. NetCache:

Balancing key-value stores with fast in-network caching. In Proc. SOSP, 2017.
[45] Q. Kang, J. Xing, and A. Chen. Automated attack discovery in data plane systems.

In Proc. USENIX CSET, 2019.
[46] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo. Programmable

in-network security for context-aware BYOD policies. In Proc. USENIX Security,
2020.

[47] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. HULA: Scalable load

balancing using programmable data planes. In Proc. SOSR, 2016.
[48] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static

checking for networks. In Proc. SIGCOMM, 2012.

[49] C. Killian, K. Nagara, S. Pervez, R. Braud, J. W. Anderson, and R. Jhala. Finding

latent performance bugs in systems implementations. In Proc. FSE, 2010.
[50] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan. Tea: Enabling

state-intensive network functions on programmable switches. In Proc. SIGCOMM,

2020.

[51] J. C. King. Symbolic execution and program testing. Communications of the ACM,

19(7):385–394, 1976.

[52] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru. Turret: A platform for

automated attack finding in unmodified distributed system implementations. In

Proc. ICDCS, 2014.
[53] H. Lee, J. Seibert, C. Killian, and C. Nita-Rotaru. Gatling: Automatic attack

discovery in large-scale distributed systems. In Proc. NDSS, 2012.
[54] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan. NetHCF: Enabling

line-rate and adaptive spoofed IP traffic filtering. In Proc. ICNP, 2019.
[55] J. Liu,W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé, H.Wang, C. Cascaval,

N. McKeown, and N. Foster. p4v: Practical verification for programmable data

planes. In Proc. SIGCOMM, 2018.

[56] L. Luu, S. Shinde, P. Saxena, and B. Demsky. A model counter for constraints

over unbounded strings. In Proc. PLDI, 2014.
[57] F. Ma, S. Liu, and J. Zhang. Volume computation for boolean combination of

linear arithmetic constraints. In Proc. CADE, 2009.
[58] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. Directed symbolic execution. In

Proc. SAS, 2011.
[59] R. Meier, T. Holterbach, S. Keck, M. Stähli, V. Lenders, A. Singla, and L. Vanbever.

(self) driving under the influence: Intoxicating adversarial network inputs. In

Proc. HotNets, 2019.
[60] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. SilkRoad: Making stateful layer-4

load balancing fast and cheap using switching ASICs. In Proc. SIGCOMM, 2017.

[61] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas. P4pktgen: Automated

test case generation for P4 programs. In Proc. SOSR, 2018.
[62] P. Oechslin. Making a faster cryptanalytic time-memory trade-off. In Proc. Crypto,

2003.

[63] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki. Automated

synthesis of adversarial workloads for network functions. In Proc. SIGCOMM,

2018.

[64] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki. Automated

synthesis of adversarial workloads for network functions. In Proc. SIGCOMM,

2018.

[65] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rex-

ford. Pisces: A programmable, protocol-independent software switch. In Proc.
SIGCOMM, 2016.

[66] S. Smolka, P. Kumar, N. Foster, D. Kozen, and A. Silva. Cantor meets scott:

Semantic foundations for probabilistic networks. In Proc. POPL, 2017.
[67] S. Smolka, P. Kumar, D. M. Kahn, N. Foster, J. Hsu, D. Kozen, and A. Silva. Scalable

verification of probabilistic networks. In Proc. PLDI, 2019.

http://www.caida.org/data/
https://www.math.ucdavis.edu/~latte/
https://www.math.ucdavis.edu/~latte/
https://www.netronome.com/products/agilio-cx/
https://github.com/p4lang/behavioral-model
https://klee.github.io/publications/
http://www.beba-project.eu/
https://ebpf.io/

ASPLOS ’21, April 19–23, 2021, Virtual, USA Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen

[68] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith. Scaling hardware

accelerated network monitoring to concurrent and dynamic queries with *flow.

In USENIX ATC, 2018.
[69] H. Soni, M. Rifai, P. Kumar, R. Doenges, and N. Foster. Composing dataplane

programs with µp4. In Proc. SIGCOMM, 2020.

[70] S. Steffen, T. Gehr, P. Tsankov, L. Vanbever, and M. Vechev. Probabilistic verifica-

tion of network configurations. In Proc. SIGCOMM, 2020.

[71] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu. Debugging

P4 programs with Vera. In Proc. SIGCOMM, 2018.

[72] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet: scalable symbolic

execution for modern networks. In Proc. SIGCOMM, 2016.

[73] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella. Detecting network

load violations for distributed control planes. In Proc. PLDI, 2020.

[74] M. von Hippel, C. Vick, S. Tripakis, and C. Nita-Rotaru. Automated attacker

synthesis for distributed protocols. In Proc. SafeComp, 2020.
[75] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating network covert channels

while preserving performance. In Proc. USENIX Security, 2020.
[76] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, decentralized defense

against adaptive adversaries. In Proc. USENIX Security, 2021.
[77] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gallium: Automated software middle-

box offloading to programmable switches. In Proc. SIGCOMM, 2020.

[78] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz, L. Yuan,

M. Zhang, H. Zheng, and B. Zhao. Packet-level telemetry in large datacenter

networks. In Proc. SIGCOMM, 2015.

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of existing work
	2.2 Our contributions

	3 The P4wn System
	3.1 Computing probabilities
	3.2 Checking convergence
	3.3 Telescoping ``deep'' code blocks
	3.4 Approximate data structures
	3.5 Generating test packet sequences

	4 Implementation
	5 Evaluation
	5.1 Stateful analysis
	5.2 Probabilistic analysis
	5.3 Adversarial testing

	6 Discussions
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	A Appendix
	A.1 Description of the tested systems
	A.2 Experience with switch.p4

	References

