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Abstract
When diagnosing a problem in a distributed system, it is
sometimes necessary to explain the timing of an event – for
instance, why a response has been delayed, or why the net-
work latency is high. Existing tools offer some support for
this, typically by tracing the problem to a bottleneck or to
an overloaded server. However, locating the bottleneck is
merely the first step: the real problem may be some other
service that is sending traffic over the bottleneck link, or a
machine that is overloading the server with requests. These
off-path causes do not appear in a conventional trace and will
thus be missed by most existing diagnostic tools.

In this paper, we introduce a new concept we call tempo-
ral provenance that can help with diagnosing timing-related
problems. Temporal provenance is inspired by earlier work
on provenance-based network debugging; however, in addi-
tion to the functional problems that can already be handled
with classical provenance, it can also diagnose problems that
are related to timing. We present an algorithm for generating
temporal provenance and an experimental debugger called
Zeno; our experimental evaluation shows that Zeno can suc-
cessfully diagnose several realistic performance bugs.

1 Introduction

Debugging networked systems is already difficult for func-
tional problems, such as requests that are processed incor-
rectly, and this has given rise to a rich literature on sophisti-
cated debugging tools. Diagnosing timing-related problems,
such as requests that incur a high delay, adds another layer of
complexity: delays are often nondeterministic and can arise
from subtle interactions between different components.

Performance debugging has already been explored in prior
work. For instance, distributed tracing systems [55, 48, 58,
21, 33, 28, 37, 34, 64, 18, 44] can record and analyze execu-
tions of a request. These systems offer operators a lot of help
with debugging performance problems; for instance, Dap-
per [55] produces a “trace tree” – a directed graph whose ver-
tices represent execution stages and whose edges represent
causal relationships. If the operator observes that a request is
taking unusually long, she can inspect its trace tree and look
for bottlenecks, such as the RPCs to an overloaded server.
Similarly, network provenance systems [69, 67, 61, 30, 60],
such as DTaP [68], can be used to generate a causal explana-
tion of an observed event, and the operator can then inspect
this explanation for possible bottlenecks.

However, in practice, locating a bottleneck is only the first
step. The operator must then find the causes of the bottleneck

in order to fix the problem. Existing tools offer far less help
with this step. For instance, suppose a misconfigured ma-
chine is sending a large number of RPCs to a storage back-
end, which becomes overloaded and delays requests from
other clients. When the operator receives complaints from
one of the clients about the delayed requests, she can inspect
the trace tree or the provenance and identify the bottleneck
(in this case, the storage backend). However, neither of these
data structures explains why the bottleneck exists – in fact,
the actual cause (in this case, the misconfigured machine)
would not even appear in either of them!

The reason why existing approaches fall short in this sce-
nario is that they focus exclusively on functional causality –
they explain why a given computation had some particular
result. This kind of explanation looks only at the direct in-
puts of the computation: for instance, if we want to explain
the existence of a cup of coffee, we can focus on the source of
the coffee beans, the source of the cup, and the barista’s ac-
tions. In contrast, temporal causality may also involve other,
seemingly unrelated computations: for instance, the reason
why it took too long to get the cup of coffee might be the
many customers that were waiting in front of us, which in
turn might be the result of a traffic jam elsewhere that caused
an unusually large number of customers to pass by the local
store. At the same time, some functional dependencies may
turn out to be irrelevant when explaining delays: for instance,
even though the coffee beans were needed to make the cof-
fee, they may not have contributed to the delay because they
were already available in the store.

The above example illustrates that reasoning about tem-
poral causality is very different from reasoning about func-
tional causality. This is not a superficial difference: as we
will show, temporal causality requires additional informa-
tion (about event ordering) that existing tracing systems do
not capture. Thus, although systems like Dapper or DTaP
do record timestamps and thus may appear to be capable of
reasoning about time, they are in fact limited to functional
causality and use the timestamps merely as an annotation.

In this paper, we propose a way to reason about tempo-
ral causality, and we show how it can be integrated with an
existing diagnostic technique – specifically, network prove-
nance. The result is a technique we call temporal provenance
that can reason about both functional and temporal causality.
We present a concrete algorithm that can generate temporal
provenance for distributed systems, and we describe Zeno,
a prototype debugger that implements this algorithm. We
have applied Zeno to seven scenarios with high delay that
are based on real incident reports from Google Cloud En-
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Figure 1: Scenario: The misconfigured maintenance service
is overloading the storage backend and is causing requests
from the computing service to be delayed.

gine. Our evaluation shows that, in each case, the resulting
temporal provenance clearly identifies the cause of the de-
lay. We also show that the runtime overhead is comparable
to that of existing tools, such as Zipkin [1], which is based
on Google Dapper [55]. In summary, our contributions are:

• The concept of temporal provenance (Section 2);
• an algorithm that generates temporal provenance (Sec-

tion 4);
• a post-processing technique that improves the readabil-

ity of timing provenance graphs (Section 5);
• Zeno, a prototype debugger that records and displays

temporal provenance (Section 6); and
• an experimental evaluation of Zeno (Section 7).

In the following two sections, we begin with an overview of
timing diagnostics and its key challenges.

2 Overview

Figure 1 illustrates the example scenario we have already
sketched above. In this scenario, an operator manages a
small network that connects a maintenance service M, a
computing service C, and a storage backend B. Both M and
C communicate with the backend using RPCs. A job on M is
misconfigured and is sending an excessive number of RPCs
(red) to the storage backend. This is causing queuing at the
backend, which is delaying RPCs from the computing ser-
vice (green). The operator notices the delays on C, but is
unaware of the misconfiguration on M.

We refer to this situation as a timing fault: the RPCs from
C are being handled correctly, but not as quickly as the opera-
tor expects. A particularly challenging aspect of this scenario
is that the cause of the delays that C’s requests are experienc-
ing (the misconfiguration on M) is not on the path from C to
B; we call this an off-path cause.

Timing faults are quite common in practice. To illustrate
this, we surveyed incidents disclosed by Google Cloud Plat-
form [2], which occur across a variety of different cloud ser-
vices and directly impact cloud tenants. To obtain a good
sample size, we examined all incidents that happened from

Bottleneck!
Cause?

t1 t2 t3 t4 t5

Server
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Send

Start
Job

Client
Recv

Client
Send

Computing Request    span id: 1, parent id: none

Storage RPC    span id: 2, parent id: 1
t0 t6

Start End

(time)

Figure 2: A trace tree for the slow computing requests in
Figure 1. B received the storage RPC at t2 but only started
processing it at t3, after a long queuing delay.

January 2014 until May 2016, and we selected all 95 inci-
dent reports that describe both the symptoms and the causes.
We found that more than a third (34.7%) of these incidents
were timing faults.

2.1 Prior work: Trace trees
Today, a common way to diagnose such a situation is to track
the execution of the request and to identify the bottleneck –
that is, components that are contributing unusual delays. For
instance, a distributed tracing system would produce a “trace
tree” [55]. Figure 2 shows an example tree for one of the de-
layed responses from the computing service C in Figure 1.
The yellow bars represent basic units of work, which are
usually referred to as spans, and the up/down arrows indi-
cate causal relationships between a span and its parent span.
A span is also associated with a simple log of timestamped
records that encode events within the span.

Trace trees are helpful because they show the steps that
were involved in executing the request: the computation was
started at t0 and issued an RPC to the storage backend at t1;
the backend received the RPC at t2, started processing it at
t3, and sent a response at t4, which the client received at t5;
finally, the computation ended at t6. This data structure helps
the operator to find abnormal delays: for instance, the opera-
tor will notice that the RPC waited unusually long (t2 . . . t3)
before it was processed by B.

However, the operator also must understand what caused
the unusual delay, and trace trees offer far less help with this
step. In our scenario, the cause – the misbehaving mainte-
nance service – never even appears in any span! The reason
is that trace trees include only the spans that are on the ex-
ecution path of the request that is being examined. In prac-
tice, off-path causes are very common: when we further in-
vestigated the 33 timing faults in our survey from above, we
found that, in over 60% of the cases, the real problem was
not on the execution path of the original request, so it would
not have appeared in the corresponding trace tree.

2.2 Prior work: Provenance
Another approach that has been explored recently [61, 30,
60, 68, 69, 67] is to use provenance [26] as a diagnostic
tool. Provenance is a way to obtain causal explanations of
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Figure 3: Time-aware provenance, as in DTaP [68], for the
example scenario from Figure 1.

an event; a provenance system maintains, for each (recent)
event in the network, a bit of metadata that keeps track of the
event’s direct causes. Thus, when the operator requests an
explanation for some event of interest (say, the arrival of a
packet), the system can produce a recursive explanation that
links the event to a set of causes (such as the original trans-
mission of the packet and the relevant routing state). Such a
representation is useful because the diagnostician often finds
herself swimming in a sea of possibilities: at any given mo-
ment, there are millions of events happening in the data cen-
ter, and many of them could hypothetically be related to the
observed symptom. Moreover, a substantial fraction of these
events tend to be unusual in some way or another, which is
why the use of anomaly detection often yields many false
positives. In contrast, provenance is a way to quickly and
reliably identify the (few) events that actually were causally
related, which can be an enormous time saver.

Provenance can be represented as a DAG, whose vertices
represent events and whose edges represent direct causal-
ity. Figure 3 shows the DAG that a provenance system like
DTaP [68] would generate for our example scenario. (We
picked DTaP because it proposed a “time-aware” variant of
provenance, which already considers a notion of time.) This
data structure is considerably more detailed than a trace tree;
for instance, it not only shows the path from the original re-
quest (V2) to the final response (V1), but also the data and
the configuration state that were involved in processing the
request along the way. However, the actual cause from the
scenario (the misconfigured maintenance service) is still ab-
sent from the data structure. The reason is that DTaP’s prove-
nance is “time-aware” only in the sense that it can remember
the provenance of past system states. It does annotate each
event with a timestamp, as shown in the figure, but it does
not reason about temporal causality. Thus, it actually does
not offer very much extra help compared to trace trees: like
the latter, it can be used to find bottlenecks, such as the high
response times in the backend, but it is not able to explain

Computing Req
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Storage RPC Req
sent by C at 81s

Storage RPC Req
received by B at 81s

Storage Type
was remote during [0s,∞)

V2

Storage Block
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(Q) Why did the computing response take 14 seconds?

1s
(A) 1 second spent 
on issuing RPC.

11s
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(B) 11 seconds spent on 
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Off-path 
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and sending back response.
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Storage RPC Rsp 
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Storage RPC Rsp 
received by C at 93s

V1

Figure 4: Temporal provenance, as proposed in this paper,
for the example scenario from Figure 1.

them by identifying causally related events, such as the RPCs
from the maintenance service. Tracking such dependencies
between functional and temporal behavior, potentially across
several components, is the problem we focus on.

2.3 Our approach
We propose to solve this problem with a combination of
three insights. The first is that temporal causality critically
depends on a type of information that existing tracing tech-
niques tend not to capture: the sequence in which the system
has processed requests, whether the requests are related or
not. By looking only at functional dependencies, these tech-
niques simply consider each request in isolation, and thus
cannot make the connection between the slow storage RPC
and the requests from the maintenance service that are de-
laying it. With provenance, we can fix this by including a
second kind of edge e1 ! e2 that connects each event e1 to
the event e2 that was processed on the same node and imme-
diately after e1. We refer to such an edge as a sequencing
edge (Section 4.1). Notice that these edges essentially cap-
ture the well-known happens-before relation [45].

Our next insight is a connection between temporal rea-
soning and the critical path analysis from scheduling theory.
When scheduling a set of parallel tasks with dependencies,
the critical path is the longest dependency chain, and it de-
termines the overall completion time. This concept is not
directly applicable to off-path causes, but we have found a
way to generalize it (Section 4.3). The result is a method
that recursively allocates delay to the branches of a prove-
nance tree, which yields a data structure that we call tempo-
ral provenance.

Our third insight has to do with readability. At first glance,
temporal provenance is considerably richer than classical
provenance because it considers not only functionally related
events, but also events that could have contributed only delay
(of which there can be many). However, in practice, many of
these events do not actually contribute to the end-to-end de-
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lay, and the ones that do are often structurally similar – such
as the maintenance requests in our example scenario – and
can be aggregated. Thus, it is usually possible to extract a
compact representation that can be easily understood by the
human operator (Section 5).

Figure 4 shows the temporal provenance for a random
computing request in our example scenario. Starting at the
root, the provenance forks into two branches; the left branch
(A) shows that one second was spent on issuing the RPC it-
self; and the right branch (B) shows that the majority of the
delay (11 seconds) was caused by RPCs from the mainte-
nance service (M). This tree has all the properties we mo-
tivated earlier: it provides a quantitative explanation of the
delay, and it includes the actual cause (the maintenance ser-
vice), even though it is an off-path cause and does not appear
on the path the request has taken.

3 Background

Since temporal provenance is a generalization of network
provenance, we begin with a brief description of the latter,
and refer interested readers to [67] for more detail.

3.1 Network Datalog
For ease of exposition, we will present our approach in the
context of network datalog (NDlog) [47]. The approach it-
self is not specific to either NDlog or to declarative lan-
guages; provenance has been applied to imperative systems
that were written in a variety of languages [49, 22, 38, 35,
39, 60], and our own evaluation in Section 7 includes exper-
iments with Google Dapper [55]. However, NDlog’s declar-
ative syntax makes the provenance very easy to see.

In NDlog, the state of a node is modeled as tables, each
of which contains a number of tuples. For example, an RPC
server might have a table called RPC that contains the RPC
calls it has received from clients. Tuples can be manually
inserted, or they can be programmatically derived from other
tuples. The former represent external inputs and are called
base tuples, whereas the latter represent computations in the
system itself and are called derived tuples.

NDlog programs consist of rules that describe how tuples
should be derived from one another. For instance, the rule
A(@L,P):-B(@L,Q),Q=3

*

P says that a tuple A(@L,P)
should be derived on node L whenever a B(@L,Q) tuple is
also on that node, and Q=3

*

P. Here, P and Q are variables
that are instantiated with values when the rule is applied; for
instance, a B(@L,6) tuple would create an A(@L,2) tuple.
The @ operator specifies the location of the tuple.

Note that, in this declarative formulation, the direct causes
of a tuple’s existence are simply the preconditions of the rule
that was used to derive it. For instance, if A(@L,2) was
derived using the rule above, then the direct causes were the
existence of B(@L,6) and the fact that 6=3

*

2.

3.2 System model
If our goal was classical data provenance, the declarative de-
scription above would already be sufficient. However, since
we are particularly interested in timing, we need to consider
some more details of how the system works. For concrete-
ness, we use an event-driven model: the system reacts to
events such as packet arrivals and configuration changes;
each node has a queue of events that it processes in a FIFO
order; and each event can trigger one or more additional
events, either locally or on another node. (Note that the
“nodes” here do not necessarily have to correspond to phys-
ical machines; they could be different CPU cores, or line
cards in a switch.) This model captures how pipelined semi-
naı̈ve evaluation [47] works in NDlog: the events are tuple
insertions and deletions, and the processing corresponds to
tuple derivations. However, more importantly, it is also a
good description of networks and services with FIFO queues.

3.3 Classical provenance
In order to be able to answer provenance queries, a system
must collect some additional metadata at runtime. Conceptu-
ally, this can be done by maintaining a large DAG, the prove-
nance graph, that contains a vertex for every event that has
occurred in the system, and in which there is an edge (a, b)
between two vertices if event a was a direct cause of event
b. (A practical implementation would typically not main-
tain this graph explicitly, but instead collect only enough in-
formation to reconstruct a recent subgraph when necessary;
however, we will use this concept for now because it is easier
to explain.) If the system later receives a provenance query
QUERY(e) for some event e, it can find the answer by locat-
ing the vertex that corresponds to e and then projecting out
the subgraph that is rooted at e. This subgraph will be the
provenance of e.

For concreteness, we will use a provenance graph with six
types of vertices, which is loosely based on [68]:

• INS([t
s

, t
e

], N, ⌧), DEL([t
s

, t
e

], N, ⌧): Base tuple ⌧
was inserted (deleted) on node N during [t

s

, t
e

];
• DRV([t

s

, t
e

], N, ⌧), UDRV([t
s

, t
e

], N, ⌧): Derived tu-
ple ⌧ acquired (lost) support on N during [t

s

, t
e

];
• SND([t

s

, t
e

], N!N 0,±⌧), RCV([t
s

, t
e

], N N 0, ±⌧):
±⌧ was sent (received) by N to (from) N 0 during
[t
s

, t
e

].

Note that each vertex is annotated with the node on which it
occurred, as well as with a time interval that indicates when
the node processed that event. For instance, when a switch
makes a forwarding decision for a packet, it derives a new
tuple that specifies the next hop, and the time [t

s

, t
e

] that
was spent on this decision is indicated in the corresponding
DRV vertex. This will be useful (but not yet sufficient) for
temporal provenance later on.
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The edges between the vertices represent their causal re-
lationships. A SND vertex has an edge from an INS or a
DRV that produced the tuple that is being sent; a RCV has
an edge from the SND vertex for the received message; and
a DRV vertex for a rule A:-B,C,D has an edge from each
precondition (B, C, and D) that leads to the vertex that pro-
duced the corresponding tuple. An INS vertex corresponds
to an event that cannot be explained further (the insertion of
a base tuple); thus, it has no incoming edges. The edges for
the negative “twins” of these vertices – UDRV and DEL – are
analogous.

The above definition has two useful properties. First, is re-
cursive: the provenance of an event e includes, as subgraphs,
the provenances of all the events that contributed to e. This
is useful to an operator because she can start at the root and
“drill down” into the explanation until she identifies a root
cause. Second, there is a single data structure – the prove-
nance graph – that can be maintained at runtime, without
knowing a priori what kinds of queries will be asked later.

4 Temporal provenance

In this section, we generalize the basic provenance model
from Section 3 to reason about the timing of events.

4.1 Sequencing edges
The provenance model we have introduced so far would pro-
duce provenance that looks like the tree in Figure 3: it would
explain why the event at the top occurred, but it would not
explain why the event occurred at that particular time. The
fact that the vertices are annotated with timestamps, as in
prior work [68], does not change this: the operator would be
able to see, for instance, that the storage service took a long
time to respond to a request, but the underlying reason (that
requests from another node were queued in front of it) is not
shown; in fact, it does not even appear in the graph!

To rectify this, we need to capture some additional infor-
mation – namely, the sequence in which events were pro-
cessed by a given node. Thus, we introduce a second type
of edge that we call sequencing edge. A sequencing edge
(v1,v2) exists between two vertices a and b iff either a) the
corresponding events happened on the same node, and a was
the event that immediately preceded b, or b) a is an SND ver-
tex and b is the corresponding RCV vertex. We refer to the
first type of edge as a local sequencing edge, and to the sec-
ond type as a remote sequencing edge. In the illustrations,
we will render the sequencing edges with green, dotted lines
to distinguish them from the causal edges that are already
part of classical provenance.

Although causal edges and sequencing edges often coin-
cide, they are in fact orthogonal. For instance, consider the
scenario in Figure 5(a). Here, a node X has two rules, B:-A
and C:-A; in the concrete execution (shown on the timeline),

A is inserted at time 0, which triggers both rules, but B is de-
rived first, and then C. In the provenance graph (shown at the
bottom), INS(A) is connected to DRV(B) by both a causal and
a sequencing edge, since the two events happened back-to-
back and B’s derivation was directly caused by A’s insertion.
But DRV(B) is connected to DRV(C) only by a sequencing
edge, since the former did precede the latter but was not a
direct cause; in contrast, INS(A) is connected to DRV(C) only
by a causal edge, since A’s insertion did cause C’s derivation,
but the latter was directly delayed by another event.

4.2 Queries
Next, we turn to the question what a query for temporal
provenance should look like, and what it should return. Un-
like a classical provenance query QUERY(e), which aims to
explain a specific event e, a temporal provenance query aims
to explain a delay between a pair of events e1 and e2. For in-
stance, in the scenario from Figure 1, the operator wanted to
know why his request had taken so long to complete, which
is, in essence, a question about the delay between the request
itself (e1) and the resulting response (e2). Hence, we aim to
answer queries of the form T-QUERY(e1,e2), which ask about
delay between two events e1 and e2. Our only requirement is
that the events are causally related – i.e., that there is a causal
path from e1 to e2.

As a first approximation, we can answer T-QUERY(e1,e2)
as follows. We first query the classical provenance P :=
QUERY(e2). Since we require that e1 and e2 are causally re-
lated, P will include a vertex for e1. We then identify all
pairs of vertices (v1,v2) in P that are connected by a causal
edge but not by a sequencing edge. We note that, a) in each
such pair, v2 must have been delayed by some other inter-
vening event, and b) v1 is nevertheless connected to v2 via
a multi-hop path along the sequencing edges. (The reason
is simply that v1 was one of v2’s causes and must therefore
have happened before it.) Thus, we can augment the causal
provenance by adding these sequencing paths, as well as the
provenance of any events along such a path. The resulting
provenance P 0 contains all the events that have somehow
contributed to the delay between e1 and e2. We can then
return P 0 as the answer to T-QUERY(e1,e2).

4.3 Delay annotations
As defined so far, the temporal provenance still lacks a way
for the operator to tell how much each subtree has contributed
to the overall delay. This is important for usability: the op-
erator should have a way to “drill down” into the graph to
look for the most important causes of delay. To facilitate
this, we additionally annotate the vertices with the delay that
they (and the subtrees below them) have contributed.

Computing these annotations is surprisingly nontrivial and
involves some interesting design decisions. Our algorithm
is shown in Figure 6; we explain it below in several re-
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Figure 5: Example scenarios, with NDlog rules at the top, the timing of a concrete execution in the middle, and the resulting
temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all scenarios; the start and end vertices are
marked in bold. Vertex names have been shortened and some fields have been omitted for clarity.
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1: // the subtree rooted at v is responsible for the delay during [ts, te]
2: function ANNOTATE(v, [ts, te])
3: ASSERT(te == tend(v))
4: if [ts, te] = ; then
5: RETURN
6: // weight v by the amount of delay it contributes
7: SET-WEIGHT(v, te � ts)
8: // recursive calls for functional children in order of appearance
9: C FUNCTIONAL-CHILDREN(v)

10: T t

s

11: while C 6= ; do
12: v

0 c 2 C WITH MIN tend(c)
13: C C \ {v0}
14: if tend(v

0) � T then
15: ANNOTATE(v0, [T, tend(v

0)])
16: T  tend(v

0)

17: // recursive calls for sequencing children
18: s SEQUENCING-CHILD(v)
19: E tstart(v)
20: while T < E do
21: ANNOTATE(s, [MAX(T, tstart(s)), E])
22: E tstart(s)
23: s SEQUENCING-CHILD(s)

Figure 6: Algorithm for computing delay annotations (ex-
plained in Sections 4.3–4.5).

finements, using the simple examples in Figures 5(b)–(f).
The examples are shown in the same format as in Fig-
ure 5(a): each shows a set of simple NDlog rules, the tim-
ing of events during the actual execution, and the resulting
temporal provenance, with the delay annotations in red. The
query is always the same: T-QUERY(INS(Z), DRV(A)); that
is, we want to explain the delay between the insertion of Z
and the derivation of A. One difference to Figure 5(a) is that
some of the examples require two nodes, X and Y. To make
the connections more visible, we show the vertices that be-
long to Y in orange, and the ones that belong to X in green,
as in Figure 5(a). If a vertex did not contribute to the delay,
we omit its annotation.

Our algorithm computes the delay annotations recursively.
A function ANNOTATE is called on the root of the provenance;
the function then invokes itself on (some of) the children to
compute the annotations on the subgraphs. As a first approx-
imation, this works as follows:

Rule #1: Annotate the top vertex v with the overall delay
T , then subtract the execution time t

v

of v, and repeat
with v’s child vertex, using delay T � t

v

.
In our algorithm, this corresponds to line 7, which sets the
weight for the current vertex, and the recursive call in line 15;
lines 4–5 contain the base case, where the delay is zero.

4.4 Handling multiple preconditions
This approach works well for linear provenance, such as the
one in Figure 5(b): deriving A from Z took 5s because it
took 1s to compute A itself, and 4s to derive A’s precondi-
tion, B; deriving B from Z took 4s because 2s were spent

on B itself and another 2s on C. However, it does not work
well for rules with multiple preconditions. Consider the sce-
nario in Figure 5(c): A now has two preconditions, B and E,
so the question is how much of the overall delay should be
attributed to each.

Two answers immediately suggest themselves: 1) since B
completed after 4s, we can attribute 4s to B and the remain-
ing 2s to E, which finished later, or 2) we can attribute the
entire 6s to E, because it was the last to finish. The latter is
somewhat similar to the choice made in critical path analy-
sis [34, 62]; however, the theorems in Section 4.6 actually
require the former: if we find a way to speed up E (or cause
F to be inserted sooner), this can only reduce the end-to-
end delay by 3s. Any further reductions would have to come
from speeding up B. This leads to the following refinement:
Refinement #2: Like rule #1, except that the remaining
delay is allocated among the preconditions in the order
in which they were satisfied.
This refinement is implemented in lines 11–13 and 16 of our
algorithm, which iterate through the preconditions in the or-
der of their appearance (that is, local derivation or arrival
from another node) and allocate to each the interval between
its own appearance and the appearance of its predecessor.

Notice that this approach deviates from critical-path anal-
ysis in an interesting way. Consider the scenario in Fig-
ure 5(d): here, the provenance has two “branches”, one con-
nected to the insertion of Z and the other to the insertion of
F, but there is no causal path from Z to F. (We call such a
branch an off-path branch.) This raises the question whether
any delay should be apportioned to off-path branches, and if
so, how much. Critical path analysis has no guidance to offer
for this case because it only considers tasks that are transi-
tively connected to the start task.

At first glance, it may seem that F’s branch should not get
any delay at all; for instance, F could be a configuration entry
that is causally unrelated to Z and thus did not obviously
contribute to a delay from Z to A. However, notice that all the
“on-path” derivations (in Z’s branch) finished at t = 4s, but
A’s derivation was nevertheless delayed until t = 7s because
E was not yet available. Thus, it seems appropriate that the
other branch gets the remaining 3s.

4.5 Handling sequencing delays
The one question that remains is what to do if there is further
delay after the last precondition is satisfied. This occurs in
the scenario in Figure 5(e): although B is derived immedi-
ately after Z is inserted at t = 0, A’s derivation is delayed by
another 3s due to some causally unrelated derivations (I, K,
and H). Here, the sequencing edges come into play: we can
attribute the remaining delay to the predecessor along the lo-
cal sequencing edge (here, DRV(H), which will subtract its
own computation time and pass on any remaining delay to
its own predecessor, etc. This brings us to the final rule:
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Final rule: Like #2, except that, if any delay remains af-
ter the last precondition, that delay is attributed to the
predecessors along the local sequencing edge.
This is implemented in lines 17–23.

So far, we have focused on the rule for DRV vertices, which
is the most complex one. SND vertices are easy because they
only have one (causal) child; RCV vertices are even easier be-
cause they cannot be delayed by sequencing; and INS vertices
are trivial – they have no causal children.

4.6 Correctness
We have formally modeled the properties of temporal prove-
nance, and we have proven that our algorithm achieves them.
Due to lack of space, we cannot include the full model or the
proofs here (they are available in Appendix A); however, we
informally describe the properties below.

The properties we considered fall into two categories. The
first category consists of basic properties that provenance
is generally expected to have; for instance, the provenance
should describe a correct execution of the system (validity),
it should respect happens-before relationships (soundness),
it should be self-contained and fully explain the relevant
event (completeness), and it should only contain events that
are actually necessary for the explanation (minimality). We
have formalized these properties using existing definitions
from [68]. Since these definitions are for provenance in gen-
eral and do not consider the temporal aspect at all, our proofs
basically indicate that we did not “break” anything.

The second category contains the properties of the de-
lay annotations that our algorithm creates. Since this is a
key contribution of this paper, we briefly sketch our ap-
proach. We carefully define what it means for a derivation
⌧ : �c1, c2, . . . to be directly “delayed” by one of its pre-
conditions, and we then recursively extend this definition to
transitive delays (that is, one of the c

i

was itself delayed by
one of its own preconditions, etc.). Our first theorem (Sec-
tion A.5) states that each vertex is labeled with the amount
of (direct or transitive) delay that is contributed by the sub-
tree that is rooted at that vertex. Our second theorem (Sec-
tion A.6) essentially says that, if there is a vertex v in a tem-
poral provenance tree that is annotated with T and the sum of
the annotations on its children and immediate predecessors is
S < T , then it is possible to construct another valid (but hy-
pothetical) execution in which v’s execution time is reduced
by (T � S) and in which the derivation finishes (T � S)
units of time earlier. This shows that the annotations really
do correspond to the “potential for speedup” that we intu-
itively associate with the concept of delay.

4.7 Limitations
Temporal provenance is not magic: when the real reasons for
a delay are complex – e.g., many small but unrelated factors

that simply add up – the temporal provenance will likewise
by complex and will not show a single root cause. Even in
cases where there really is a single unusual factor that causes
a lot of delay, temporal provenance does not always single it
out, since it has no notion of what is unusual, or which de-
lays are avoidable; instead, it will simply identify all causes,
annotate each with the delay it caused, and leave the deci-
sion to the operator. (However, it could be combined with
an additional root-cause analysis, e.g., the one from [30].)
Finally, unlike functional provenance, temporal provenance
might experience a “Heisenberg effect” in certain cases – that
is, collecting the necessary information could subtly alter the
timing of the system and prevent the very bugs from appear-
ing that the operator wishes to diagnose (or trigger new, dif-
ferent ones).

5 Improving readability

As defined above, temporal provenance is already useful for
diagnostics because it can explain the reasons for a delay be-
tween two events. However, the provenance may not be as
succinct as a human operator would prefer due to two rea-
sons. First, the temporal provenance for [e1, e2] contains the
entire classical provenance of e2 as a subgraph, even though
some of the functional causes did not actually contribute to
the delay. Second, sequencing delay is often the result of
many similar events that each contribute a relatively small
amount of delay. To declutter the graph, we perform two
post-processing steps.

5.1 Pruning zero-delay subgraphs
Our first post-processing step hides any vertices that are an-
notated with zero (or not annotated at all) by the ANNOTATE

function. The only exception is that we keep vertices that
are connected via a causal path (i.e., a path with only causal
edges) to a vertex that is annotated with a positive delay. For
instance, in Figure 5, the original INS(Z) vertex – the starting
point of the interval – would be preserved, even though the
insertion itself did not contribute any delay.

To illustrate the effect of this step we consider the exam-
ple in Figure 5(f), which is almost identical to the one in
Figure 5(c), except that an additional, unrelated derivation
(F) occurred before the derivation of E. Here, the INS(G) and
the DRV(F) would be hidden because they do not contribute
to the overall delay.

5.2 Provenance aggregation
Our second post-processing step aggregates structurally sim-
ilar subgraphs [54]. This helps with cases where there are
many events that each contribute only a very small amount of
delay. For instance, in our scenario from Figure 1, the delay
is caused by a large number of RPCs from the maintenance
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service that are queued in front of the RPC. The “raw” tem-
poral provenance contains a subtree for each such RPC. Dur-
ing post-processing, these nearly identical subtrees would be
aggregated into a single subtree whose weight is the sum of
the weights of the individual trees, as shown in Figure 4.

There are two key challenges with this approach. The first
is to decompose the temporal provenance into smaller sub-
graphs that can potentially be aggregated. At first glance,
there are exponentially many decompositions, so the prob-
lem seems intractable. However, we observe that (1) aggre-
gation is most likely to be possible for sequencing delays,
which are often due to similar kinds of events (network pack-
ets, RPCs) that have a similar provenance; and that (2) the
corresponding subtrees can easily be identified because they
are laterally connected to the functional provenance through
a chain of sequencing edges. Thus, we can extract candi-
dates simply by following such lateral sequencing edges and
by taking the subgraphs below any vertices we encounter.

The second challenge is deciding whether two subgraphs
can be aggregated. As a first approximation, this is a graph
isomorphism problem, and since our provenance graphs have
a bounded chromatic index (which roughly corresponds to
the number of preconditions in the largest rule), the clas-
sic algorithms – e.g., [23] – should work well. However, in
our case the candidate subgraphs are often similar but rarely
identical; thus, we need to define an equivalence relation that
controls which vertices and are safe to aggregate. We use a
simple heuristic that considers two vertices to be similar if
they share a tuple name and have been derived on the same
node. To aggregate two subgraphs, we start at their root ver-
tices; if the vertices are similar, we merge them, annotate
them with the sum of their individual annotations, and recur-
sively attempt to merge pairs of their children. If the vertices
are not similar, we stop aggregation at that point and connect
the two remaining subgraphs directly to the last vertex that
was successfully aggregated.

The aggregation procedure is commutative and associa-
tive; thus, rather than attempting aggregation for all pairs of
subgraphs, we can simply try to aggregate each new sub-
graph with all existing aggregates. In our experience, the
O(N2) complexity is not a problem in practice because N is
often relatively small and/or most of the subgraphs are simi-
lar, so there are very few aggregates.

6 The Zeno debugger
We have built a temporal provenance debugger called Zeno
with five components in 23, 603 lines of code.
Runtime: To demonstrate that Zeno can work with different
languages and platforms, we built three different front-ends.
The first is integrated with RapidNet [3] and enables Zeno
to generate temporal provenance for NDlog programs. The
second is integrated with the Zipkin [1] framework – a cross-
language distributed tracing library that is based on Google

Dapper [55] and can run a network of microservices written
in Node.js [4] (JavaScript), Pyramid [5] (Python), and WE-
Brick [6] (Ruby). The third is integrated with Mininet [7],
which we use to emulate a network environment with P4
switches [17]. All front-ends share the same back-end for
reasoning about temporal provenance. In our evaluation, we
use the first and the third front-end for SDN applications, and
the second one for native Zipkin services.
Provenance recorder: At runtime, our debugger must
record enough metadata to be able to answer provenance
queries later on. Previous work [69, 46, 61] has already
shown that provenance can be captured at scale; this is typ-
ically done either (1) by explicitly recording all events and
their direct causes, or (2) by recording only nondeterminis-
tic inputs at runtime, and by later replaying the execution
with additional instrumentation to extract events and causes
if and when a query is actually asked [68]. The Zipkin front-
end follows the first approach, because Zipkin already has
well-defined interfaces to capture both base events and inter-
mediate events (such as RPC invocations and completions),
which yields a complete trace tree for each request. There-
fore, Zeno merely adds a post-processing engine that con-
verts the trace trees to functional provenance and that infers
most of the sequencing edges from the recorded sequence of
events across all trace trees. In addition, Zeno extends the
Zipkin runtime with dtrace [27] to capture sequencing edges
that cannot be directly inferred (e.g., edges representing lock
contention). The NDlog front-end uses the second approach
and is based on an existing record+replay engine from [68].
The Mininet platform leverages P4 switches to directly ob-
tain ingress/egress timestamps. (More on this below.) In
both approaches, we record timestamps at microsecond-level
precision, which should be sufficient in practice [57].
Query processor: The third and final component accepts
queries T-QUERY(e1,e2) from the operator, as defined in Sec-
tion 4.2, and it answers each query by first generating the raw
temporal provenance and then applying the post-processing
steps. The resulting graph is then displayed to the operator.
Retention policy: To prevent the storage requirements from
growing indefinitely, our prototype maintains the provenance
data only for a configurable retention time R, and prunes it
afterwards. Because of this, the result of a T-QUERY(e1,e2)
can be incomplete: for instance, if a particular forwarding
decision was made based on a routing table entry that is older
than R, the corresponding branch of the provenance tree will
be “pruned” at that point, since the entry’s provenance will
already have been discarded. However, if e1 is no older than
R, all vertices that would be annotated with a nonzero delay
will be included, so, if most queries are about recent events,
this is not a big sacrifice to make. If desired, the retention
policy could easily be refined or replaced.
P4 integration: Obtaining sequencing edges is not always
straightforward, especially at the network switches. Fortu-
nately, we can leverage the in-band network telemetry (INT)
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capability [16] in emerging switches [24] to obtain sequenc-
ing edges. These switches can stamp into a packet’s header
the ingress/egress timestamps at each queue, which can then
be used to obtain sequencing edges. If two packets p1 and p2
traverse the same queue and their ingress/egress timestamps
were t

i1/te1 and t
i2/te2, with t

i1 < t
i2 < t

e1 < t
e2, then we

know that p2 must have been queued after p1, and Zeno can
add a sequencing edge to the provenance graph. We have im-
plemented an extension in our prototype to approximate this
capability; note, however, that modern switches can perform
these operations directly in hardware at line speed.

7 Evaluation

In this section, we report results from an experimental evalu-
ation of our debugger. We have designed our experiments to
answer four high-level questions: 1) Is temporal provenance
useful for debugging realistic timing faults? 2) What is the
cost for maintaining temporal provenance? 3) How fast can
our debugger process diagnostic queries? And 4) Does tem-
poral provenance scale well with the network size?

We ran our experiments on a Dell OptiPlex 9020 worksta-
tion, which has a 8-core 3.40 GHz Intel i7-4770 CPU with
16 GB of RAM. The OS was Ubuntu 16.04, and the kernel
version was 4.10.0. Parts of the Zipkin front-end ran on a
MacBook Pro, which has a 4-core 2.40 GHz Intel i5-4258
CPU with 8GB of RAM. The OS was macOS 10.13.2, and
the kernel version was 17.3.0.

7.1 Diagnostic scenarios
We reproduced seven representative scenarios that we sam-
pled from incidents reported by Google Cloud Engine [2]:

• R1, Z1: Misbehaving maintenance task [8]. Clients
of the Compute Engine API experienced delays of up
to two minutes because a scheduled maintenance task
caused queuing within the compute service. This is the
scenario from Section 2.

• R2, Z2: Elevated API latency [9]. A failure caused
the URL Fetch API infrastructure to migrate to a re-
mote site. This increased the latency, which in turn
caused clients to retry, worsening the latency. Latencies
remained high for more than 3 hours.

• R3: Slow deployments after release [10]. A new re-
lease of App Engine caused the underlying pub/sub in-
frastructure to send an update to each existing instance.
This additional load slowed down the delivery of de-
ployment messages; thus, the creation of new instances
remained slow for more than an hour.

• R4: Network traffic changes [11]. Rapid changes in
external traffic patterns caused the networking infras-
tructure to reconfigure itself repeatedly, which created
a substantial queue of modifications. Since the network

Frontend (F)     span id: 1, parent id: none

0s
(time)

Compute (C)    span id: 2, parent id: 1

Billing (B) ...

Storage (S)    span id: 4, parent id: 2

30s10s 20s 40s 50s

Figure 7: Zipkin trace tree for scenario Z1, which shows
that the RPC to the storage service is the bottleneck, but the
actual cause (the RPCs from the maintenance service) is off-
path and thus is absent.

registration of new instances had to wait on events in
this queue, the deployment of new instances was slowed
down for 90 minutes.

• Z3: Lock contention [12]. User-submitted jobs ex-
periences increased execution time for over 13 hours
because lock contention in an underlying component
slowed down query scheduling and execution.

• Z4: Slow load jobs [13]. Load jobs to an analytics ser-
vice experienced long latencies for 29 hours. The ser-
vice received an elevated number of jobs that exceeded
its ingestion capacity and caused new jobs to wait in-
creasingly longer to be scheduled.

• M1: Network congestion [14]. Two cloud services ex-
perienced high latency for over 6 hours due to network
congestion.

We reproduced four scenarios in RapidNet (R1–R4) and
four in the microservice environment (Z1–Z4), including two
scenarios in both environments. The microservice scenarios
used five to eight servers. (We do not model switches in the
microservice scenarios.) We used single-core nodes for Z1
and Z2, but we used up to four cores for Z3 and Z4, to test
Zeno’s ability to handle concurrency; in this case, we spread
the workload equally across the available cores. The first
two RapidNet scenarios use four switches, one controller,
and three servers; for the remaining RapidNet scenarios, we
used four switches and one controller but a larger number of
servers (115 for R3, and 95 for R4). We reproduced the fi-
nal scenario in Mininet (M1) with 20 P4 switches with 16
hosts organized in a three-tiered Fat-tree topology, where
the sequencing edges were obtained using the ingress/egress
timestamps exported by the P4 switches [17].

7.2 Identifying off-path causes
A key motivator for this work is the fact that off-path causes
for a delay are often not even visible with an existing debug-
ger. To test whether Zeno addresses this, we generated trace
trees (using Zipkin) and classic provenance (using DTaP),
and compared their ability to identify off-path causes.

Figure 7 shows a Zipkin trace tree for Z1. A human op-
erator can clearly see that the API call to the frontend took
50 seconds, and that the compute RPC and the storage RPC
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78 Storage Req
sent by M at 0.75s,...,1.05s

78 Storage Reqs
received S at 1.20s,..,0.90s

Off-path 
cause!   

78 Storage Rsps 
sent by S at 50.70s,...,10.90s

(1) The compute response took 
50.63 seconds to generate after 
the frontend received the request. 
Because the compute node took   
50.62s to process the request.

Compute Rsp
send by C at 51.36s

Billing Rsp
received by C at 11.34s

Billing Rsp
sent by B at 11.29s

Billing Req
received by B at 1.19s

Compute Rsp
received by F at 51.37s

Billing Req
sent by C at 1.01s

Storage Rsp
received by C at 51.36s

Storage Rsp
sent by S at 51.21s

Storage Req
received by S at 1.20s

Storage Req
sent by C at 1.05s

(2) The compute node processing 
depended on two other RPC 
responses, in which the storage 
RPC finished last.

(3) The storage response was 
triggered around 50 seconds 
ago. The majority of this delay 
was due to 78 other RPCs that 
arrived earlier, which were all 
from the maintenance service.

50.63s

50.62s

50.62s

50.47s

0.36s 49.50s

0.31s

0.16s

(Q) Why did the compute request took 50.63 seconds to generate a response?

0.01s

0.01s

...

...

Compute Req
received by F at 0.74s

Compute Req
received by C at 0.90s

Figure 8: Temporal provenance for scenario Z1. In contrast
to the trace tree in Figure 7, the off-path cause (the requests
from the maintenance service) does appear and can easily be
found by starting at the root and by following the chain of
vertices with the highest delay.

both took almost as long. The latter may seem suspicious,
but the trace tree contains no further explanation. Similarly,
the classic provenance tree for Z1, which are essentially the
yellow vertices in Figure 8, offers a more comprehensive ex-
planation compared to the trace tree; however, like the trace
tree, it also misses the actual off-path cause. This consis-
tently happened in all experiments with Zipkin and DTaP:
since these systems do not reason about temporal causal-
ity, the underlying cause was never included in any of their
results. On the other hand, Z1’s temporal provenance (all
vertices in Figure 8) not only captures the information from
Zipkin or DTaP, but also explains that the requests from the
off-path maintenance service are causing the delay.

7.3 Size of the provenance
The provenance has to be simple enough for the operator to
make sense of it. Recall that, before showing the provenance
to operators, our debugger (1) prunes vertices that do not
contribute to the overall delay, and (2) aggregates subgraphs
that are structurally similar. To quantify how well these tech-
niques work, and whether they do indeed lead to a readable
explanation, we re-ran the diagnostic queries in Section 7.1
with different subsets of these steps disabled, and we mea-
sured the size of the corresponding provenance graphs.

Figure 9 shows our results. The leftmost bars show the
size of the raw temporal provenance, which ranged from 748
to 2,564 vertices. A graph of this size would be far too com-
plex for most operators to interpret. However, not all of these
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Figure 9: Size of the temporal provenance for all scenarios
in Section 5, with different post-processing steps.

vertices actually contribute to the overall delay. The second
set of bars shows the number of vertices that Zeno would
annotate with a nonzero delay (w > 0) and a zero delay
(w = 0), respectively: only 4.6–32.1% of all vertices ac-
tually contributed any delays. However, the subgraphs with
nonzero delays nevertheless remain too large to read effec-
tively.

Our first post-processing step prunes vertices and subtrees
that are annotated with zero delay and that do not make a
causal contribution. As the third set of bars shows, this re-
duces the size of the graph by more than 30% in all scenarios.
The second and final post-processing step coalesces struc-
turally similar subtrees and aggregates their delays. As the
rightmost set of bars shows, this is extremely effective and
shrinks the graph to between 13 and 93 vertices; the number
of vertices that actually contribute delay is between 11 and
28. (Recall that vertices with a causal contribution are pre-
served even if they do not contribute delay.) A provenance
graph of this size should be relatively easy to interpret.

To explain where the large reduction comes from, we
sketch the raw provenance tree – without post-processing –
for scenario Z1 in Figure 10. The structure of this tree is typ-
ical for the ones we have generated. First, there is a relatively
small “backbone” (shown in yellow) that functionally ex-
plains the result and roughly corresponds to classical prove-
nance. Second, there is a large number of small branches
(shown in red) along long sequencing chains (shown in
green) that describe the sources of any delay; these are col-
lapsed into a much smaller number of branches, or even a
single branch. Third, there are further branches (shown in
white) that are connected via sequencing edges but do not
contribute any delay; these are pruned entirely. The last two
categories typically contain the vast majority of vertices, and
our post-processing steps shrink them very effectively, which
in this case yields the much simpler tree from Figure 8.

7.4 Runtime overhead
Next, we quantified the overhead of collecting the metadata
for temporal provenance at runtime. We ran a fixed workload
of 1,000 requests in all scenarios, and measured the overall
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Figure 10: Sketch of the raw temporal provenance for sce-
nario Z1. The post-processing steps from Section 5 reduce
this to the provenance shown in Figure 8.

latency and the storage needed to maintain provenance. Zip-
kin is closely based on Dapper, which incurs low overhead
in production systems [55]; for instance, instrumenting every
request in a web search cluster increased latency by 16.3%
and decreased throughput by 1.48% [55]. Temporal prove-
nance mostly uses the data Zipkin collects, but does not mod-
ify its collection system; the dtrace [27] extension, which
complements Zipkin traces, incurs an additional latency in-
crease of 0.8% and a storage overhead of 270 bytes per RPC.
In Mininet, each packet consumes 106 bytes, which includes
the packet header and timestamps. In RapidNet, maintaining
classical provenance alone resulted in a latency increase of
0.3–1.2% and a storage overhead of 145–168 bytes per in-
put event. Maintaining temporal provenance causes an addi-
tional latency increase of 0.4–1.5% and a storage overhead of
49 bytes per event. Notice that, for temporal provenance, it
is not enough to merely record input events, since this would
not necessarily reproduce the timing or sequence of events.

The total storage consumption also depends on the reten-
tion time R. (Recall that Zeno prunes provenance data be-
yond R.) R needs to be large enough to cover the interval
between the root cause and the time the query is issued. In-
tuitively, a small R should be sufficient because root causes
of current issues are usually not in the distant past. To con-
firm this intuition, and to estimate a suitable value for R,
we re-examined our survey of incidents disclosed by Google
Cloud Platform [2]. We found 12 timing faults whose de-
scriptions included timestamps for both the symptom and the
root cause; in 11 of the 12 cases, the interval between the root
cause and the symptom was less than 30 minutes.

7.5 Query processing speed
When the operator queries the temporal provenance, our de-
bugger must execute the algorithm from Section 4 and apply

the post-processing steps from Section 5. Since debugging is
an interactive process, a quick response is important. To see
whether our debugger can meet this requirement, we mea-
sured the turnaround time for all queries, as well as the frac-
tion of time consumed by each of the major components.

Figure 11(a) shows our results. We make two high-level
observations. First, for scenarios where provenance is cap-
tured using deterministic replay (R1–R4), the turnaround
time is dominated by the replay and by the storage lookups
that would be needed even for classical provenance. This is
expected because neither our annotation algorithm nor the
post-processing steps are computationally expensive. Sec-
ond, although the queries vary in complexity and thus their
turnaround times are difficult to compare, we observe that
none of them took more than 10 seconds, which should be
fast enough for interactive use. Notice that this delay is in-
curred only once per query; the operator can then explore the
resulting temporal provenance without further delays.

7.6 Scalability
To evaluate the scalability of Zeno with regard to the network
size, we tested the turnaround time and provenance size of
query R3 on larger networks with up to 700 nodes. We ob-
tained these networks by adding more servers.
Turnaround time: As we can see from the left part of Fig-
ure 11(b), the turnaround time increased linearly with the
network size, but it was within 65 seconds for all cases. As
the breakdown shows, the increase mainly comes from the
latency increase of the historical lookups and of the replay.
This is because the additional nodes and traffic caused the
size of the logs to increase. This in turn resulted in a longer
time to replay the logs, and to search through the events. Pro-
filing [15] shows that log replay is dominated by sending and
receiving packets in RapidNet [3] (Recall from Section 6 that
the replay engine is based on an existing one from [68].). Be-
cause the replay runs on a single machine, we can optimize
turnaround time by reducing unnecessary I/O.
Size of the provenance: The right part of Figure 11(c)
shows that the size of the raw provenance grew linearly to
the network size – by 7x from 1, 939 to 13, 960 vertices –
because traffic from additional servers caused additional de-
lays, which required extra vertices to be represented in the
provenance. With the annotation and aggregation heuristics
applied, the number of vertices that actually contributed de-
lay still grew, because more hops were congested due to bus-
ier networks. However, the increase – a factor of 1.5, from
28 to 40 – is much less than the increase in the network size
(7x), which suggests that the heuristic scales well.

8 Related Work
Provenance: None of the provenance systems we are aware
of [61, 30, 60, 68, 69, 67, 49, 22, 38, 35, 39] can reason about
temporal causality, which is essential for diagnosing timing
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Figure 11: Turnaround for all queries in Section 7.1 (a). Scalability of turnaround (b) and provenance size (c) for R3.

faults. This is true even for DTaP [68] and its predecessor
TAP [66], which are “time-aware” only in the very limited
sense that they can remember the provenance of past system
states. As our experiments confirm, these systems are not
able to find off-path causes of timing faults.

Tracing: Tracing systems broadly fall into two classes.
The first class of systems infer causality, e.g., using log
messages [34], static analysis [64, 53], or external annota-
tions [18, 44]; however, the inference is not always accu-
rate, so such systems can have false positives and negatives.
For example, Roy et al. [53] localizes network faults in real
time by correlating end-host flow metrics with network paths
that flows traverse; however, the technique relies on statisti-
cal analysis and applies best to huge data centers where the
rich structure and massive volume of traffic information re-
duces imprecision. The second class of systems avoid this
imprecision by recording causality, at the expense of instru-
mentation [55, 48, 58, 21, 33, 28, 37, 40, 57, 56]. For ex-
ample, Canopy [40] annotates traces with performance data;
SwitchPointer [57] divides time into epochs and records the
epochs during which a packet was forwarded. To our knowl-
edge, our approach is the first to explicitly record temporal
causality using sequencing edges and thus also the first to
offer precise reasoning about the causes of timing behavior.

Performance diagnosis: Existing systems have used ma-
chine learning or statistical analysis for performance diagno-
sis [63, 21, 19, 41, 20, 32] – they perform learning on the
normal system behaviors and use learned models for diagno-
sis. This tends to work well when there is abundant training
data, but its power is limited when diagnosing rare anoma-
lies or occasional glitches, which are often the trickiest and
most time-consuming problems to debug. Performance di-
agnosis can also be done by comparing “good” and “bad”
instances [51, 52, 50, 54] and analyzing their differences,
when both types of instances are available. Since these types
of diagnosis do not use causality, the analysis is not always
precise. DiffProv [30] does rely on causality, but it focuses
exclusively on functional but not temporal causality. We be-
lieve that Zeno may be able to benefit from a similar differ-
ential diagnosis to narrow down the root causes further.

Timing faults: Our approach is potentially useful for diag-
nosing timing faults in real-time systems, where tasks have

deadlines [31]. Researchers have proposed solutions to con-
trol program timing, but they either require specialized hard-
ware [36] or incur significant overhead [29]. Worst-case ex-
ecution time analysis [59] can estimate an upper bound on
the execution time of a program, but it does not reason about
the causes of delays.
Queuing theory: Queuing theory [42, 43, 25] has been used
to model, analyze, and optimize the performance of dis-
tributed systems. This approach, however, assumes a cer-
tain distribution of arrival patterns in the input workloads,
which may not always hold in practice, and it does not auto-
matically identify the causes of a performance violation. In
contrast, temporal provenance can help diagnosing problems
in practical systems without assumptions on the input model.

9 Conclusion

Diagnosing timing-related issues is a tricky business that re-
quires expertise and a considerable amount of time. Hence,
it seems useful to develop better tools that can at least par-
tially automate this process. Existing tools work well for
functional problems, but they fail to identify the root causes
of temporal problems; this requires a very different approach
that involves different information and a new way of reason-
ing about causality. We have proposed temporal provenance
as a concrete solution to this problem. Although tempo-
ral provenance takes the concept of provenance in a some-
what different direction than the existing work on functional
provenance, the two lines of work share the same starting
point (classical provenance) and thus look very similar to
the operator, which helps with usability. The experimental
results from our prototype debugger suggest that temporal
provenance can provide compact, readable explanations for
temporal behavior, and that the necessary metadata can be
collected at a reasonable cost.

Acknowledgments: We thank our shepherd Ariosto Panda
and the anonymous reviewers for their comments and
suggestions. This work was supported in part by NSF
grants CNS-1563873, CNS-1703936, CNS-1750158, CNS-
1703936 and CNS-1801884, and the Defense Advanced
Research Projects Agency (DARPA) under Contract No.
HR0011-16-C-0056 and HR0011-17-C-0047.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation    407



References
[1] http://zipkin.io/.

[2] https://status.cloud.google.com/summary.

[3] http://netdb.cis.upenn.edu/rapidnet/.

[4] https://nodejs.org/.

[5] https://trypyramid.com/.

[6] https://github.com/ruby/webrick.

[7] http://mininet.org/.

[8] https://status.cloud.google.com/incident/

compute/15039.

[9] https://status.cloud.google.com/incident/

appengine/14005.

[10] https://status.cloud.google.com/incident/

appengine/15005.

[11] https://status.cloud.google.com/incident/

compute/15057.

[12] https://status.cloud.google.com/incident/

bigquery/18003.

[13] https://status.cloud.google.com/incident/

bigquery/18007.

[14] https://status.cloud.google.com/incident/

appengine/15023.

[15] https://github.com/gperftools/gperftools.

[16] In-band network telemetry. http://p4.org/wp-content/

uploads/fixed/INT/INT-current-spec.pdf.

[17] The P4 language. https://github.com/p4lang/.

[18] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS, P.,
AND MUTHITACHAROEN, A. Performance debugging for distributed
systems of black boxes. In Proc. SOSP (Oct. 2003).

[19] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Automating
root-cause diagnosis of performance anomalies in production soft-
ware. In Proc. OSDI (Oct. 2012).

[20] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards highly reliable enterprise
network services via inference of multi-level dependencies. In Proc.
SIGCOMM (2007).

[21] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R. Us-
ing Magpie for request extraction and workload modelling. In Proc.
OSDI (Dec. 2004).

[22] BATES, A., TIAN, D., BUTLER, K. R., AND MOYER, T. Trustwor-
thy whole-system provenance for the Linux kernel. In Proc. USENIX
Security (Aug. 2015).

[23] BODLAENDER, H. L. Polynomial algorithms for graph isomorphism
and chromatic index on partial k-Trees. Journal of Algorithms (1990),
631–643.

[24] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., AND WALKER, D. P4: Programming protocol-
independent packet processors. ACM SIGCOMM CCR 44, 3 (2014).

[25] BOUDEC, J.-Y. L., AND THIRAN, P. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet, vol. LNCS 2050.
Springer, 2001.

[26] BUNEMAN, P., KHANNA, S., AND WANG-CHIEW, T. Why and
where: A characterization of data provenance. In Proc. ICDT (Jan.
2001).

[27] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H. Dy-
namic instrumentation of production systems. In Proc. USENIX ATC
(2004).

[28] CHANDA, A., COX, A. L., AND ZWAENEPOEL, W. Whodunit:
Transactional profiling for multi-tier applications. In Proc. SOSP (Oct.
2007).

[29] CHEN, A., MOORE, W. B., XIAO, H., HAEBERLEN, A., PHAN, L.
T. X., SHERR, M., AND ZHOU, W. Detecting covert timing channels
with time-deterministic replay. In Proc. OSDI (Oct. 2014).

[30] CHEN, A., WU, Y., HAEBERLEN, A., ZHOU, W., AND LOO, B. T.
The Good, the bad, and the differences: Better network diagnostics
with differential provenance. In Proc. SIGCOMM (Aug. 2016).

[31] CHEN, A., XIAO, H., PHAN, L. T. X., AND HAEBERLEN, A. Fault
tolerance and the five-second rule. In Proc. HotOS (May 2015).

[32] CHEN, M. Y., KICIMAN, E., FRATKIN, E., FOX, A., AND BREWER,
E. Pinpoint: Problem determination in large, dynamic internet ser-
vices. In Proc. DSN (2002).

[33] CHEN, Y.-Y. M., ACCARDI, A., KICIMAN, E., PATTERSON, D. A.,
FOX, A., AND BREWER, E. A. Path-based failure and evolution
management. PhD thesis, University of California, Berkeley, 2004.

[34] CHOW, M., MEISNER, D., FLINN, J., PEEK, D., AND WENISCH,
T. F. The mystery machine: end-to-end performance analysis of large-
scale Internet services. In Proc. OSDI (Oct. 2014).

[35] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight provenance for smart phone op-
erating systems. In Proc. USENIX Security (Aug. 2011).

[36] EDWARDS, S. A., AND LEE, E. A. The case for the precision timed
(PRET) machine. In Proc. DAC (June 2007).

[37] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND STO-
ICA, I. X-trace: A pervasive network tracing framework. In Proc.
NSDI (Apr. 2007).

[38] GEHANI, A., AND TARIQ, D. Spade: Support for provenance audit-
ing in distributed environments. In Proc. Middleware (Dec. 2012).

[39] HASAN, R., SION, R., AND WINSLETT, M. The case of the fake
picasso: Preventing history forgery with secure provenance. In Proc.
FAST (2009).

[40] KALDOR, J., MACE, J., BEJDA, M., GAO, E., KUROPATWA, W.,
O’NEILL, J., ONG, K. W., SCHALLER, B., SHAN, P., VISCOMI,
B., ET AL. Canopy: An end-to-end performance tracing and analysis
system. In Proc. SOSP (2017).

[41] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S., PAD-
HYE, J., AND BAHL, P. Detailed diagnosis in enterprise networks. In
Proc. SIGCOMM (Aug. 2009).

[42] KLEINROCK, L. Queueing Systems, Volume 1: Theory. Wiley-
Interscience, 1975.

[43] KLEINROCK, L. Queueing Systems, Volume 2: Computer Applica-
tions. Wiley-Interscience, 1976.

[44] KOSKINEN, E., AND JANNOTTI, J. Borderpatrol: Isolating events for
black-box tracing. In Proc. EuroSys (Mar. 2008).

[45] LAMPORT, L. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21, 7 (July 1978).

[46] LOGOTHETIS, D., DE, S., AND YOCUM, K. Scalable lineage capture
for debugging DISC analysis. Tech. Rep. CSE2012-0990, UCSD.

[47] LOO, B. T., CONDIE, T., GAROFALAKIS, M., GAY, D. E., HELLER-
STEIN, J. M., MANIATIS, P., RAMAKRISHNAN, R., ROSCOE, T.,
AND STOICA, I. Declarative networking. Communications of the
ACM 52, 11 (Nov. 2009), 87–95.

[48] MILLER, B. P. Dpm: A measurement system for distributed pro-
grams. IEEE Transactions on Computers 37, 2 (1988), 243–248.

[49] MUNISWAMY-REDDY, K.-K., HOLLAND, D. A., BRAUN, U., AND
SELTZER, M. I. Provenance-aware storage systems. In Proc. USENIX
ATC (May 2006).

408    16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://zipkin.io/
https://status.cloud.google.com/summary
http://netdb.cis.upenn.edu/rapidnet/
https://nodejs.org/
https://trypyramid.com/
https://github.com/ruby/webrick
http://mininet.org/
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/compute/15039
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/appengine/14005
https://status.cloud.google.com/incident/appengine/15005
https://status.cloud.google.com/incident/appengine/15005
https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/incident/compute/15057
https://status.cloud.google.com/incident/bigquery/18003
https://status.cloud.google.com/incident/bigquery/18003
https://status.cloud.google.com/incident/bigquery/18007
https://status.cloud.google.com/incident/bigquery/18007
https://status.cloud.google.com/incident/appengine/15023
https://status.cloud.google.com/incident/appengine/15023
https://github.com/gperftools/gperftools
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
http://p4.org/wp-content/uploads/fixed/INT/INT-current-spec.pdf
https://github.com/p4lang/


[50] NAGARAJ, K., KILLIAN, C., AND NEVILLE, J. Structured compar-
ative analysis of systems logs to diagnose performance problems. In
Proc. NSDI (Apr. 2012).
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BIANCHINI, R. Deepdive: Transparently identifying and manag-
ing performance interference in virtualized environments. In Proc.
USENIX ATC (June 2013).

[52] REYNOLDS, P., KILLIAN, C. E., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected in
distributed systems. In Proc. NSDI (May 2006).

[53] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive
realtime datacenter fault detection and localization. In Proc. NSDI
(2017).

[54] SAMBASIVAN, R. R., ZHENG, A. X., DE ROSA, M., KREVAT,
E., WHITMAN, S., STROUCKEN, M., WANG, W., XU, L., AND
GANGER, G. R. Diagnosing performance changes by comparing re-
quest flows. In Proc. NSDI (Apr. 2011).

[55] SIGELMAN, B. H., BARROSO, L. A., BURROWS, M., STEPHEN-
SON, P., PLAKAL, M., BEAVER, D., JASPAN, S., AND SHANBHAG,
C. Dapper, a large-scale distributed systems tracing infrastructure.

[56] TAMMANA, P., AGARWAL, R., AND LEE, M. Simplifying datacenter
network debugging with pathdump. In Proc. OSDI (2016).

[57] TAMMANA, P., AGARWAL, R., AND LEE, M. Distributed network
monitoring and debugging with switchpointer. In Proc. NSDI (2018).

[58] TIERNEY, B., JOHNSTON, W., CROWLEY, B., HOO, G., BROOKS,
C., AND GUNTER, D. The NetLogger methodology for high per-
formance distributed systems performance analysis. In Proc. HPDC
(July 1998).

[59] WILHELM, R., ENGBLOM, J., ERMEDAHL, A., HOLSTI, N.,
THESING, S., WHALLEY, D., BERNAT, G., FERDINAND, C.,
HECKMANN, R., MITRA, T., MUELLER, F., PUAUT, I., PUSCHNER,
P., STASCHULAT, J., AND STENSTRÖM, P. The worst-case
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A Formal Model
Temporal provenance preserves all properties of classical provenance (va-
lidity, soundness, completeness, and minimality). We have obtained the
corresponding proofs by extending the formal model from TAP/DTaP [65].
Although there are some parts of the proof from [65] that require few or no
changes (e.g., because they only relate to functional provenance and not to
sequencing), we present the full formal model here for completeness. Our
extensions include the following:

• Temporal provenance has a different set of vertex types (Section 3.3)
and contains sequencing edges (Section 4.1); consequently, temporal
provenance graphs are constructed differently (Section A.2).

• The validity property, in addition to its prior requirements from TAP,
requires that the temporal provenance include all the events necessary
to reproduce the execution temporally (Section A.3).

• The proofs follow the same structure as in TAP, but are adjusted to
handle the different graph structure and the stronger validity property
of temporal provenance (Section A.4).

We have also formally modeled the properties of the delay annotations that
our algorithm creates (and that were not part of [65]):

• Definitions of direct delay and transitive delay; and a theorem states
that each vertex is labeled with the amount of delay that is contributed
by the subtree that is rooted at that vertex (Section A.5).

• A theorem states that the annotations do correspond to the “potential
for speedup” that we intuitively associate with the concept of delay
(Section A.6).

A.1 Background: Execution Traces
To set stage for the discussion, we introduce some necessary concepts for
reasoning about the execution of the system in our temporal provenance
model.

An execution trace of an NDlog program can be characterized by a se-
quence of events that take place in the system, starting from the initial sys-
tem state. Each event on a node captures the execution of a particular rule r
that is triggered by a certain tuple ⌧ , under the existence of some other tu-
ples on the node, and that results in a new tuple being derived or an existing
tuple being underived (i.e., lost). We formally define them below.

Definition (Event): An event d@n on a node n is represented by d@n =
(⌧, r, t

s

, t

e

, c,±⌧

0), where
• ⌧ is the tuple that triggers the event,
• r is the derivation rule that is being triggered,
• t

s

is the time at which r is triggered (called start timestamp),
• t

e

is the time at which r finishes its execution (called end timestamp),
• c is the set of tuples that are preconditions of the event, which must

exist on n at time t

s

, and
• ⌧

0 is the tuple that is derived (+) or underived (�) as a result of the
derivation.

Definition (Trace): A trace E is a sequence of events
hd1@n1, d2@n2, . . . , d

k

@n

k

i that reflects an execution of the sys-
tem from the initial state S0, i.e.,

S0
d1@n1�����! S1

d2@n2�����! · · · dk@nk�����! S
k

.

To quantify the timing behaviors of the system, it is necessary to reason
about the order among events. Ideally, we would like to have a total ordering
among all events in all nodes in the system; however, due to the lack of fully
synchronized clocks, this is difficult to achieve in distributed systems. To
address this, we introduce the concept of trace equivalence that preserves
the total ordering of events on each node, without imposing a total ordering
among events across nodes. Intuitively, two traces E and E 0 are considered

equivalent if the subsequence of events that every node observes in E is the
same as that is observed in E 0.

Definition (Subtrace): E 0 is a subtrace of E (written as E 0 ✓ E) iff E 0 is
a subsequence of E . We denote by E|n the subtrace of E that consists of all
and only the events of E that take place on node n.

Definition (Equivalence): Two traces E and E 0 are equivalent (written as
E ⇠ E 0) iff for all nodes n, E|n = E 0|n.

By definition, the equivalence relation is transitive: if E ⇠ E 0 and E 0 ⇠ E 00,
then E ⇠ E 00.
Example: As an example, consider the following traces:

E1 = hd1@n1, d2@n2, d3@n1, d4@n2i,

E2 = hd1@n1, d2@n2, d4@n2, d3@n1i,
E3 = hd1@n1, d2@n2, d3@n1i.

It is easy to observe that E1 and E2 are equivalent, since E1|n1 = E2|n1 =
hd1@n1, d3@n1i and E1|n2 = E2|n2 = hd2@n2, d4@n2i. In contrast,
E3 is a subtrace of E1, but it is not equivalent to E1 (since E3|n2 6= E1|n2).

A.2 Graph construction
We now describe our algorithm for constructing the temporal provenance
that explains the reasons for a delay between two events. As discussed in
Section 4.6, temporal provenance is recursive – the temporal provenance
for [e0, e] includes, as subgraphs, the temporal provenances of all events
that contributed to both e and the delay from e

0 to e. Leveraging this prop-
erty, we can construct the temporal provenance of a pair of events “on de-
mand” using a top-down procedure, without the need to materialize the en-
tire provenance graph.

Towards this, we first define a function RAW-QUERY that, when called
on a vertex v in the temporal provenance graph, returns two sets of imme-
diate children of v: the first consists of vertices that are connected to v via
causal edges, and the second consists of vertices that are connected to v via
sequencing edges. Given an execution trace E of the system, the temporal
provenance for a diagnostic query T-QUERY(e0,e) can be obtained by first
constructing a vertex v

e

that describes e (i.e., a DRV/UDRV/RCV ver-
tex for e), and then calling RAW-QUERY recursively on the vertices starting
from v

e

until reaching the leaf vertices (lines 1-18); note that a vertex re-
turned by a RAW-QUERY call is connected to its parent vertex via either
a causal edge and/or a sequencing edge, depending on the set(s) it belongs
to (lines 12-17). The resulting graph, denoted by G(e0, e, E), includes all
necessary events to explain both e and the delay from e

0 to e. However, as
it requires delay annotation (Sections 4.3–4.5) to be useful for diagnostics,
we refer to it as the “raw” temporal provenance of T-QUERY(e0,e).

The RAW-QUERY(v) procedures rely on a helper function called
PREV-VERTEX to find vertices that are connected to v via sequenc-
ing edges. For ease of exposition, we first explain the pseudo-code of
PREV-VERTEX in Figure 12: given an interval [t0, t] and a node N (sup-
plied by RAW-QUERY calls), PREV-VERTEX finds the chain of preceding
events that happened on N during [t0, t]; it first locates the last event v
whose execution ends at t and constructs a corresponding vertex (lines 51-
60); it then shortens the interval to until the starting timestamp of v and
recursively find prior events on N (line 61); it stops until the interval is
exhausted or if no event can be found (line 67); finally, it recursively con-
nects this chain of events using sequencing edges and returns the last event
in the chain to its caller (line 65-66). For example, consider the prove-
nance graph from Figure 13: a PREV-VERTEX([2.5s, 3.5s],Y ) call will
first find the DRV(F) event, which ends at exactly t = 3.5s; it con-
structs a vertex and shortens the interval to [2.5s, 2.5s], by excluding the
execution time of DRV(F); this interval is passed into a recursive call –
PREV-VERTEX([2.5s, 2.5s],Y ) – that finds the event of and constructs a
vertex for INS(G); the recursion then stops because the interval becomes
empty (because INS(G) takes a positive amount of time); the two con-
structed vertices are connected via sequencing edges and the last event in
the chain – DRV(F) – is returned to the caller.

Figure 12 shows the pseudo-code for RAW-QUERY(v) depending on the
type of v (DRV, UDRV, SND, RCV, INS and DEL). Note that each
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1: function CONSTRUCT-GRAPH(v
e

)
2: G {v

e

} // the “raw” temporal provenance graph
3: // a queue of vertices that need explanation
4: NodeToProcess  {v

e

}
5: while NodeToProcess 6= ; do
6: v  NodeToProcess.POP()
7: S, S

0  RAW-QUERY(v)
8: for v

0 2 {S [ S

0} do
9: if v0 62 G then

10: G G [ v

0 // add vertices
11: NodeToProcess.PUSH(v0)

12: for v

0 2 S do
13: // add causal edges
14: G G [ (v0, v)

causal

15: for v

0 2 S

0 do
16: // add sequencing edges
17: G G [ (v0, v)

sequencing

18: RETURN G

19: function RAW-QUERY(DRV([t
s

, t

e

],N,⌧ , ⌧ :- ⌧1, ⌧2, . . . , ⌧m))
20: S ;
21: t

max

e

 0 // the last precondition was satisfied at tmax

e

22: for ⌧

i

2 {⌧1, ⌧2, . . . , ⌧m} do
23: Find d

i

@N = (⌧ 0, r, t0
s

, t0
e

, {c1, c2, . . . , c
k

}, ±⌧

i

) 2 E :
t

0
e

 t

s

and t

0
e

is maximized
24: t

max

e

 MAX(tmax

e

, t0
e

)
25: if r = rins then
26: S S [ INS([t0

s

, t

0
e

],N ,⌧
i

)
27: else if r = rrcv then
28: S S [ RCV([t0

s

, t

0
e

],N r.N ,±⌧
i

)
29: else
30: S S [ DRV([t0

s

, t

0
e

],N ,⌧
i

, ⌧
i

:-⌧ 0,c1,c2, . . . , c
k

)
31: // include all preceding events that happened after the last
32: // precondition was satified and before the derivation of ⌧
33: RETURN

�
S; PREV-VERTEX([tmax

e

, t

s

], N)
�

34: function RAW-QUERY(INS([t
s

, t

e

],N ,⌧ ))
35: RETURN (;; ;)
36: function RAW-QUERY(SND([t

s

, t

e

],N!N

0,±⌧ ))
37: Find d@N = (⌧ 0, r, t0

s

, t0
e

, {c1, c2, . . . , c
k

},±⌧ ) 2 E :
t

0
e

 t

s

and r 6= rrcv and t

0
e

is maximized.
38: if r = rins/del then
39: RETURN

�
INS/DEL([t0

s

, t

0
e

],N ,⌧ );
PREV-VERTEX([t0

e

, t

s

],N )
�

40: else
41: RETURN

�
DRV/UDRV([t0

s

, t

0
e

],N ,⌧ , ⌧ :- ⌧ 0, c1, c2, . . . );
PREV-VERTEX([t0

e

, t

s

], N)
�

42: function RAW-QUERY(RCV([t
s

, t

e

],N N

0,±⌧ ))
43: Find d@N

0=(⌧ 0,r,t0
s

,t0
e

,±⌧ ) 2 E :
t

0
e

 t

s

and r = rsnd and t

0
e

is maximized
44: v SND([t0

s

, t

0
e

],N 0!N ,±⌧ )
45: // a remote sequencing edge exists from the SND vertex
46: RETURN

�
v; v

�

47: function PREV-VERTEX([t0, t],N )
48: if t0 < t then
49: // If an immediate preceding event exists, then add a
50: // sequencing edge from the corresponding vertex.
51: if 9 d@N=(⌧ 0,r,t

s

,t
e

,{c1, c2, ...},±⌧ ): t
e

= t then
52: v  null

53: if r = rsnd then
54: v  SND([t

s

, t

e

],N!r.N ,±⌧ )
55: else if r = rrcv then
56: v  RCV([t

s

, t

e

],N r.N ,±⌧ )
57: else if r = rins/del then
58: v  INS/DEL([t

s

, t

e

],N ,⌧ )
59: else
60: v  DRV/UDRV([t

s

, t

e

],N ,⌧ ,⌧ :-⌧ 0,c1,c2,...)
61: v

0 = PREV-VERTEX([t0, t
s

],N )
62: if v0! = null then
63: // recusively add preceding events until the
64: // entire [t0, t] interval is explained
65: G G [ (v0, v)

sequencing

66: RETURN v

67: RETURN null

68: function RAW-QUERY(UDRV([t
s

, t

e

],N,⌧ , ⌧ :- ⌧1, ⌧2, . . . , ⌧m))
69: S ;
70: t

max

e

 0 // the last precondition was satisfied at tmax

e

71: for ⌧

i

2 {⌧1, ⌧2, . . . , ⌧m} do
72: Find d

i

@N = (⌧ 0, r, t0
s

, t0
e

, {c1, c2, . . . , c
k

}, ±⌧

i

) 2 E :
t

0
e

 t

s

and t

0
e

is maximized
73: t

max

e

 MAX(tmax

e

, t0
e

)
74: if r = rins/del then
75: S S [ INS/DEL([t0

s

, t

0
e

],N ,⌧
i

)
76: else if r = rrcv then
77: S S [ RCV([t0

s

, t

0
e

],N r.N ,±⌧
i

)
78: else
79: S S [ DRV/UDRV([t0

s

, t

0
e

],N ,⌧
i

, ⌧
i

:-⌧ 0,c1,c2, . . . , c
k

)
80: // includes all preceding events that happened after the last
81: // precondition was satified and before the underivation of ⌧
82: RETURN

�
S; PREV-VERTEX([tmax

e

, t

s

], N)
�

83: function RAW-QUERY(DEL([t
s

, t

e

],N ,⌧ ))
84: RETURN (;; ;)

Figure 12: Algorithm for constructing temporal provenance graph for a given execution trace E . The trace E consists of
events (Definition A.1), which are recorded at runtime or reconstructed via replay. The function RAW-QUERY(v), when called
on a vertex v, returns two sets of immediate children of v, which are connected to v via causal edges and sequencing edges,
respectively. It calls PREV-VERTEX([t0, t],N ) as a subprocedure, which finds a chain of vertices connected via sequencing edges
that immediately precedes v during [t0, t].
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Algorithm 1 Extracting traces from provenance
1: // This algorithm extracts the trace A(e0, e, E) from the “raw” temporal prove-

nance G(e0, e, E); for ease of explanation, we rewrite G as (V,E), where V

represents vertices and E represent edges
2: proc EXTRACTTRACE(G = (V,E))
3: // Calculate the out-degree of every vertex in G

4: for all v 2 V do degree(v) 0
5: for all e = (v, v0) 2 E do degree(v)++
6: // Generate the race based on topological sort
7: trace ;
8: NodeToProcess  V

9: while NodeToProcess 6= ; do
10: // Select the next event based on topological ordering and timestamps
11: select v 2 NodeToProcess : degree(v) = 0 and 6 9v0

that is located on the same node and has a larger end timestamp
12: NodeToProcess.REMOVE(v)
13: if type(v) = DRV or UDRV or SND then
14: preconditions  ;
15: for 8 (v0

, v) 2 E s.t. (v0
, v) is a causal edge do

16: preconditions .ADD(tuple(v0)) // tuple(v0) is a precondition
17: // find the trigger from the preconditions
18: trigger ⌧

0 2 preconditions:
(a) ⌧ 0 is a message, or (b) ⌧ 0 is a state and
6 9⌧ 00 2 preconditions that has a larger end timestamp

19: preconditions .DELETE(trigger)
20: event (trigger, rule(v), startTime(v),
21: endTime(v), preconditions, tuple(v))
22: trace.push front(event)

23: if type(v) = RCV then
24: output tuple(v)
25: trigger  tuple(v0): (v0

, v) 2 E s.t. type(v0) = SND
26: event (trigger, rule(v), startTime(v),
27: endTime(v), ;, tuple(v))
28: trace.push front(event)

29: if type(v) = INS or DEL then
30: output tuple(v)
31: event (;, rule(v), startTime(v),
32: endTime(v), ;, tuple(v))
33: trace.push front(event)

34: for all (v0
, v) 2 E, degree(v0) degree(v0)� 1

35: return trace

A@X :- B@X,E@Y
B@X :- C@X
E@Y :- C@X
C@X :- Z@X
F@Y :- G@Y

X
Y

0 1 2 3 4 5 6 7 8

C B A

E

INS(Z)

DRV(A)

DRV(B)

INS(Z)

DRV(E)

SND(+C)

RCV(+C)

SND(+E)

RCV(+E)

DRV(C)F

INS(G)

DRV(F)

INS(G)

Figure 13: An example scenario, with NDlog rules at the top
left, the timing of a concrete execution in the bottom left,
and the temporal provenance graph at the right. The query
is T-QUERY(INS(Z), DRV(A)); the start and end vertices are
marked in bold. Vertex names are shortened and some fields
are omitted for clarity.

DRV or UDRV vertex is also associated with the corresponding derivation
rule. Next, we explained the pseudo-code of RAW-QUERY(v) for each
vertex type in more detail. For ease of exposition, we use the provenance
graph from Figure 13:

• To explain a SND vertex, we find the most recent event in the original
trace that produced (or deleted) the tuple that is being sent (line 37),

construct an INS (or DEL) or a DRV (or UDRV) vertex for the
found event, and add an incoming causal edge from the constructed
vertex (lines 38-41); in addition, a SND vertex has an incoming se-
quencing edge from the chain of preceding events that happened after
the message was produced or deleted (the PREV-VERTEX calls in
lines 39 and line 41). For example, in the temporal provenance graph
from Figure 13, the SND(+C) vertex has a causal edge from the
DRV(C) vertex, because DRV(C) functionally triggered SND(+C);
in addition, a PREV-VERTEX([2s, 2s],X) call adds a sequencing
edge from DRV(C) to SND(+C), as the former directly precedes
the latter.

• A RCV has an incoming causal edge and an incoming remote
sequencing edge from the SND vertex for the received message
(lines 42-46). This is the case for RCV(+E) and RCV(+C) in Fig-
ure 13.

• A DRV vertex for a rule A:-B,C,D has an incoming causal edge
for each precondition (B, C, and D) that leads to the vertex that pro-
duced the corresponding tuple (line 22); this can be an INS, a RCV,
or another DRV (lines 25-30); in addition, a DRV vertex has an in-
coming sequencing edge from the chain of preceding events that hap-
pened after the last precondition was satisfied (the PREV-VERTEX
call in line 33). For example, in the provenance from Figure 13,
DRV(F) has a causal edge from its (only) precondition INS(G);
in addition, a PREV-VERTEX([2.5s, 3.5s],Y ) finds the preceding
event RCV(+C) that occurred between INS(G) ended and DRV(F)
started.

• An INS vertex corresponds to the insertion of a base tuple, which
cannot be explained further; thus, it has no incoming edges (line 35).
This is true for INS(Z) and INS(G) in Figure 13.

• The edges for the negative “twins” of these vertices – UDRV and
DEL – are analogous.

A.3 Properties
Given the “raw” temporal provenance G(e0, e, E) of a diagnostic query
T-QUERY(e0,e) in an execution trace E , we say that G(e0, e, E) is correct if
it is possible to extract a subtrace from G that has the properties of validity,
soundness, completeness, and minimality. We first describe our algorithm
for extracting such a subtrace, and then formally define these properties and
their proofs.

Definition (Trace Extraction): Given a temporal provenance G(e0, e, E),
the trace A(e0, e, E) is extracted by running Algorithm 1 based on topolog-
ical sort.

Algorithm 1 converts the vertices in the provenance graph to events and
then uses a topological ordering and timestamps to assemble the events
into a trace. In particular, Line 13-33 implements the construction of
one individual event, where the information of a rule evaluation (such
as triggering event, conditions, and action) is extracted from vertices in
G(e0, e, E): a DRV/UDRV/SND vertex and their children; a pair
of RCV and SND vertices; or a INS/DEL vertex. In the algorithm,
type(v), tuple(v), rule(v), startTime(v) and endTime(v) denote the
vertex type, the tuple, the derivation rule, the start timestamp, and the
end timestamp of the vertex v, respectively. For example, Algorithm 1
extracts the following trace from the provenance graph in Figure 13:
hINS(Z)@X , DRV(C)@X , SND(+C)@X , INS(G)@Y , DRV(B)@X ,
RCV(+C)@Y ,
DRV(F)@Y , DRV(E)@Y , SND(+E)@Y , RCV(+E)@X ,
DRV(A)@Xi.

We will show that the extracted trace A(e0, e, E) obtained from Algo-
rithm 1 satisfies the following four properties.

Definition (Soundness): A subtrace A extracted from G(e0, e, E) is sound
if and only if it is a subtrace of some trace E 0 that is equivalent to E , i.e.,
A ✓ E 0 ⇠ E .

Intuitively, the soundness property means that A(e0, e, E) must preserve all
the happens-before relationships among events and the exact timestamps of
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events in the original execution trace obtained from running the NDlog pro-
gram. Ideally, we would like A(e0, e, E) to be a subtrace of E , but without
synchronized clocks, we cannot always order concurrent events on differ-
ent nodes. However, for practical purposes E and E0 are indistinguishable:
each node observes the same sequence of events in the same order and at
the same times.

Definition (Completeness): A subtrace A extracted from G(e0, e, E) is
complete if and only if it ends with the event e and e happens at the same
time as in E .

Intuitively, completeness means that A(e0, e, E) must include all events
necessary to reproduce e both functionally and temporally. Note that the
validity property already requires that any event that is needed for e be in-
cluded in A(e0, e, E); hence, we can simply verify the completeness prop-
erty of a valid trace by checking whether it ends with e.

Definition (Validity): A subtrace A extracted from G(e0, e, E) is valid
if and only if, given the initial state S0, for every event d

i

@N

i

=
(⌧

i

, r

i

, t

i

, t

0
i

, c

i

,±⌧

0
i

) 2 A, the following holds:
(a) there exists d

j

@N

j

= (⌧
j

, r

j

, t

j

, t

0
j

, c

j

,±⌧

0
j

) that precedes d
i

@N

i

in A such that ⌧
i

= ⌧

0
j

;

(b) for all ⌧
k

2 c

i

, we have ⌧
k

2 S

i�1, where S0
d1@n1�����! S1

d2@n2�����!

· · ·
di�1@ni�1��������! S

i�1; and
(c) based on the conditions (a) and (b), consider the set of all events P

i

such that d
k

@N

k

2 P

i

generates ⌧

k

2 (c
i

[ ⌧

i

); denote d

j

@N

j

as the latest event in P

i

; if N
j

= N

i

and t

0
j

< t

i

, there must exist
a set of events {d1

p

@N

i

, ..., d

n

p

@N

i

} 2 A such that: t

0
j

= t

1
p

;
t

0m
p

= t

m+1
p

, 1  m < n; and t

0n
p

= t

i

.

Intuitively, the validity property means that A(e0, e, E) must correspond to
a correct execution of the NDlog program both in terms of functionality
and timing. Condition (a) states that any event that triggers a rule evalu-
ation must be generated before the rule is evaluated. Condition (b) states
that the preconditions of the rule evaluation must hold at the time of the
rule evaluation. Finally, condition (c) requires that the evaluation is “work-
conserving”: the node cannot be idle when it is ready to compute a deriva-
tion.

Definition (Minimality): A subtrace A extracted from G(e0, e, E) is mini-
mal iff there exists no trace E 0 such that: (a) there 9d

i

@N

i

where d
i

@N

i

2
A and d

i

@N

i

62 E 0; (b) E 0 is valid, sound, and complete.

Intuitively, minimality means that A(e0, e, E) should not contain any events
that are not necessary to reproduce e. If this property were omitted,
A(e0, e, E) could trivially output the complete trace E .

A.4 Proofs
Lemma 1 For any execution E , and a temporal provenance query
T-QUERY(e0,e), the provenance graph G(e0, e, E) is acyclic.

Proof. We first show that if there exists a cycle in G(e0, e, E), the cycle
cannot include two vertices located on different nodes. Suppose there exists
a cycle that contains two vertices v1 and v2 located on N1 and N2 respec-
tively. Then the cycle must contain a least one pair of SND and RCV
vertices in both the path from v1 to v2, and the path from v2 and v1. Each
SND and RCV corresponds to a message communication which takes a
positive amount of time. Therefore, traversing from v1 along the cycle back
to v1 results in an absolute increment in the timestamp. This is a contradic-
tion.

If all the vertices in the cycle are located on the same node, then we
can order the vertices according to their associated timestamps (now all the
timestamps are with respect to the same local clock). Such order corre-
sponds to the precedence of events in the execution. As time always pro-
gresses forward, such cycle cannot exist in G(e0, e, E). 2

Theorem 2 A(e0, e, E) is sound.

Proof. We need to show that a) all the events in A(e0, e, E) also appear in
E at the same time (and thus in any E0 ⇠ E), and b) the local event ordering
pertains on each node, that is, for any two events d1@N

i

and d2@N

i

in
A(e0, e, E) that are located on the same node N

i

, d1@N

i

precedes d2@N

i

in A(e0, e, E) iff d1@N

i

precedes d2@N

i

in E .
Condition a. We perform a case analysis by considering the type of the root
vertex of G(e0, e, E):

• DRV. According to Algorithm 1 (lines 13-22), an event d
i

@N

i

is
generated and included in A(e0, e, E) for each DRV vertex (and its
children) in the provenance graph G(e0, e, E). However, by con-
struction, each DRV vertex v corresponds to an rule evaluation
in E . In our model, the rule evaluation is modeled as an event
d

j

@N

j

= (⌧
j

, r

j

, t

j

, t

0
j

, {c1
j

, ..., c

p

j

},±⌧

0
j

), where ⌧

j

is the trigger
event, r

j

and [t
j

, t

0
j

] are the rule used in and the time interval of the
rule evaluation, ck

j

represents preconditions, and ±⌧

0
j

is the generated
update. We need to show that d

i

@N

i

is identical to d

j

@N

j

. This
follows straightforwardly from the construction of G(e0, e, E): The
RAW-QUERY(v) procedures generate a DRV vertex v by: (a) find
a derivation event d

j

@N

j

from E , (b) add incoming edges from the
trigger event (a vertex for ⌧

j

), and (c) add incoming edges from the
preconditions (vertices for {c1

j

, ..., c

p

j

}). Algorithm 1 reverses this
process and generates event d

i

@N

i

from these information, which is
extracted from d

j

@N

j

, and therefore d

i

@N

i

= d

j

@N

j

.
• RCV/INS/DEL/UDRV/SND Following the same argument for

the DRV case above, we can prove that condition (a) holds.

Condition b. According to Algorithm 1 (specifically, Line 11), d1@N

i

precedes d2@N

i

in A(e0, e, E), iff d2@N

i

has a larger timestamp than
d1@N

i

. However, d2@N

i

is assigned a larger timestamp iff d1@N

i

pre-
cedes d2@N

i

in the actual execution E . Note that events on different nodes
may be reordered in A(e0, e, E), but this is captured by the equivalence (⇠)
relation. 2

Theorem 3 A(e0, e, E) is complete.

Proof. We need to show that a) A(e0, e, E) contains an event d
i

@N

i

that
generates e at the same time as in E , and b) d

i

@N

i

is the last event in
A(e0, e, E).
Condition a. By construction, the vertex for e has incoming edges
from vertices representing the triggering event ⌧ and all preconditions
c1, ..., cp (if any). Algorithm 1 (specifically, Lines 13-28) construct an
event (⌧, r, t, t0, c,±e), where r and [t, t0] are the rule name and time in-
terval encoded in the vertex. Note that the tuple ⌧ as well as the timestamps
t and t

0 are exactly the ones that are extracted from E (Algorithm 12).
Condition b. Now we have proved that some event d

i

@N

i

that generates
e must exist in A(e0, e, E), we next show that d

i

@N

i

is the last event in
A(e0, e, E). The provenance graph G(e0, e, E) is rooted by a vertex that
corresponds to e. Since all other vertices in G(e0, e, E) have a directed
path to the root vertex, the corresponding events must all be ordered before
d

i

@N

i

, so d

i

@N

i

must necessarily be the last event in the subtrace. 2

Theorem 4 A(e0, e, E) is valid.

Proof. Lemma 1 shows that any provenance graph G(e0, e, E) is acyclic,
and thus G(e0, e, E) has a well-defined height: the length of the longest
path from any leaf to e. We prove validity using structural induction on the
height of the provenance graph G(e0, e, E).
Base case: The height of G(e0, e, E) is one. In this case, e must be an
insertion or deletion of a base tuple; G(e0, e, E) contains a single INS (or
DEL) vertex that corresponds to the update of the base tuple. Therefore,
A(e0, e, E) consists of a single event and is trivially valid, because the event
has neither a trigger nor any precondition (Algorithm 1 lines 29–33).
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c1

c2

c3

c4

a

delayed by c3 c2 c4

g

g a

t0 t5t4t3

in interval

t1 t2

Figure 14: Illustration for the definition of direct and tran-
sitive delay. Shaded boxes represent intervals where a tu-
ple was being derived, and solid boxes represent intervals
where the tuple existed. The derivation is ↵ : �c1, c2, c3, c4,
and the interval in question is [t0, t5]; � is an unrelated tuple
whose derivation just happened to be sequenced before that
of ↵.

Induction case: Suppose the validity of the extracted trace A(e0, e, E)
holds for any provenance graph with height less than k (k � 1). Con-
sider a provenance graph G(e0, e, E) with height k+ 1. We perform a case
analysis by considering the type of the root vertex of G(e0, e, E). For every
event d

i

@N

i

= (⌧
i

, r

i

, t

i

, t

0
i

, c

i

,±⌧

0
i

) 2 A(e0, e, E), we prove that the
three conditions in Definition A.3 hold.

• DRV. We know that, by construction, the DRV vertex has an in-
coming edge from vertices representing the triggering event ⌧ and all
preconditions c1, ..., cp. By the induction hypothesis, Algorithm 1
outputs a valid trace d1@N1, ..., d

j

@N

j

for the subgraph for the
trigger event ⌧ , where d

j

@N

j

corresponds to the generation of ⌧

(following the completeness property proved in Theorem 3). Be-
cause of the nature of Algorithm 1 (which is based on topological
sort), d

j

@N

j

must be ordered before d

i

@N

i

, which satisfies con-
dition (a) in the definition of validity. For example, in the prove-
nance graph from Figure 13, the trigger event INS(G) must pre-
cede the derived event DRV(F) in the extracted trace, because a
causal edge exists from the former to the latter. Similarly, valid
traces are generated for the updates that support the preconditions
c1, ..., cp, which satisfies conditions (b). Condition (c) holds by con-
struction: the original execution trace E is valid and must include a
set of events {d1

p

@N

i

, ..., d

n

p

@N

i

} that satisfies condition (c); the
PREV-VERTEX call in Figure 12 finds all these events because the
call recursively find such events from E until the interval between the
end of d

j

@N

j

and the start of d
i

@N

i

is fully exhausted (line 48);
therefore, all events in {d1

p

@N

i

, ..., d

n

p

@N

i

} will be represented by
vertices in the temporal provenance; the extraction algorithm merely
reverses this process and reconstructs each of {d1

p

@N

i

, ..., d

n

p

@N

i

},
while preserving their ordering and timestamps (following the sound-
ness property proved in Theorem 2). Therefore, the extracted trace
A(e0, e, E) is valid. For example, consider the DRV(F) event in
the provenance from Figure 13: there is a gap of [2.5s, 3.5s] be-
tween when its last precondition INS(G) completed and when its own
derivation started; in the original execution, node Y must be busy dur-
ing the gap, because it is work-conserving; in this case, Y was busy
with handling RCV(+C); while constructing the vertex for DRV(F),
the RAW-QUERY procedure calls PREV-VERTEX([2.5s, 3.5s],Y ),
which finds the RCV(+C) event from the original trace and added a
vertex to G; Algorithm 1 extracts events from G based on topological
ordering, therefore, RCV(+C) will present in A, after INS(G) and
before DRV(F).

• RCV. We know that, by construction, the RCV vertex has
an incoming edge from a SND vertex with the same tuple ⌧ .

By the induction hypothesis, Algorithm 1 outputs a valid trace
d1@N1, ..., d

j

@N

j

for the subgraph rooted at the SND vertex,
where d

j

@N

j

corresponds to the generation of ⌧ (following the com-
pleteness property proved in Theorem 3). Because of the nature of
Algorithm 1 (which is based on topological sort), d

j

@N

j

must be
ordered before d

i

@N

i

, which satisfies condition (a) in the definition
of validity. A SND vertex have no preconditions, consequently, con-
ditions (b) holds trivially. d

i

@N

i

and d

j

@N

j

happened on different
nodes, which satisfies condition (c) trivially. Therefore, the extracted
trace A(e0, e, E) is valid.

• UDRV/SND. Following the same argument for the DRV case
above, the extracted trace A(e0, e, E) is valid.

• INS/DEL. This case cannot occur because INS and DEL have no
preconditions, so the tree would have to have a height of one.

2

Theorem 5 A(e0, e, E) is minimal.

Proof. We prove the minimality property by induction on the syntactic
structure of A(e0, e, E): we show that an event d

i

@N

i

2 A(e0, e, E) can-
not be removed because it is necessary for some event d

j

@N

j

appeared
later in the trace. Suppose that A(e0, e, E) = d1@N1, ..., dm@N

m

.
Base case. According to the completeness property (Theorem 3), the last
event d

m

@N

m

in A(e0, e, E) generates e. Therefore the base case trivially
holds, as the removal of d

m

@N

m

breaks the completeness property.
Induction case. Suppose the last k events d

m�k+1@N

m�k+1,
..., d

m

@N

m

(K >= 1) cannot be remove. We show that event
d

m�k

@N

m�k

cannot be removed as well: According to Algorithm 1,
d

m�k

@N

m�k

is constructed from a vertex v. v must have an outgo-
ing edge to some other vertex in G(e0, e, E). Otherwise, v would not be
included in G(e0, e, E) which is a subgraph rooted by e. Consider u as
the first vertex on the path from v to the root of G(e0, e, E). According
to Algorithm 1, an event d

j

@N

j

is constructed from u and its children
(if any). Given the edge from v to u, we know that d

j

@N

j

depends on
d

m�k

@N

m�k

, and that d
m�k

@N

m�k

precedes d

j

@N

j

. By applying
the induction hypothesis (d

j

@N

j

cannot be removed from A(e0, e, E)), we
can conclude that d

m�k

@N

m�k

also cannot be removed. 2

A.5 Delay annotations
In this section, we show that each vertex is annotated with the delay that
it contributed. We first define what it means for a derivation to be directly
“delayed” by one of its preconditions (Definition A.5), and then recursively
extends this definition to transitive delays (Definition A.5). We continue by
discussing several properties of the annotations computed by the algorithm
from Figure 6 (Definition A.5, Lemmas 6-9). This allows us to further prove
the first theorem which states that the algorithm from Figure 6 labels each
vertex with the amount of (direct or transitive) delay that is contributed by
the subtree that is rooted at that vertex (Theorem 10).

Definition (Direct delay): Consider a derivation rule ↵ : �c1, c2, . . . , c
k

and an interval [t0, t5], such that ↵ begins its derivation at t4 < t5 and fin-
ishes it at time t5. We say that a precondition c

i

directly delays the deriva-
tion of ↵ during an interval [t

x

, t

y

], t0 t

x

, t
y

 t4, iff
• (a) c

i

became true at t
y

and remain true until t4 (and was false before
t

y

); and
• (b) there either was some c

j

, i 6= j, that delayed the derivation of ↵
during some interval [x, t

x

); or there was no such c

j

, and t

x

= t0.
For convenience, we say that ↵ itself delays its own derivation during
[t4, t5] . Find the time t3  t4 such that t3 is the earliest time when all pre-
conditions were true (and remained true until t4). If a tuple � resides on the
same node as ↵ and the derivation of � happened during [t

x

, t

y

] ✓ [t3, t4],
we also say that � directly delays the derivation of ↵.
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A@X :- B@X,C@X
B@X :- D@X
C@X :- D@X
D@X :- Z@X

X
Y

0 1 2 3 4 5 6 7 8

C B A
INS(Z)

[0s,6s]

DRV(A)

DRV(B)DRV(C)

DRV(D)

[3s,5s][0s,3s]

D

INS(Z)

[0s,1s]

Figure 15: An example scenario, with NDlog rules at the
top left, the timing of a concrete execution in the bottom left,
and the resulting temporal provenance at the right. The query
is T-QUERY(INS(Z), DRV(A)); the start and end vertices are
marked in bold. Vertex names have been shortened and some
fields have been omitted for clarity. Each vertex is annotated
with its annotation interval (Definition A.5).

Figure 14 contains a brief illustration. c3 directly delays the derivation of ↵
during the interval [t0, t1], because: (a) c3 became true at t1 and remained
true until t4; (b) t0 was the start of the interval in question (the second case
of condition (b)). c2 directly delays the derivation of ↵ during the interval
[t1, t2], because: (a) c2 became true at t2 and remained true until t4; (b)
c3 delayed the derivation of ↵ during [t0, t1] (the first case of condition
(b)). Similarly, c4 delays the derivation of ↵ during the interval [t2, t3]. �
delays the derivation of ↵ during the interval [t3, t4] because, during that
interval, all preconditions were true and � was derived on the same node
as ↵. Finally, ↵ delays the derivation of itself during [t4, t5]. We can now
expand this definition to other derivations:

Definition (Transitive delay): Consider two derivations
↵ : �c1, c2, . . . , c

k

and � : �d1, d2, . . . , dm, and suppose � (di-
rectly or transitively) delays the derivation of ↵ during an interval [t0, t3].
Then we say that a tuple d

i

transitively delays the derivation of ↵ during
an interval [t1, t2], t0  t1, t2  t3, iff d

i

directly delays the derivation
of � during [t1, t2].

We can think of the definition of transitive delay as recursively partitioning
the interval [t0, t5] into smaller intervals that are each associated with some
lower-level derivation that caused delay to the top-level derivation of ↵.

Definition (Annotation interval): We associate a vertex v in G with an an-
notation interval I↵

v

= [t
s

, t

e

] for each call of the ANNOTATE(v, [ts, te])
procedure in the algorithm in Figure 6.

Figure 15 shows how the algorithm in Figure 6 would have assigned
annotation intervals to an example temporal provenance graph. Before pre-
senting the main theorem, we discuss a few properties of annotation inter-
vals.

Lemma 6 In the algorithm in Figure 6, each invocation of the
ANNOTATE(v, [t

s

, t

e

]) procedure assigns a set of annotation intervals
{I↵

v

i} to vertices {vi} such that
T

i

I

↵

v

i = ;.

Proof. This holds by construction. When v has no child, {I↵
v

i} = ; and
the condition holds trivially. When v has children: the first WHILE loop in
the ANNOTATE procedure subdivides the interval between t

s

and the end
timestamp of the last precondition into annotation intervals for functional
children (in lines 8–16); the second WHILE loop subdivides the interval be-
tween the end timestamp of the last precondition and t

s

(v) into annotation
intervals for sequencing vertices (in lines 17–23); note that if a functional
precondition v

0 is also connected via a sequencing edge to v, it is only han-
dled by the first while loop, because T = tend(v

0) = tstart(v) = E after
the first while loop finishes and the second while loop will not execute;
therefore, all the generated annotation intervals within an ANNOTATE call
are non-overlapping. 2

This lemma states that the annotation intervals generated by recursive
calls within the same ANNOTATE invocation do not overlap. For example,
in Figure 15, the annotation intervals of the DRV(C) and DRV(B) vertices
are both assigned by a recursive call on the DRV(A) vertex and thus do not
overlap.

Lemma 7 An annotation interval I↵
v

of vertex v always ends at t
e

(v),
where t

e

(v) is when the execution of v finishes or the end timestamp of
v (Section 3.3).

Proof. This holds by construction of the algorithm in Figure 6. In the first
WHILE loop in the ANNOTATE procedure (in lines 8–16), the annotation
interval associated with v always ends with t

e

(v). In the second WHILE
loop (in lines 17–23), the annotation interval of the current vertex is E =
t

s

(s), which is the start timestamp of the previous vertex connected via a
sequencing edge; E is also the end timestamp of the current vertex, which
follows from the construction of sequencing edges (PREV-VERTEX calls
in the algorithm in Figure 12). 2

This lemma states that the annotation interval ends when the actual exe-
cution finishes. For example, this holds for all annotation intervals in Fig-
ure 15.

Lemma 8 Suppose a vertex v is associated with an annotation interval I↵
v

,
there exists a chain of ancestor vertices v!a1!a2! ... !e (! repre-
sents an edge in G, and e is the root of G) such that for each a

i

(including
e) there exists an annotation interval I↵

ai
and I

↵

v

✓ I

↵

ai
.

Proof. This holds by construction of the algorithm in Figure 6. It follows
from the recursive nature of ANNOTATE calls that the annotation interval of
each vertex v is a subinterval of one annotation interval of one of its parents:
in the first while loop (in lines 8–16), the ANNOTATE is called with an inter-
val of [T, tend(v

0)], t
s

 T and tend(v
0)  tend(v) because v

0 is a child
of v; in the second while loop (in lines 17–23), the ANNOTATE is called
with an interval of [MAX(T, tstart(s)), E], t

s

 T  MAX(T, tstart(s))
and E  tstart(v)  t

e

(Lemma 7). We can simply find the specified chain
by following such parents recursively until reaching the root vertex e. As
the annotation interval is initially I

↵

v

and is gradually extended as we climb
the chain, I↵

v

✓ I

↵

ai
. 2

For instance, consider the provenance from Figure 15, suppose
[0s, 1s]@DRV(D) represents that the DRV(D) vertex is associated with
an annotation interval of [0s, 1s] ; the ancestor chain of [0s, 1s]@DRV(D)
would be [0s, 1s]@DRV(D)! [0s, 3s]@DRV(C)! [0s, 6s]@DRV(A).

Lemma 9 Each vertex v in G is associated with at most one annotation
interval I↵

v

, that is, each vertex v is annotated at most once by the algorithm
in Figure 6.

Proof. We prove by contradiction. Without loss of generality, suppose a ver-
tex v is associated with two annotation intervals I

↵

v

and I

↵

v

0. There must
exist two corresponding ancestor chains (Lemma 8). We make two obser-
vation about the chains: (a) they cannot be identical, because an ancestor
chain represents a unique stack of recursive ANNOTATE calls; by the na-
ture of a single-rooted DAG, there cannot exist two stacks of recursive calls
that visit the exact same sequence of vertices; (b) the two chains must share
a common suffix, this holds trivially because both of the chains end at the
root of G. Based on these observations, we can represent the two ancestor
chains as v! ...! a

i

! a

j

! ... and v! ...! a

0
i

! a

j

! ..., where
a

i

6=a

0
i

. It follows from Lemma 8 that I↵
v

✓ I

↵

ai
and I

↵

v

0 ✓ I

↵

a

0
i
. It follows

from Lemma 7 that [t
e

(v)� ✏, t

e

(v)] ✓ I

↵

v

and [t
e

(v)� ✏, t

e

(v)] ✓ I

↵

v

0,
where ✏ is a small value. Therefore, I↵

ai
and I

↵

a

0
i

overlap. This contra-
dicts with Lemma 6, because I↵

ai
and I

↵

a

0
i

and divided from I

↵

aj
in the same

ANNOTATE call and cannot overlap. 2

These lemmas allow us to formulate our main claim:
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Theorem 10 Suppose T-QUERY(e0, e) returns G(e0, e, E) in some execu-
tion E , and suppose a vertex v in G is annotated with a value T by the
algorithm in Figure 6. Then T > 0 iff v directly or transitively delayed the
derivation of e during an interval [t1, t2] ✓ [START(e0), FINISH(e)] and
T = t2 � t1, and T = 0 otherwise.

Proof. We begin by observing that the algorithm in Figure 6 labels each
vertex at most once (Lemma 9). Therefore, we only need to show that any
single invocation of the ANNOTATE procedure in Figure 6 correctly labels
vertices with respect to Definition A.5.

Next, we observe that the ANNOTATE procedure in Figure 6 partitions
the interval to explain into annotation intervals of other vertices in exactly
the same way that the definition requires. Therefore, I↵

v

is exactly the direct
or transitive delay of v. We discuss the partition logic of the ANNOTATE
procedure in more detail below.

The children of a DRV vertex in the provenance graph would be DRV,
INS, or RCV vertices for its preconditions, and lines 8–16 iterate over these
vertices in the order of their end times. (The original trace only records the
preconditions of an event at the point when its derivation starts; thus, if a
precondition had temporarily become true and then false again, the corre-
sponding DRV vertex would not appear as children here.) The loop calls
ANNOTATE on vertex v

0. with a subinterval of [t
s

, t

e

] that ends at the
point where the precondition is fully derived, and starts either at t

s

itself
or the end of the previous interval. This subinterval is the annotation inter-
val I↵

v

0 for v0 (Definition A.5). Preconditions that were already true at t
s

and remained true during the entire interval do not enter the IF block and
thus do not generate a recursive call. The first WHILE loop exits with T

set to the end time of the last precondition; the WHILE loop that follows it
(in lines 17–23) subdivides any non-empty interval between the last satis-
fied precondition and the start of the derivation of v, just as the definition
requires. Again, here each of the divided intervals is the annotation inter-
val I↵

v

0 for another vertex v

0 (Definition A.5). In particular, noticed that
recursive calls happen only for vertices that directly delayed v (and, hence,
directly or transitively delayed the vertex in the original query).

Finally, we observe that each vertex v gets labeled with the length of I↵
v

in line 7. The labeled value is also the amount of direct or transitive delay
that v contributes, because we have proved above that the I

↵

v

is exactly the
direct or transitive delay of v. For example, the intervals annotated beside
vertices in Figure 15 are also their direct or transitive delay. 2

A.6 Semantics of delay annotations
Although the definitions from Section A.5 do capture the intuitive notion
of “delay”, we want to reinforce this by formalizing another aspect of this
concept: if a vertex v really did delay a derivation by some time T

v

, then it
should be possible to “speed up” the derivation by T (i.e., cause it to happen
T

v

units of time sooner) by reducing the duration of v by T

v

. In other words,
we should be able to construct a valid (hypothetical) trace that differs from
the actual trace in that v takes less time, such that the hypothetical trace
finishes T

v

units of time earlier. (Note that the hypothetical trace might not
be “realistic” in a practical sense because some of the events in it may take
zero time, and thus be instantaneous; the goal is merely to demonstrate that
v is really “responsible for” T

v

units of delay.) For example, Figures 16
shows the steps of “speeding up” vertices based on their annotations ((a)!
... ! (g)). This procedure shortens the overall (hypothetical) execution at
each step and eventually eliminates any delay.

For this discussion, the annotation intervals that are computed by the al-
gorithm in Figure 6 are not directly useful, because they describe the delay
that was caused by an entire subgraph of the provenance. Hence, we first
describe how we have derived a more fine-grain form of annotation, which
describes the delay that is contributed by a vertex itself (Definition A.6). We
then discuss two properties of the derived annotation (Lemmas 11-12). We
continue by defining the procedure of “speeding up” an execution based on
derived annotations (Definitions A.6-A.6). We conclude by presenting the
main theorem which states that if there is a vertex v in a temporal prove-
nance tree with a (derived) annotation of T , then it is possible to construct
another valid (but hypothetical) execution in which v’s finished time is re-
duced by T and in which the derivation finishes T units of time earlier
(Definition A.6 and Theorem 13).

Definition (Speedup interval): The speed interval I�
v

= [t
s

, t

e

] of ver-
tex v is the difference between v’s annotation interval, as computed by the
algorithm from Figure 6, and the union of the annotation intervals of the
vertices directly annotated by v (via the recursive calls in the ANNOTATE
procedure).

Intuitively, I�
v

represents the interval during which the execution of v

itself delays e. For example, in the provenance from Figure 16(a), red in-
tervals represent annotation intervals and blue intervals represent speedup
intervals. The speed up interval of DRV(A) is [6s, 7s], which is the differ-
ence from its annotation interval ([0s, 7s]), and the union of the annotations
intervals of DRV(B) and RCV(+E) ([0s, 4s]

S
[4s, 6s]). Speed up inter-

vals have the following two properties:

Lemma 11 The speedup interval I

�

v

of vertex v always ends at t

e

(v),
where t

e

(v) is when the execution of v finishes or the end timestamp of
v (Section 3.3).

Proof. The annotation interval of v always ends at t
e

(v) (Lemma 7). We
prove that that I�

v

ends when I

↵

v

ends. If v has no child, I�
v

= I

↵

v

; if v has
children, the two WHILE loops in the algorithm in Figure 6 distribute the
interval between t

s

and t

s

(v) to other vertices via recursive ANNOTATE
calls, and the remaining interval in [t

s

, t

e

] is the speedup interval; in either
case, I�

v

ends when I

↵

v

ends, and therefore, I�
v

ends at t
e

(v). 2

Lemma 12 Given the temporal provenance of T-QUERY(e0, e), consider
the set of all speedup intervals {I�

v

i}: (a)
T

i

I

�

v

i = ;; (b)
S

i

I

�

v

i = I

↵

e

.

Proof. In a temporal provenance graph, vertices with annotation intervals
form a tree, because vertex v is annotated at most once (Lemma 9) by a
parent of v. Consequently, vertices with speedup intervals form a tree (Def-
inition A.6). We prove by structural induction on the height of the tree.
Base case: The height of the tree is one. Denote the root vertex as v. The
set of speedup intervals has one element ({I�

v

i} = I

�

v

), condition (a) holds.
I

�

v

= I

↵

v

because v has no child (Definition A.6), condition (b) holds.
Induction case: Suppose the conditions hold for trees (of vertices with an-
notation or speedup intervals) with height less than k (k � 1). Consider a
tree with depth k+ 1, rooted at vertex v. Without loss of generality, denote
T (v1) and T (v2) as subtrees of v that have annotation intervals. Note that
the speedup intervals of vertices in T (v) must be a subinterval of the anno-
tation interval of v, because: the speedup interval is simply the difference
of the annotation interval of v and the annotation intervals of the children
of v (Definition A.6); the annotation interval of v is a subinterval of the
annotation interval of its parent in the tree (Lemma 8).

It follows from Definition A.6 that the speedup interval of v and that of
T (v1) (or T (v2)) cannot overlap. It follows from Lemma 6 that the speedup
intervals of T (v1) and T (v2) cannot overlap. It follow from the induction
hypothesis that the speedup intervals within T (v1) (or T (v2)) cannot over-
lap. Therefore, condition (a) holds. It follows from Definition A.6 that
condition (b) holds. 2

Intuitively, the above two lemmas states that, given a temporal prove-
nance that explains T-QUERY(e0, e), the overall delayed interval – that
is, [t

s

(e0), t
e

(e)] – can be subdivided into a sequence of all speedup
intervals {I�

vi
}. In the example provenance from Figure 16(a), such a

sequence of speedup intervals is [0s, 2s]@DRV(C), [2s, 4s]@DRV(B),
[4s, 5.5s]@DRV(E), [5.5s, 6s]@RCV(+E), and [6s, 7s]@DRV(A).

Definition (Terminal event): A vertex v is a terminal event if any of the
following conditions holds:

• (a) if v is annotated, v ends at t
e

(e), and I

�

v

= ; (a vertex is an-
noated if it is associated with an annotation interval in the original
G);

• (b) if v is not annotated, on any path in G from v to e, select u as the
first annotated vertex, I↵

u

= ;.
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INS(Z)

X
Y
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A@X :- B@X,E@Y
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Figure 16: An example of “speeding up” temporal provenance using a series of transformations (Definition A.6). The NDlog
rules are at the top left. Each sub-figure shows a step of the transformation ((a)! ... ! (g)). In each sub-figure, the execution
trace is at the top, and the resulting temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all sub-
figures; the start and end vertices are marked in bold. Vertex names have been shortened and some fields have been omitted for
clarity. Each vertex is associated with its annotation interval (red, Definition A.5) and speed up interval (blue, Definition A.6).
Crossed intervals represent that the interval becomes empty but the annotation is preserved. White vertices are terminal events.
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Figure 17: An example of “speeding up” temporal provenance using an annotated vertex DRV(B) (Definition A.6). The NDlog
rules are at the left. In each sub-figure, the execution trace is at the top, and the resulting temporal provenance at the bottom.
The query is T-QUERY(INS(Z), DRV(A)) in all sub-figures; the start and end vertices are marked in bold. Vertex names have
been shortened and some fields have been omitted for clarity. Each vertex is associated with its annotation interval (red,
Definition A.5) and speed up interval (blue, Definition A.6). Crossed intervals represent that the interval becomes empty but
the annotation is preserved. White vertices are terminal events.

Intuitively, terminal events represent executions that no longer contribute
any delay (in a hypothetical execution). Condition (a) describes an event that
finishes at the end of the entire execution and that no longer contributes any
delay. For example, RCV(+E) in Figure 16(c) is a terminal event: it was an-
notated in the original provenance (Figure 16(a)); it ends at t = 5.5s, which
is the end timestamp of DRV(A); and its speedup interval is empty. Con-
dition (b) describes an event that only belongs to subgraphs that no longer
contribute any delay. For example, RCV(C) in Figure 16(e) is a terminal
event: it was not annotated in the original provenance (Figure 16(a)); on
its (only) path to DRV(A), the first annotated vertex is DRV(E), whose
annotation interval is already empty ([4s, 4s]). Next, we describe steps to
transform the original execution to hypothetical executions.

Definition (Speed up): Given a vertex v in G(e0, e, E), where t

e

(v) =
t

e

(e) and I

�

v

> 0, v speeds up G by I

�

v

using the following procedure.
Consider a “barrier” t

b

that moves on the timeline; it starts from the right
boundary of I�

v

and moves leftwards (and thus t
b

becomes smaller); it stops
when it reaches the left boundary of I�

v

. For ease of exposition, we say that
the “barrier” pushes a timestamp t when we set t to MIN(t, t

b

). During its
move, if the “barrier” encounters a vertex v

i

that is either v or a terminal
event, it transforms v

i

by pushing these timestamps: (a) the starting times-
tamp (or the ending timestamp) of v

i

, (b) the left boundary (or the right
boundary) of I↵

vi
(if any); and (c) the left boundary (or the right boundary)

of I�
vi

(if any).

Intuitively, the “speed up” operation represents a transformation step that
essentially “squeezes” a set of vertices to the left. Note that, while v speeds
up G, only v itself and terminal events – vertices that no longer contribute
any delay – are pushed leftwards. For example, Figure 17 shows the process
of speeding up the provenance using DRV(B): the “barrier” starts from the
right boundary of I

�

DRV(A) (Figure 17(a)); while it moves, the “barrier”
pushes DRV(B) as well as terminal events DRV(E) and RCV(C) leftwards
(Figure 17(b) shows the snapshot of t

b

= 3.5s); the “barrier” stops at the
left boundary of I�DRV(A) (Figure 17(c)).

Figure 16 shows the process of speeding up an entire provenance graph
until it becomes instantaneous. Next, we briefly show the effect of each
“speed up” operation:

• (a)! (b), DRV(A) speeds up G by I

�

DRV(A) = [6s, 7s]: the exe-
cution is shortened to [0s, 6s], DRV(A) becomes a terminal event;

• (b)! (c), RCV(+E) speeds up G by I

�

RCV(+E) = [5.5s, 6s]: the
execution is shortened to [0s, 5.5s], RCV(+E) and SND(+E) be-
come terminal events;

• (c) ! (d), DRV(E) speeds up G by I

�

DRV(E) = [4s, 5.5s]: the
execution is shortened to [0s, 4s], DRV(E) and RCV(+C) become
terminal events;

• (d)! (e), DRV(B) speeds up G by I

�

DRV(B) = [2, 4s]: the execu-
tion trace is shortened to [0s, 2s], DRV(B) becomes terminal events;

• (e)! (f), DRV(C) speeds up G by I

�

DRV(C) = [0, 2s]: the execu-
tion trace is shortened to [0s, 0s], all events are now terminal events.

Definition (Well-annotated): Consider an annotated temporal provenance
graph G(e0, e, E). G is well-annotated iff either (a) t

s

(e0) = t

e

(e), that
is, the entire execution is instantaneous; (b) we can transform G into an-
other valid and well-annotated temporal provenance graph G

0 by locating
an unique vertex v, where t

e

(v) = t

e

(e) and I

�

v

> 0, and speeding up G

by v (Definition A.6).

Theorem 13 Temporal provenance is well-annotated.

Proof. Consider the speedup intervals {I�
vi
} of G. It follows from

Lemma 12 that {I�
vi
} do not overlap and unions to [t

s

(e0), t
e

(e)]. There-
fore, we can sort intervals in {I�

vi
} by descending (ending) timestamp. At

the ith step, we speed up G by v

i

. We need to prove that: (a) each “speed
up” operation pushes the timestamps of all events that ends during I

�

vi
; (b)
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Figure 18: An example of “poorly annotated” temporal provenance. The NDlog rules are at the top left. Each sub-figure
shows a step of the transformation ((a) ! ... ! (g)). In each sub-figure, the execution trace is at the top, and the resulting
temporal provenance at the bottom. The query is T-QUERY(INS(Z), DRV(A)) in all sub-figures; the start and end vertices are
marked in bold. Vertex names have been shortened and some fields have been omitted for clarity. Each vertex is associated
with its annotation interval (red, Definition A.5) and speed up interval (blue, Definition A.6). Crossed intervals represent that
the interval becomes empty but the annotation is preserved. White vertices are terminal events.
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the length of the execution [t
s

(e0), t
e

(e)] is reduced by the length of I�
vi

;
(c) the temporal provenance remains valid.

To prove condition (a), given any vertex v

0
i

that ends during I

�

vi
, we

perform a case analysis of v0
i

:

• v

0
i

= v

i

: the timestamps of v0
i

= v

i

is pushed, by the construction of
Definition A.6.

• v

0
i

6= v

i

and v

0
i

is annotated in the original provenance: v0
i

must be a
terminal event, and therefore, its timestamps is pushed. Because I

�

v

0
i

ends when v

0
i

ends (Lemma 11); consequently, I�
v

0
i

must end during

I

�

vi
; if I�

v

0
i

is not empty, I�
v

0
i

will overlap with I

�

vi
, which contradicts

with Lemma 12.
• v

0
i

6= v

i

and v

0
i

is not annotated in the original provenance: v

0
i

must
be a terminal event, and therefore, its timestamps is pushed. Because,
given any path from v

0
i

to e, consider the first annotated ancestor u
and its child on the path w; if we assume that I↵

u

is not empty when
the “barrier” reaches the end of w, then I

↵

u

must start before the end
of w; by construction of the algorithm from Figure 6, w must be
annotated by u, which contradicts the fact that w is not annotated.

Condition (b) follows directly from the statement above: the execution
is shortened by the length of I�

vi
, because all events that end during I

�

vi
are

pushed leftwards until the left boundary of I�
vi

.
Condition (c) holds because the “speed up” operation does not invert

causality: if an event a caused another event b, it does not alter the ordering
of a and b; nor does it delete any event. 2

Note that Definition A.6 weeds out some annotation approaches. For
example, Figure 18 shows how a straw-man approach that associates the
entire delay with the last precondition would have annotate the same prove-
nance graph in Figure 16. The result is not well annotated: while DRV(E)
speeds up G ((d)! (e)), another vertex DRV(B) becomes the bottleneck;
however, DRV(B) cannot be pushed leftwards, because it is not a terminal
event, that is, it has not been “sped up”.

Theorem 13 suggests that the annotations on temporal provenance do
correspond to the “potential for speedup” that one may intuitively associate
with the concept of delay. This is useful, because, while the temporal prove-
nance maybe gigantic and complex, operators can focus on vertices with an-
notations and gain a comprehensive understanding of the end-to-end delay,
including potential operations to speed up.
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