
NSX: Large-Scale Network Simulation on an AI Server
Sajy Khashab†, Hariharan Sezhiyan†, Rani Abboud†, Alex Normatov†, Stefan Kaestle†

Eliav Bar-Ilan†, Mohammad Nassar†, Omer Shabtai†, Wei Bai†, Matty Kadosh†
Jiarong Xing‡, Mark Silberstein†∗, T.S. Eugene Ng‡, Ang Chen†§

†NVIDIA ‡Rice University ∗Technion §University of Michigan

Abstract
Network innovation is key to supporting AI workloads. Packet-level
simulation is indispensable for testing new network features as it
enables high-fidelity experimentation. However, today’s simulators
struggle to scale to large topologies that are typical to AI clusters.
To scale the simulation, we have built NSX which is a new simula-
tor that takes advantage of AI servers themselves (e.g., NVIDIA’s
DGX) to experiment with AI networks. Network simulation has
unique workload characteristics that make AI servers an ideal fit:
relatively simple, parallelizable compute, with high memory band-
width pressure. Yet, in order to fully leverage this platform, we
need new techniques to rearchitect network simulators for GPU
execution. We describe the design decisions that have gone into
NSX, and report evaluation results from our current prototype: NSX
can scale simulation to networks of 524 k nodes, and it finishes
0.1 ms simulation in less than 2 seconds on a DGX-H100 box. NSX
is being used by NVIDIA’s networking team on a daily basis for AI
cluster design, and new features are added to it on a regular basis.

ACM Reference Format:
Sajy Khashab†, Hariharan Sezhiyan†, Rani Abboud†, Alex Normatov†, Ste-
fan Kaestle†, Eliav Bar-Ilan†, Mohammad Nassar†, Omer Shabtai†, Wei
Bai†, Matty Kadosh†, Jiarong Xing‡, Mark Silberstein†∗, T.S. Eugene Ng‡,
Ang Chen†§ . 2025. NSX: Large-Scale Network Simulation on an AI Server.

In 2nd Workshop on Networks for AI Computing (SIGCOMM ’25), Septem-
ber 8–11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3748273.3749199

1 Introduction
AI clusters are creating new demands on the network, and packet-
level simulation is indispensable for network analysis. New features
(e.g., topology designs, congestion control, routing algorithms) need
to be studied in simulated environments before production, but
existing simulators are slow [19, 25, 29–31] and struggle to scale to
large AI networks. With the modern AI cluster soon approaching
million GPUs [28] and with growing link speeds that will exceed
Terabit/s, simulator scalability bottlenecks will further worsen. Left
unaddressed, this will hinder the speed of innovation.

* Khashab, Sezhiyan, and Abboud have contributed equally to NSX.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2082-6/25/09
https://doi.org/10.1145/3748273.3749199

AI has been driving much of this cluster growth, and AI servers
like NVIDIA’s DGX have become the main building block; however,
the vast majority of today’s packet-level simulators are designed for
traditional CPU architectures [19, 25, 29, 34]. These simulators can-
not effectively scale to AI-scale clusters. Recent work has only used
GPUs in limited ways, such as building ML-based predictive sim-
ulation [30, 31], or concurrently executing many embarrassingly-
parallel “parameter sweep” simulations [14]. However, the more
fundamental problem—accelerating a single simulation of large-
scale networks at the size of AI clusters—remains difficult because
it requires tackling the scalability bottlenecks at the root. This in
turn requires rethinking network simulator design.

We observe that network simulation workloads have distinct
properties: relatively simple, parallelizable compute, with high
memory bandwidth pressure. Packet-level simulation passes times-
tamped events (e.g., packet arrival/departure) through a topology
of network elements, with event handlers triggered at each process-
ing step. In terms of compute, event handlers (e.g., packet header
operations such as decrementing TTLs) do not require complex
logic, but they need to process a large number of discrete events
concurrently. GPU compute uses vectorized processing (in SIMT,
or single instruction multiple threads [33, 38]), which executes the
same logic on many parallel ALUs; this stands in stark contrast to
CPUs with a much smaller number of high-performance threads.
Moreover, network simulation is memory-intensive [20], not only
because a large amount of packets need to be sent/received at each
hop, but also because larger topologies inherently contain more
network state (e.g., to encode all switches and NICs including their
buffers). On CPU platforms, the working set will easily exceed the
faster cache and become bottlenecked at the slower DRAM; in con-
trast, GPU platforms provide abundant high-bandwidth memory
(HBM) with a unified address space, which have the potential to
scale the simulation much further.

Hence, the premise of NSX is that modern AI servers are them-
selves an ideal fit for network simulation workloads. For example,
NVIDIA’s DGX hosts eight GPUs, each with 80 GBs of HBM acces-
sible at TB/s bandwidth from hundreds of thousands of threads; a
low-latency high-throughput NVLINK interconnect between GPUs
further enables efficient scaling across multiple GPUs. The GPU
programming software ecosystem is also quickly maturing. The
CUDA framework now supports general program execution with
familiar interfaces (e.g., in C/C++/Python), with increasingly abun-
dant developer expertise, enabling non-ML workloads to benefit
from GPU computation. Combined, these hardware and software
trends motivate us to leverage AI servers. NSX is a new network
simulator rearchitected for scalable execution on an AI server, and
its design challenges lie in fully extracting the performance of such
servers for simulation workloads, using several techniques.

https://doi.org/10.1145/3748273.3749199
https://doi.org/10.1145/3748273.3749199


SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Sajy Khashab, Hariharan Sezhiyan, Rani Abboud, et al.

Execution model. To unleash GPU parallelism, NSX adopts a
granular executionmodel customized for SIMT threads, by breaking
down a device into very small modules. For instance, even a single
ingress/egress queue of a switch is designed as a module, and this
is more granular than existing network simulators. This design
enables each module to be executed on a SIMT thread, maximizing
the performance of vectorized GPU compute. However, a potential
downside for granular execution is that it may introduce control
flow overheads involving the CPUs. To address this, NSX uses a
systolic kernel launch order that leverage the network hierarchy
in AI clusters, and further uses recent GPU features (i.e., CUDA
graphs) to minimize CPU overheads.

Event queues. Another challenge is that granular modules will
increase the amount of inter-module communication [9], because
packets need to be passed through many modules for end-to-end
simulation. We design NSX’s event queues to provide a producer-
consumer abstraction; the underlying implementation backs this
abstraction using a combination of first-in-first-out (FIFO) and pri-
ority queues, and this choice is made depending on the inter-module
connectivity pattern. As the rationale, FIFO queues are linear data
structures and easier to maintain. However, priority queues are bet-
ter suited for high fan-in scenarios where, otherwise, dequeueing
from many FIFOs will result in irregular memory access.

Event causality. In a simulation, modules concurrently dequeue
events from their inbound queues, and enqueue new events into out-
bound queues. For correctness, simulation needs to process events
in timestamped order to preserve event causality. While causality is
a global property, a naïve design with topology-wide coordination
would cause high overheads. Instead, we adapt a decentralized al-
gorithm to avoid topology-wide synchronization. Specifically, each
module relies on its adjacent queue state to safely process as many
events as possible, but only uses local synchronization methods;
this avoids causing high contention across the GPU substrate.

Transparent scaling. Scaling to multiple GPUs is essential
to simulate large-scale topologies, which otherwise exceed the
memory capacity of any single GPU. This requires transferring
events across GPU boundaries, but a naïve design needs to marshal
and demarshal packets across GPUs via collectives such as NCCL.
This not only involves CPUs, but also results in poor performance
since NCCL is optimized for bulk transfers whereas simulation
passes smaller data batches in discontiguous memory. We observe
that the NVLINK fabric offers new opportunities to instead leverage
load/store-based shared memory abstraction for transparent scaling
across GPUs, obviating NCCL overheads.

This paper describes the current snapshot of NSX, since new
features are added on a regular basis. NVIDIA engineers have been
heavily relying NSX to experiment with AI networking features,
such as adaptive routing, congestion control, and topology design.
NSX can scale network simulation to 524 k nodes, and finish a 0.1ms
simulation under 2 seconds on an DGX-H100 box. This provides
orders-of-magnitude higher speedups than CPU-based simulation,
and allows network engineers to derive insights rapidly. We con-
clude with extensions and emerging use cases of NSX.

2 Motivation and Background
Packet-level simulators model a network experiment as a series of
discrete events (e.g., packets, timers) that change the state of the

network components (e.g., switches, NICs). This high-fidelity anal-
ysis is not available in other paradigms like coarser-grained flow
simulation or ML-based predictive simulation [3, 30, 31]. Therefore,
packet-level simulation has gained wide popularity for studying
new network features. Furthermore, other simulation paradigms
(e.g., ML-based prediction) often rely on packet-level simulation
data as a starting point to train their models.

However, packet-level simulators are notoriously slow and they
struggle to scale to large topologies that interconnect servers that
support a single distributed application, such as today’s AI work-
loads. Modern networks produce a large number of events, as link
speeds soon reach Tbps and cluster sizes exceed 100k GPUs and will
reach 1 million [5, 28]. This is fueled by the insatiable need of AI
training workloads, which require tight coupling of computing re-
sources at such unprecedented scales. Hence, datacenter providers
are constructing ever larger clusters and introducing new network-
ing technologies (e.g., topologies, congestion control, in-network
aggregation, load-aware routing). To experiment with new fea-
tures, however, simulation will increasingly become a bottleneck—
especially because simulation is most needed to study how a feature
would perform at future-generation cluster scales, which could be
one order of magnitude larger than the existing cluster.

2.1 Recent Work and Limitations
Therefore, improving the performance of packet-level simulators [25,
29] has gained extensive attention [14, 19, 30, 31, 34]. Among exist-
ing work, most simulators use CPU platforms and specialize their
techniques to suit modern CPU features [1, 12, 15, 16, 18]—e.g.,
load-adaptive scheduling to optimize for CPU synchronization [34],
or data layout schemes that enable better CPU caching [19]. While
each of these solutions has improved simulation scale, CPU plat-
forms fundamentally have limited thread parallelism (i.e., a small
number of performance-optimized threads) and limited amount of
fast memory (i.e., the SRAM cache)—which we observe run counter
to the key needs of network simulation.

A recent work, Multiverse [14], has looked to GPU platforms
for further improvement. Its key idea is to instantiate an ensemble
of almost-identical simulations on a given topology, for parameter
sweeping experiments. For instance, a range of congestion control
parameters can be tried out in parallel GPU-based simulations, in-
dependently. However, this work optimizes for parameter-sweep
experiments on a fixed network topology, without directly con-
fronting the simulation scaling bottleneck as topologies become
larger. In a simulation of a single large network, different network
elements are tightly coupled—it is not an “embarrassingly parallel”
workload; but this is exactly the scenario we need to simulate in
order to study workloads at scale (e.g., AI training).

2.2 NSX: Scaling Simulation on AI Servers
Modern AI servers are custom-designed for training workloads,
each enclosing multiple GPUs over a fast NVLink interconnect. For
instance, NVIDIA’s DGX servers host eight GPUs (e.g., A100/H100),
with the H100 model featuring 114 streaming multiprocessors (SMs)
and each SM containing 64 warps, which equates to 2048 threads
[26, 27]. SMs are the workhorse of the GPU and contain computa-
tion cores, register files, and thread schedulers. For network simula-
tion, they provide massive parallelism not found in CPU platforms.



NSX: Large-Scale Network Simulation on an AI Server SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

GPU (single device)

Global Memory (shared by all SMs)

L2 cache (shared by all SMs)

SM 1

…

L1 cache/ Shared 
Memory

Registers

SM 1

Core Core Core

Core Core Core

SM 1

L1 cache/ Shared 
Memory

Registers

SM N

Core Core Core

Core Core Core

…

GPU kernel

Thread blocks

……

…

…
Warps

Thread
Executed by

Figure 1: NVIDIA’s GPU architecture and execution model.

Warps are the basic units of execution on the GPU, and each warp
consists of 32 threads. The threads in a warp follow a vectored, sin-
gle instruction multiple threads (SIMT) model. A subset of threads
in the same warp execute the same instruction, potentially applying
it to different data. Figure 1 illustrates NVIDIA’s GPU architecture
and its execution model, for which NSX is designed.

Although AI servers are primarily designed for neural network
execution, the CUDA programming model is increasingly general.
Functions are organized in the form of kernels, which are the unit of
execution; the computing substrate is arranged in a grid of “thread
blocks” that contain threads to run computation. In theory, any
workloads that can be structured to leverage this hardware could
potentially gain speedups. Hence, given that AI servers are becom-
ing commonplace in modern clusters, and that AI workloads do not
always saturate the entire cluster at all times, we could co-opt one
or more such servers to carry out simulation tasks when they are
free. As we will show later, even one such server can scale network
simulation to an unprecedented size.

However, leveraging this substrate effectively requires rearchi-
tecting network simulators and addressing new considerations not
found in CPU platforms. Consider some examples. The GPU instruc-
tion fetch unit supplies the same instruction to multiple threads.
If these threads encounter different control flows (i.e., diverging
at if/else branches in the same kernel), this will cause threads to
duplicate each other’s execution leading to resource waste. For
memory-intensive workloads, divergence also leads to poor band-
width utilization. GPU kernels are also typically launched from the
host CPU, and the launch crosses PCIe and involves the GPU driver,
slowing down GPU execution. Finally, GPUs have more complex
memory hierarchies and demand higher developer expertise to
optimize memory movement. Hence, we have designed the NSX
architecture to exploit these properties.

3 NSX Design
NSX is built using four techniques for a) structuring the simulated
modules, b) passing events across modules, c) synchronizing the
modules to preserve global causality, and d) scaling the architecture
to multiple GPUs. We wrote it in 13 k lines of code.

3.1 Execution Model
GPUs schedule work in the granularity of CUDA kernels. While
larger kernels supply more work to the GPU threads, more gran-
ular designs enables higher parallelism needed to scale to large

topologies. Our execution model uses a granular division of net-
work devices into ‘modules’—akin to the Click [21] modular router
where small components can be assembled together to build diverse
network functions. This modularity reduces GPU thread divergence
by ensuring threads within a warp execute the same homogeneous
logic for their assigned modules (e.g., ingress queues), with each
module being mapped to a single SIMT thread to exploit parallelism
[8, 23].

Kernel launch order. The NSX executor launches the kernels
based on the observation that datacenter network topologies are hi-
erarchical. In the absence of misconfigurations, a packet’s trajectory
through the network is linear and follows a highly regular lifecycle—
i.e., being generated by some NIC, transmitted upward, and then
finally downward to its destination; switches do not produce pack-
ets on their own. This enables a systolic execution workflow, where
NSX launches NICs, links, and switches based on their topological
locations sequentially for each round. Since a kernel needs to fetch
its device state (e.g., queue/NIC state) for execution, we further
optimize this data access: GPUs issue hardware transactions that
fetch larger memory segments than a single read; therefore, threads
within a warp should ideally access contiguous memory locations,
so that accesses can be coalesced for higher throughput [24]. NSX
partitions network state based upon module assignment, ensuring
that device states are colocated with their SIMT threads.

Control flow offloading. This launch order further enables
us to minimize control flow overheads by eliminating CPU in-
volvement in the common case. Naïvely, the CPU intervenes af-
ter each kernel completes, and explicitly dictates which kernel(s)
to launch next—e.g., by inserting synchronization barriers (e.g.,
cudaStreamSynchronize()) that transfer control to the CPU.How-
ever, each barrier involves a CUDA driver call and traverses PCIe,
incurring high overheads. NSX offloads the control flow supervi-
sion using an advanced feature called “CUDA graphs” [7, 10]. With
this technique, only the first iteration of kernel launches is from the
CPU; from that point on, the GPUs memorize the launch order and
repeat the same control flow until termination. At the end of every
iteration, we insert a dedicated kernel (i.e., a condition node [10])
that checks for completion criteria—e.g., the simulation timestamp
reaching a predefined limit—and then transfer the control flow back
to the CPU when all simulation steps are complete.

3.2 Event Queues
Modules need to communicate, e.g., passing packets through the
topology for end-to-end simulation. Conventional simulators use
a global queue to store all events sorted by timestamps. On GPU
platforms, however, many threads will concurrently access this
queue, which would lead to high contention. NSX instead designs
‘module-local’ event queues, where each simulated module has
its own incoming/outgoing event queues. By creating these event
queues local to each module, a much smaller number of threads
contend on this shared data structure. Moreover, since NSX assigns
simulation modules based on the thread and memory hierarchy,
module-local event queues add another benefit: threads typically
only move events to other threads that are close together.

We also give special attention to the data structure design in
NSX. Event queues implement producer/consumer behavior; in
each iteration, a module fetches events from all of its incoming



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Sajy Khashab, Hariharan Sezhiyan, Rani Abboud, et al.

queues, processes the earliest events, and enqueues the results to
outgoing queues. The need to identify the earliest inbound events in-
duces a natural definition of “event priority” by timestamps. Indeed,
priority queues are the de-facto choice in CPU-based simulators,
because they enable fast retrieval of the earliest events in a global
queue. However, priority queues require pointer-based operations
for maintenance, which is particularly heavyweight for GPUs be-
cause the irregular access patterns cause memory stalls and require
threads to wait for each other.

Flex queues. Since NSX obviates a global queue, each module-
local queue is already much smaller. Hence, FIFO (first-in-first-out)
queues provide sufficient performance in many cases; in addition,
FIFO queues being linear data structures are also easier to maintain
on GPUs. However, in high fan-in scenarios, a module needs to
fetch from many incoming FIFO queues to determine the earliest
event. For instance, modules that comprise a network switch are
interconnected at higher fan-in degrees—e.g., the forwarding mod-
ule scans all ingresses buffers, processes the earliest event, and
forwards it to the egresses. It needs to examine many FIFO queue
heads (i.e., the ingresses) which scale poorly as the switch radix
increases. This leads to irregular memory accesses across disparate
locations and performance degradation.

NSX strategically inserts priority queues where needed, depend-
ing on the module fan-in. This in turn depends on the underlying
network topology and device complexity; we call this design pattern
“flex queues.” For high fan-in scenarios, NSX uses FIFO queues for
each ingress module as the main backing store, but inserts another
priority queue that connects all FIFO queues as an intermediate
data structure. In the beginning of each iteration, NSX scans all the
FIFO queues and places all events into the priority queue. The scan
operation incurs a one-time overhead as it needs to touch disparate
memory locations in the FIFO queues. However, from this point on
until the current iteration completes, the next module reads from
the priority queue without additionally requiring memory accesses
to disparate FIFO queues.

3.3 Event Causality

Having decentralized event queues, however, requires synchroniza-
tion across modules so that globally, events are not processed out of
order. In discrete simulation literature, this relies on a “lookahead”
mechanism [32], where an event is considered safe to process if it
is guaranteed no other events with a lower timestamp will appear
at that specific component. The conventional solution is to use a
centralized scheduler that determines the largest safe lookahead
time for all modules. For instance, if the current simulation time
is 𝑡 and the fastest link in the network has a propagate delay of 𝑑 ,
then the scheduler will instruct all simulated modules to process
all events up to 𝑡 + 𝑑 in parallel, without breaking causality.

Decentralized causality synchronization. However, on GPU
platforms, this leads to two inefficiencies. First, we observe that
again, global coordination is needed, leading to contention. More-
over, NSX’s granular modules lead to another challenge, because
some inter-module latencies are orders of magnitude larger than
others—for instance, inside a switch, the propagation latency is
on the order of nanoseconds, whereas across switches the latency

1: function ProcessEvents(Module m)
2: met← GetMet(InQs); ⊲ Minimum enqueue time (met)
3: ev← GetNxtEvt(InQs);
4: while ev exists and ev.time ≤ met do
5: m.cur_time← ev.time;
6: EvtHandler(ev);
7: ev← GetNxtEvt(InQs);
8: m.cur_time← met;
9: promise← m.cur_time + LookAheadVal;
10: SetMet(OutQs, promise); ⊲ Promises to outgoing queues.

Figure 2: Event processing loop with decentralized “mini-
mum enqueue time” propagation.

increases to microseconds or more. A central synchronization algo-
rithm will force all modules to use the most conservative lookahead
value, which severely restricts parallelism.

We develop a decentralized synchronization algorithm, where
each module updates its lookahead values for itself and its adjacent
event queues locally, and then propagates such updates across the
system. This can be viewed as a variant of the “null message” [32]
algorithm but it avoids sending any timestamp messages by assign-
ing a “minimum enqueue time” accessible to all modules in shared
memory [37]. Consider a module𝑚 and its outgoing queue 𝑞: NSX
allows 𝑚 to promise 𝑞 a “minimum enqueue time” based on the
module’s local timestamp and the propagation delay between𝑚

and 𝑞—this will be the earliest timestamp at which a future event
may appear in this queue. Each queue 𝑞 then promises its down-
stream module𝑚′ on its current minimum enqueue time; and𝑚′
will likewise compare across all incoming queues and compute
the cross-queue miminum. This algorithm only requires local co-
ordination, which occurs in faster GPU memory and minimizes
contention; and it allows for each module to maximize the number
of events to process safely.

Figure 2 outlines the algorithm. ProcessEvents is called for every
module. First, a module computes the minimal MinEnqueueTime
for every input event queue. It obtains the head of each input queue,
which corresponds to the event with the earliest timestamp. If this
timestamp is less than or equal to the minimal MinEnqueueTime,
the event is processed. This is repeated until all eligible events
for this object are processed. Lastly, the MinEnqueueTime of any
output event queues are updated with the lookahead value.

3.4 Transparent Scaling
NSX is capable of leveraging all GPUs on an AI server to scale
the simulated network size. By default, it partitions the nodes and
links of a large network evenly across GPUs, and marks cross-GPU
event queues where inter-module events will traverse the GPU
boundary. Although GPUs typically benefit from well-optimized
collective communication primitives (e.g., NCCL), we observe that
network simulation presents unique challenges that make NCCL
inefficient. Specifically, event queues are colocated with their ker-
nels to maximize simulation efficiency, so cross-GPU communica-
tion is between many event queues at disparate memory locations,
rather than a typical NCCL transfer that optimizes for bulk data
movement. Moreover, the amount of event transfer depends on
the per-module simulation progress, whereas collective primitives
typically perform better if the transfer sizes can be calculated in



NSX: Large-Scale Network Simulation on an AI Server SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

131k 294k 524k
Number of NICs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Si
m

ul
at

io
n 

Ti
m

e 
(s

ec
on

ds
)

Number of GPUs: 1
Number of GPUs: 2
Number of GPUs: 4
Number of GPUs: 8

Figure 3: Scalability on a DGX-H100 server with 1, 2, 4, 8
GPUs used, reaching 524k nodes in the largest setting. X’s
indicate out of memory errors due to the large network size.

advance. Finally, collective communication calls are launched from
host CPUs, incurring extra overheads when simulation events pass
the GPU boundary [11, 17, 35].

Cross-GPU event queues / Xqueues. To overcome these limi-
tations, we observe that the NVLink substrate on AI servers enables
NSX to transparently scale the simulation using a shared memory
abstraction. NSX gives Xqueues special treatment by allocating the
backing memory using nvshmem [6], an allocator that exploits the
global memory space across GPUs as enabled by NVLink. Xqueues
no longer follow an event-based design with enqueue/dequeue
operations; rather, access to Xqueues trigger get and put opera-
tions which are, thanks to nvshmem, one-sided operations that are
initiated and completed from the GPU side. Since gets and puts
are load/store memory operations, they do not pay the overhead
of setting up NCCL contexts or marshalling/demarshalling data
into messages. Many such small data transfers can occur efficiently
over NVLink despite the fact that the underlying data exists in
non-contiguous, small chunks.

4 Evaluation
We report benchmark results obtained from a single GPU (A100)
and a single DGX server (eight H100 GPUs). Unless noted otherwise,
all links are 100 Gbps. We define the cluster size using the number
of NICs, because AI clusters equip each GPU with its own NIC. We
use a 0.1 ms trace for simulation, which is a bisection traffic pattern
where each NIC is sending at full line rate to another NIC crossing
the entire network hierarchy. We tested three-level Fat-tree and
two-level leaf/spine topologies and report the results by the number
of NICs each experiment contains.

4.1 Scalability
Our primary goal is to scale simulation to large clusters. Hence, we
start by testing NSX on a DGX-H100 server, scaling the simulation
from one to two, four, and eight GPUs. As Figure 3 shows, doubling
the number of GPUs yields a performance improvement between
65% and 95%. Across all runs, we find that Xqueue operations ac-
count for 10%-25% of total execution time when scaling beyond one
GPU. Our baseline used NCCL for the communication (not shown),
but we found that the NCCL setup costs dominate the execution

16 128 1k 8k 64k 128k
Number of NICs

10 3

10 1

101

103

Si
m

ul
at

io
n 

Ti
m

e 
(s

ec
on

ds
) ns3

UNISON
NSX

Figure 4: NSX outperforms ns3 and Unison. We use Fat-tree
topologies, and increase the number of NICs by eight times
in each step, except for the last data point which shows the
largest scale NSX can support.

time, to the extent that the performance would degrade with multi-
ple GPUs. With our techniques, NSX can scale to networks with
524k NICs on a single DGX box.

4.2 Comparison against CPU simulation
Next, we compared NSX against ns3 [25], a popular CPU-based
simulator, and Unison [34], the most recent CPU simulator that
extends ns3 for optimized multicore execution. We used the same
traffic generator to ensure that the number of flows and the packet
sizes are the same across all simulators. We aligned device-level
logic across all simulators to only implement basic forwarding
behavior: e.g., for NSX we have disabled several features, such as
adaptive routing, weighted ECMP, for a fair comparison.

The CPU simulators run on an AMD EPYC 32-core machine [2]
equipped with 250GB of DRAM capacity; and we restricted NSX to
run in a single A100 GPU. We use a Fat-tree topology and scale the
cluster size by 8 times for each step, and Figure 4 shows the results.
ns3 and Unison timed out (threshold: 104 seconds) beyond 1024
and 8192 NICs, respectively, whereas NSX scales to 128k NICs. At
1024 NICs, NSX is 130x faster than Unison and 9,000x faster than
ns3, and at 8192 NICs, NSX is 60,000x faster than Unison.

4.3 GPU-centric optimizations
Next, we evaluate the effectiveness of two GPU-centric optimiza-
tions on a single A100 GPU: a) CUDA graphs for control flow
offloading, and b) flex queues for high fan-in networks. Our base-
line is a version of NSX with these optimizations disabled thus
representing a naïve use of GPUs for network simulation. This
baseline is similar to Multiverse [14], a recent work that performs
simulation within the bounds of a single GPU. We use leaf/spine
topologies and increase the cluster size by four times per step—
except for the last data point where instead we test the largest
topology NSX can support. Figure 5(a) shows that CUDA graphs
provide strong speedups at smaller scales—this is because kernel
execution times are smaller, accentuating overheads due to kernel
launches; for larger networks, simulation time dominates the run-
time. Figure 5(b) shows that the benefits of flex queues have the
opposite trend because larger topologies have required higher-radix
switches that in turn benefit from flex queues. Figure 5(c) shows
the overall results—NSX supports 204k NICs and completes within
16 seconds.



SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Sajy Khashab, Hariharan Sezhiyan, Rani Abboud, et al.

32 128 512 2k 8k 32k 128k 204k
Number of NICs

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

(a)
CUDA Graphs

32 128 512 2k 8k 32k 128k 204k
Number of NICs

0

5

10

15

Sp
ee

du
p

(b)
Flex Queues

32 128 512 2k 8k 32k 128k 204k
Number of NICs

0

5

10

15

Se
co

nd
s

(c)
Optimized Runtime

Figure 5: (a) Control flow offloading with CUDA graphs; (b) Flex queues for high fan-in; (c) End-to-end simulation times in
NSX. We use leaf/spine topologies and increase the cluster size by four times for each step, except for the final data point where
we measure the largest network size that NSX can support (i.e., 204k NICs).

4.4 Cluster validation
We then simulate the topology of our cluster with 576 NICs (i.e.,
72 AI servers, each with 8 GPUs) interconnected in a three-level
topology at a line rate of 400Gbps.We sampled the queue occupancy
at different levels of the network hierarchy at a frequency of every
200𝜇s, and compare the P99 and median values in NSX and the
real cluster in Table 1. At all levels of the hierarchy, the simulation
results closely follow the actual occupancy in the real cluster.

5 Related Work
CPU-centric network simulation. Recent network simulators
on CPUs has focused on improving performance with techniques
to leverage the parallelism provided by modern CPUs [1, 12, 15,
16, 18]. Unison [34] proposes an optimized version of parallel DES
(PDES) that leverages a fine-grained and load-adaptive scheduling
algorithm to improve the efficiency of synchronization across CPU
cores. DONS [19] proposes load-aware partitioning scheme to place
work on different cores. It also proposes a novel data layout scheme
to enable better caching behavior on the CPU. Unlike these works,
our work specifically targets GPU platforms.
ML-based simulation. ML techniques for network simulation
have been widely explored [4, 22, 36, 40]. They approximate certain
aspects of the simulation using deep neural networks, scaling up
the performance but sacrificing packet-level fidelity. While this is
a useful technique, training these neural network models requires
packet-level simulation data to begin with. Hence, packet-level
network simulation remains indispensable for ML-based accelera-
tion. Furthermore, we are in an era where new networks are being
designed on a regular basis; for these novel designs, network en-
gineers need to experiment with new network designs (instead of
existing designs), and we do not have data readily available for
model training. Our work, therefore, focuses on next-generation
network simulation on GPU platforms for packet-level accuracy.
GPU-centric simulation.GPU-based discrete event simulation [13,
39] have been studied on earlier generation GPUs (early 2010s),
and for generic simulation goals. NSX focuses on network simu-
lation and leverages recent AI servers with new features, such as
CUDA graphs and shared memory. Existing work [39] also uses a
global synchronization algorithm, whereas NSX develops a decen-
tralized algorithm for GPU platforms. Another work [13] divides
simulation across CPUs and GPUs, whereas NSX places the entire
simulation on GPUs and eliminates CPU involvement except for

Queue Type Real/NSX (P99) Real/NSX (Med.)
Leaf (Down) 33/40 8/15
Leaf (Up) 92/85 26/30

Spine (Down) 88/84 25/29
Spine (Up) 88/84 26/29
Core (All) 83/83 25/29

Table 1: Queue occupancy [KB] comparison between a real
cluster and its simulation with NSX.

the first launch. Multiverse [14] concurrently simulates many “pa-
rameter sweep” experiments on GPU/CPU systems, but each such
experiment is still limited in size (54k GPUs/NICs); in contrast, NSX
proposes four novel scaling techniques, which push the limit of the
simulated network size by another order of magnitude (524k).

6 Future Work
NVIDIA’s end-to-end networking team has been using NSX as the
main simulation tool for several months, to study and design newAI
networking features (e.g., adaptive routing, packet spraying, various
congestion control algorithms) and understand their behaviors at
scale. We have also identified several emerging directions for NSX.

(1) Cross-DC training: NSX currently supports 524k devices,
but AI clusters are continuing to grow. Cross-datacenter training
workloads will involve evenmore devices, andmillion-scale clusters
are being constructed. To evaluate network designs for cross-DC
training, a potential direction is to extendNSX tomultiple AI servers
(e.g., multiple DGX) or a single GB300 system with 72 NVLink-
connected GPUs, to further amplify the simulation scale.

(2) Simulation cost: Spending compute cycles in network simu-
lation potentially takes away from the amount of computing power
for AI workloads. However, AI workloads rarely saturate all servers
at all times. Hence, for clusters that are already equipped with AI
servers, we believe that the primary cost will come from energy
consumption of network simulation. Another interesting avenue of
future work is to investigate the cost/efficiency tradeoff of running
simulation on rented AI servers in the cloud, which are more costly
than CPU-based platforms but can finish the simulation much faster.

(3) Simulation programming. Conventional simulators like
ns3 export a well-defined interface for developers to write simula-
tion scripts; we plan to investigate a similar programming interface
that allows developers to compose CUDA-based modules together,
yet without requiring deep CUDA programming expertise.



NSX: Large-Scale Network Simulation on an AI Server SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

References
[1] Alfred Park, Richard M Fujimoto, and Kalyan S Perumalla. 2004. Conservative

synchronization of large-scale network simulations. Proceedings of the eighteenth
workshop on Parallel and distributed simulation. 153-161. (2004).

[2] AMD. 2019. AMD EPYC 7002 Series Processors. https://www.amd.com/en/
products/processors/server/epyc/7002-series.html.

[3] Carson J. S. Nelson B. L. Nicol D. M. Banks, J. 2010. Discrete-Event System
Simulation. Prentice Hall.

[4] Charles W. Kazer, Jo ao Sedoc, Kelvin K.W. Ng, Vincent Liu, and Lyle H. Ungar.
2018. Fast Network Simulation Through Approximation or: How Blind Men
Can Describe Elephants. Proceedings of the 17th ACM Workshop on Hot Topics in
Networks (HotNets ’18) (2018).

[5] XAI cluster. 2024. https://www.capacitymedia.com/article/
2e4448ylfh4c7zxhcavwg/news/article-musks-xais-colossus-cluster-set-
for-one-million-gpu-supercomputer-expansion.

[6] Nvidia Corporation. 2021. NVSHMEM. https://developer.nvidia.com/nvshmem.
[7] CUDA Graph. Nvidia Corporation. https://developer.nvidia.com/blog/cuda-

graphs. 2019.
[8] Divergence, scheduling and floating point.

https://cseweb.ucsd.edu//classes/fa12/cse260-b/Lectures/Lec09.pdf. 2012.
[9] Donghua Xu and M. Ammar. 2004. BencHMAP: benchmark-based, hardware

and model-aware partitioning for parallel and distributed network simulation.
The IEEE Computer Society’s 12th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems, 2004.
(MASCOTS 2004). Proceedings., Volendam, Netherlands, 2004, pp. 455-463. (2004).
https://doi.org/10.1109/MASCOT.2004.1348301

[10] Dynamic Control Flow in CUDA Graphs with Conditional Nodes.
https://developer.nvidia.com/blog/dynamic-control-flow-in-cuda-graphs-
with-conditional-nodes/ 2024.

[11] Bengisu Elis, Olga Pearce, David Boehme, Jason Burmark, andMartin Schulz. 2024.
Non-Blocking GPU-CPU Notifications to Enable More GPU-CPU Parallelism.
International Conference on High Performance Computing in Asia-Pacific Region
(HPCAsia 2024), January 25–27, 2024, Nagoya, Japan. ACM, New York, NY, USA 11
Pages. https://doi.org/10.1145/3635035.3635036

[12] Georg Kunz. 2010. Parallel discrete event simulation. Modeling and Tools for
Network Simulation. Springer, 121–131. (2010).

[13] Georg Kunz, Daniel Schemmel, James Gross, Klaus Wehrle. 2012. Multi-level
Parallelism for Time- and Cost-efficient Parallel Discrete Event Simulation on
GPUs. ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed
Simulation. (2012). https://doi.org/10.1177/0037549713508839

[14] Fei Gui, Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Ran Zhang, Hongbing Yang,
and Dian Xiong. 2026. Accelerating Design Space Exploration for LLM Training
Systems with Multi-experiment Parallel Simulation. In 23th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 26).

[15] Guillaume Seguin. 2009. Multi-core parallelism for ns-3 simulator. INRIA Sophia-
Antipolis, Tech. Rep 106 (2009), 110. (2009).

[16] Hao Wu, Richard M Fujimoto, and George Riley. 2001. Experiences paralleliz-
ing a commercial network simulator. Proceeding of the 2001 Winter Simulation
Conference (Cat. No. 01CH37304), Vol. 2. IEEE, 1353–1360. (2001).

[17] Changho Hwang, KyoungSoo Park, Ran Shu, Xinyuan Qu, Peng Cheng, and
Yongqiang Xiong. 2023. ARK: GPU-driven Code Execution for Distributed
Deep Learning. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). USENIX Association, Boston, MA, 87–101. https:
//www.usenix.org/conference/nsdi23/presentation/hwang

[18] K. Mani Chandy and Jayadev Misra. 1979. Distributed simulation: A case study
in design and verification of distributed programs. IEEE Transactions on software
engineering (1979).

[19] Kaihui Gao, Li Chen, Dan Li, Vincent Liu, Xizheng Wang, Ran Zhang, and Lu
Lu. 2023. DONS: Fast and Affordable Discrete Event Network Simulation with
Automatic Parallelization. Proceedings of the ACM SIGCOMM 2023 Conference.
(2023), 167–181. https://doi.org/10.1145/3603269.3604844

[20] Kalyan S. Perumalla. [n. d.]. Discrete-event Execution Alternatives on General
Purpose Graphical Processing Units (GPGPUs). Oak Ridge National Laboratory.
([n. d.]).

[21] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
2000. The click modular router. ACM Trans. Comput. Syst. 18, 3 (2000), 263–297.
https://doi.org/10.1145/354871.354874

[22] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Albert
Cabellos-Aparicio. [n. d.]. RouteNet: Leveraging graph neural networks for
network modeling and optimization in SDN. IEEE Journal on Selected Areas in
Communications 38, 10 (2020), 2260–2270 ([n. d.]).

[23] Lecture 3: control flow and synchronisation.
https://people.maths.ox.ac.uk/gilesm/cuda/lecs/lec3-2x2.pdf [n. d.].

[24] Memory Transactions. Nvidia Corporations.
https://docs.nvidia.com/gameworks/content/ de-
velopertools/desktop/analysis/report/ cudaexperi-
ments/sourcelevel/memorytransactions.htm. 2015.

[25] nsnam. ns3. https://www.nsnam.org. 2017.
[26] NVIDIA A100 TENSOR CORE GPU. Nvidia Corporation.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf 2021.

[27] NVIDIA H100 Tensor Core GPU. Nvidia Corporation.
https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-
datasheet?ncid=no-ncid 2024.

[28] OpenAI Stargate. https://www.nextplatform.com/2025/01/22/openai-declares-its-
hardware-independence-sort-of-with-stargate-project/ 2025.

[29] OpenSim Ltd. OMNeT++. https://omnetpp.org. 2018.
[30] Qingqing Yang, Xi Peng, Li Chen, Libin Liu, Jingze Zhang, Hong Xu, Baochun Li,

Gong Zhang. 2022. DeepQueueNet: towards scalable and generalized network
performance estimation with packet-level visibility. Proceedings of the ACM
SIGCOMM 2022 Conference. (2022). https://doi.org/10.1177/0037549713508839

[31] Qizhen Zhang, Kelvin K.W. Ng, Charles Kazer, Shan Yan, Joao Sedoc, Vincent
Liu. 2021. MimicNet: fast performance estimates for data center networks with
machine learning. Proceedings of the 2021 ACM SIGCOMM 2021 Conference (2021).
https://doi.org/10.1145/3452296.3472926

[32] Richard Fujimoto. 2015. Parallel and Distributed Simulation. Proceedings of the
2015 Winter Simulation Conference (2015).

[33] SIMT and Warps. Cornell University. https://cvw.cac.cornell.edu/gpu-
architecture/gpu-characteristics/simt_warp. 2024.

[34] Songyuan Bai, Hao Zheng, Chen Tian, Xiaoliang Wang, Chang Liu, Xin Jin,
Fu Xiao, Qiao Xiang, Wanchun Dou, Guihai Chen. 2024. Unison: A Parallel-
Efficient and User-Transparent Network Simulation Kernel. Proceedings of the
Nineteenth European Conference on Computer Systems. (2024), 115–131. https:
//doi.org/10.1145/3627703.3629574

[35] Understanding the Visualization of Overhead and Latency in NVIDIA Nsight
Systems. Nvidia Corporation. https://developer.nvidia.com/blog/understanding-
the-visualization-of-overhead-and-latency-in-nsight-systems/. 2020.

[36] US Department of Commerce. National Institute of Standards and Tech-
nology. 2021. Machine Learning in Network Modeling and Simula-
tion. https://www.nist.gov/programs-projects/machine-learning-network-modeling-
and-simulation. (2021).

[37] Using Shared Memory in CUDA C/C++. NVidia Corporation.
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/. 2013.

[38] Vasily Volkov. 2016.. Understanding Latency Hiding on GPUs. Technical Report
No. UCB/EECS-2016-143 (2016.).

[39] Wenjie Tang, Yiping Yao. 2013. A GPU-based discrete event simulation kernel.
Simulation: Transactions of the Society for Modeling and Simulation International.
(2013), 1–20. https://doi.org/10.1177/0037549713508839

[40] Wesley Garey, Richard A. Rouil, Evan Black, Tanguy Ropitault, Weichao Gao.
2023. O-RAN with Machine Learning in ns-3. WNS3 ’23: Proceedings of the 2023
Workshop on ns-3. (2023). https://doi.org/10.1145/3592149.3592157

https://www.amd.com/en/products/processors/server/epyc/7002-series.html
https://www.amd.com/en/products/processors/server/epyc/7002-series.html
https://www.capacitymedia.com/article/2e4448ylfh4c7zxhcavwg/news/article-musks-xais-colossus-cluster-set-for-one-million-gpu-supercomputer-expansion
https://www.capacitymedia.com/article/2e4448ylfh4c7zxhcavwg/news/article-musks-xais-colossus-cluster-set-for-one-million-gpu-supercomputer-expansion
https://www.capacitymedia.com/article/2e4448ylfh4c7zxhcavwg/news/article-musks-xais-colossus-cluster-set-for-one-million-gpu-supercomputer-expansion
https://developer.nvidia.com/nvshmem
https://doi.org/10.1109/MASCOT.2004.1348301
https://doi.org/10.1145/3635035.3635036
https://doi.org/10.1177/0037549713508839
https://www.usenix.org/conference/nsdi23/presentation/hwang
https://www.usenix.org/conference/nsdi23/presentation/hwang
https://doi.org/10.1145/3603269.3604844
https://doi.org/10.1145/354871.354874
https://doi.org/10.1177/0037549713508839
https://doi.org/10.1145/3452296.3472926
https://doi.org/10.1145/3627703.3629574
https://doi.org/10.1145/3627703.3629574
https://doi.org/10.1177/0037549713508839
https://doi.org/10.1145/3592149.3592157

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Recent Work and Limitations
	2.2 NSX: Scaling Simulation on AI Servers

	3 NSX Design
	3.1 Execution Model
	3.2 Event Queues
	3.3 Event Causality
	3.4 Transparent Scaling

	4 Evaluation
	4.1 Scalability
	4.2 Comparison against CPU simulation
	4.3 GPU-centric optimizations
	4.4 Cluster validation

	5 Related Work
	6 Future Work
	References

