Automated Bug Removal for Software-Defined Networks

Yang Wu*, Ang Chen*, Andreas Haeberlen*, Wenchao Zhou', Boon Thau Loo*

*University of Pennsylvania, fGeorgetown University

Abstract

When debugging an SDN application, diagnosing the
problem is merely the first step: the operator must still
find a fix that solves the problem, without causing new
problems elsewhere. However, most existing debuggers
focus exclusively on diagnosis and offer the network op-
erator little or no help with finding an effective fix. Find-
ing a suitable fix is difficult because the number of can-
didates can be enormous.

In this paper, we propose a step towards automated
repair for SDN applications. Our approach consists of
two elements. The first is a data structure that we call
meta provenance, which can be used to efficiently find
good candidate repairs. Meta provenance is inspired by
the provenance concept from the database community;
however, whereas standard provenance can only reason
about changes to data, meta provenance can also reason
about changes to programs. The second element is a sys-
tem that can efficiently backtest a set of candidate repairs
using historical data from the network. This is used to
eliminate candidate repairs that do not work well, or that
cause other problems.

We have implemented a system that maintains meta
provenance for SDNs, as well as a prototype debugger
that uses the meta provenance to automatically suggest
repairs. Results from several case studies show that, for
problems of moderate complexity, our debugger can find
high-quality repairs within one minute.

1 Introduction

Debugging networks is notoriously hard. The advent of
software-defined networking (SDN) has added a new di-
mension to the problem: networks can now be controlled
by software programs, and, like all other programs, these
programs can have bugs.

There is a substantial literature on network debugging
and root cause analysis [16, 21, 23, 25, 36, 55, 61]. These
tools can offer network operators a lot of help with de-
bugging. For instance, systems like NetSight [21] and
negative provenance [55] provide a kind of “backtrace”
to capture historical executions, analogous to a stack
trace in a conventional debugger, that can link an ob-
served effect of a bug (say, packets being dropped in the
network) to its root causes (say, an incorrect flow entry).

However, in practice, diagnosing the problem is only
the first step. Once the root cause of a problem is known,

the operator must find an effective fix that not only solves
the problem at hand, but also avoids creating new prob-
lems elsewhere in the network. Given the complexity of
modern controller programs and configuration files, find-
ing a good fix can be as challenging as — or perhaps even
more challenging than — diagnostics, and it often requires
considerable expertise. However, current tools offer far
less help with this second step than with the first.

In this paper, we present a step towards automated bug
fixing in SDN applications. Ideally, we would like to pro-
vide a “Fix it!” button that automatically finds and fixes
the root cause of an observed problem. However, re-
moving the human operator from the loop entirely seems
risky, since an automated tool cannot know the opera-
tor’s intent. Therefore we opt for a slightly less ambi-
tious goal, which is to provide the operator with a list of
suggested repairs.

Our approach is to leverage and enhance some con-
cepts that have been developed in the database commu-
nity. For some time, this community has been studying
the question how to explain the presence or absence of
certain data tuples in the result of a database query, and
whether and how the query can be adjusted to make cer-
tain tuples appear or disappear [9, 50]. By seeing SDN
programs as “queries” that operate on a “database” of
incoming packets and produce a “result” of delivered
or dropped packets, it should be possible to ask simi-
lar queries — e.g., why a given packet was absent (mis-
routed/dropped) from an observed “result”.

The key concept in this line of work is that of data
provenance [6]. In essence, provenance tracks causal-
ity: the provenance of a tuple (or packet, or data item)
consists of the tuples from which it was directly derived.
By applying this idea recursively, it is possible to trace
the provenance of a tuple in the output of a query all
the way to the “base tuples” in the underlying databases.
The result is a comprehensive causal explanation of how
the tuple came to exist. This idea has previously been
adapted for the SDN setting as network provenance, and
it has been used, e.g., in debuggers and forensic tools
such as ExXSPAN [63], SNP [61] and Y! [55]. However,
so far this work has considered provenance only in terms
of packets and configuration data — the SDN controller
program was assumed to be immutable. This is sufficient
for diagnosis, but not for repair: we must also be able to
infer which parts of the controller program were respon-

sible for an observed event, and how the event might be
affected by changes to that program.

In this paper, we take the next step and extend net-
work provenance to both programs and data. At a high
level, we accomplish this with a combination of two
ideas. First, we treat programs as just another kind of
data; this allows us to reason about the provenance of
data not only in terms of the data it was computed from,
but also in terms of the parts of the program it was com-
puted with. Second, we use counterfactual reasoning to
enable a form of negative provenance [55], so that oper-
ators can ask why some condition did not hold (Exam-
ple: “Why didn’t any DNS requests arrive at the DNS
server?”). This is a natural way to phrase a diagnostic
query, and the resulting meta provenance is, in essence,
a tree of changes (to the program and/or to configuration
data) that could make the condition true.

Our approach presents three key challenges. First,
there are infinitely many possible repairs to a given pro-
gram (including, e.g., a complete rewrite), and not all of
them will make the condition hold. To address this chal-
lenge, we show how to find suitable repairs efficiently
using properties of the provenance itself. Second, even
if we consider only suitable changes, there are still in-
finitely many possibilities. We leverage the fact that
most bugs affect only a small part of the program, and
that programmers tend to make certain errors more often
than others [27, 41]. This allows us to rank the possi-
ble changes according to plausibility, and to explore only
the most plausible ones. Finally, even a small change that
fixes the problem at hand might still cause problems else-
where in the network. To avoid such fixes, we backtest
them using historical information that was collected in
the network. In combination, this approach enables us to
produce a list of suggested repairs that 1) are small and
plausible, 2) fix the problem at hand, and 3) are unlikely
to affect unrelated parts of the network.

We present a concrete algorithm that can generate
meta provenance for arbitrary controller programs, as
well as a prototype system that can collect the necessary
data in SDNs and suggest repairs. We have applied our
approach to three different controller languages, and we
report results from several case studies; our results show
that our system can generate high-quality repairs for re-
alistic bugs, typically in less than one minute.

2 Overview

We illustrate the problem with a simple scenario (Fig-
ure 1). A network operator manages an SDN that con-
nects two web servers and a DNS server to the Inter-
net. To balance the load, incoming web requests are for-
warded to different servers based on their source IP. At
some point, the operator notices that web server H2 is
not receiving any requests from the Internet.

HTTPand
DNS traffic

- o

E . _E_—v % E 1" DNS
Ok son g L server
HTTP Controller HTTP

Server (H2) Server (H1)

Figure 1: Example scenario. The primary web server
(H1) is too busy, so the network offloads some traffic to
a backup server (H2). The offloaded requests are never
received because of a bug in the controller program.

Our goal is to build a debugger that accepts a simple
specification of the observed problem (such as “H2 is not
receiving any traffic on TCP port 80”") and returns a) a de-
tailed causal explanation of the problem, and b) a ranked
list of suggested fixes. We consider a suggested fix to be
useful if it a) fixes the specified problem and b) has few
or no side-effects on the rest of the network.

2.1 Background: Network Datalog

Since our approach involves tracking causal dependen-
cies, we will explain it using a declarative language,
specifically network datalog (NDlog) [34], which makes
these dependencies obvious. However, these dependen-
cies are fundamental, and they exist in all the other lan-
guages that are used to program SDNs. To demonstrate
this, we have applied our approach to three different lan-
guages, of which only one is declarative; for details,
please see Section 5.8.

In NDlog, the state of a node (switch, controller, or
server) is modeled as a set of tables, each of which con-
tains a number of fuples (e.g., configuration state or net-
work events). For instance, an SDN switch might contain
a table called F1lowTable, where each tuple represents
a flow entry. Tuples can be manually inserted or pro-
grammatically derived from other tuples; the former are
called base tuples and the latter derived tuples.

NDlog programs consist of rules that describe how tu-
ples should be derived from each other. For example,
the rule A (@X, P) : =B (@X, Q) , Q=2 P says that a tu-
ple 2 (@X,P) should be derived on node X whenever
a) there is also a tuple B (@X, Q) on that node, and b)
0=2xP. The @ symbol specifies the node on which the
tuple resides, and the : — symbol is the derivation oper-
ator. Rules may include tuples from different nodes; for
instance, C (@X,P) : = C (@Y, P) says that tuples in ta-
ble C on node Y should be sent to node X.

2.2 C(Classical provenance

In NDlog, it is easy to see why a given tuple exists: if the
tuple was derived using some rule r (e.g., A (@X,5)),
then it must be the case that all the predicates in r were

rl FlowTable (@Swi,Hdr,Prt) (

r2 FlowTable (@Swi, Hdr,Prt) (

r3 FlowTable (@Swi,Hdr,Prt) (

r4 FlowTable (@Swi, Hdr,Prt) :- PacketIn(@C,Swi,Hdr
() (
() (
() (

)
r5 FlowTable (@Swi, Hdr,Prt) :- PacketIn(QC,Swi,Hdr), Swi
r6 FlowTable (@Swi, Hdr,Prt :— PacketIn(@C, Swi, Hdr),
r7 FlowTable (@Swi, Hdr,Prt) :- PacketIn(@C,Swi,Hdr),

Swi
Swi

:— PacketIn(@C,Swi,Hdr), WebLoadBalancer (QC,Hdr,Prt), Swi == 1.
:— PacketIn(@C,Swi,Hdr), Swi
:— PacketIn(@C, Swi,Hdr), Swi
Swi

== 1, Hdr == 53, Prt := 2.
== 1, Hdr != 53, Prt := -1.
== 1, Hdr != 80, Prt := -1.
== 2, Hdr == 80, Prt := 1.
== 2, Hdr == 53, Prt := 2.
== 2, Hdr == 80, Prt := 2.

Figure 2: Part of an SDN controller program written in NDlog: Switch S1 load-balances HTTP requests across S2 and
S3 (rule r1), forwards DNS requests to S3 (rule r2); and drops all other traffic (rules r3—r4). S2 and S3 forward the
traffic to the correct server based on the destination port (rules r5—r7). The bug from Section 2.3 is underlined.

true (e.g., B (@X, 10)), and all the constraints in r were
satisfied (e.g., 10=2x5.). This concept can be applied
recursively (e.g., to explain the existence of B (@X, 10))
until a set of base tuples is reached that cannot be ex-
plained further (e.g., configuration data or packets at bor-
der routers). The result is as a provenance tree, in which
each vertex represents a tuple and edges represent direct
causality; the root tuple is the one that is being explained,
and the base tuples are the leaves. Using negative prove-
nance [55], we can also explain why a tuple does not
exist, by reasoning counterfactually about how the tuple
could have been derived.

2.3 Case study: Faulty program

We now return to the scenario in Figure 1. One possible
reason for this situation is that the operator has made a
copy-and-paste error when writing the program. Figure 2
shows part of the (buggy) controller program: when the
operator added the second web server H2, she had to up-
date the rules for switch S3 to forward HTTP requests
to H2. Perhaps she saw that rule r5, which is used for
sending HTTP requests from S2 to HI, seemed to do
something similar, so she copied it to another rule r7
and changed the forwarding port, but forgot to change
the condition Swi==2 to check for S3 instead of S2.

When the operator notices that no requests are arriv-
ing at H2, she can use a provenance-based debugger to
get a causal explanation. Provenance trees are more use-
ful than large packet traces or the system-wide config-
uration files because they only contain information that
is causally related to the observed problem. But the op-
erator is still largely on her own when interpreting the
provenance information and fixing the bug.

2.4 Meta provenance

Classical provenance is inherently unable to generate
fixes because it reasons about the provenance of data that
was generated by a given program. To find a fix, we also
need the ability to reason about program changes.

We propose to add this capability, in essence, by treat-
ing the program as just another kind of data. Thus, the
provenance of a tuple that was derived via a certain rule
r does not only consist of the tuples that triggered r, but

also of the syntactic components of r itself. For instance,
when generating the provenance that explains why, in the
scenario from Figure 1, no HTTP requests are arriving at
H2, we eventually reach a point where we must explain
the absence of a flow table entry in switch S3 that would
send HTTP packets to port #2 on that switch. At this
point, we can observe that rule r7 would almost have
generated such a flow entry, were it not for the predicate
Swi==2, which did not hold. We can then, analogous
to negative provenance, use counterfactual reasoning to
determine that the rule would have the desired behavior
if the constant were 3 instead of 2. Thus, the fact that the
constant in the predicate is 2 and not 3 should become
part of the missing flow entry’s meta provenance.

2.5 Challenges

An obvious challenge with this approach is that there
are infinitely many possible changes to a given program:
constants, predicates, and entire rules can be changed,
added, or deleted. However, in practice, only a tiny sub-
set of these changes is actually relevant. Observe that, at
any point in the provenance tree, we know exactly what
we need to explain — e.g., the absence of a particular
flow entry for HTTP traffic. Thus, we need not consider
changes to the destination port in the header (Hdr) in r7
(because that predicate is already true) or to unrelated
rules that do not generate flow entries.

Of course, the number of relevant changes, and thus
the size of any meta provenance graph, is still infinite.
This does mean that we can never fully draw or mate-
rialize it — but there is also no need for that. Studies
have shown that “real” bugs are often small [41], such as
off-by-one errors or missing predicates. Thus, it seems
useful to define a cost metric for changes (perhaps based
on the number of syntactic elements they touch), and to
explore only the “cheapest” changes.

Third, it is not always obvious what to change in order
to achieve a desired effect. For instance, when changing
Swi==2 in the above example, why did we change the
constant to 3 and not, say, 4? Fortunately, we can use
existing tools, such as SMT solvers, that can enumerate
possibilities quickly for the more difficult cases.

Finally, even if a change fixes the problem at hand,
we cannot be sure that it will not cause new problems

program <— rule | rule program

rule <+ id func":-" funcs "," sels ", " assigns "."
id «— (0-9a-zA-2Z)+

funcs < func | func func

func <+ table " (" location "," arg "," arg ")"
table < (a—-zA-7)+

assigns < assign | assign assigns

assign < arg ":=" expr

sels <+ sel "," sel

sel {— expr opr expr

opr — == | < | > | !'=

expr < integer | arg

Figure 3: pDlog grammar

elsewhere. Such side-effects are difficult to capture in
the meta provenance itself, but we show that they can be
estimated in another way, namely by backtesting changes
with historical information from the network.

3 Meta Provenance

In this section, we show how to derive a simple meta
provenance graph for both positive and negative events.
We begin with a basic provenance graph for declarative
programs, and then extend it to obtain meta provenance.

For ease of exposition, we explain our approach using
a toy language, which we call uDlog. In essence, uDlog
is a heavily simplified variant of NDlog: all tables have
exactly two columns; all rules have one or two predicates
and exactly two selection predicates, all selection predi-
cates must use one of four operators (<, >, ! =, ==), and
there are no data types other than integers. The grammar
of this simple language is shown in Figure 3. The con-
troller program from our running example (in Figure 2)
happens to already be a valid uDlog program.

3.1 The basic provenance graph

Recall from Section 2.2 that provenance can be repre-
sented as a DAG in which the vertices are events and the
edges indicate direct causal relationships. Since NDlog’s
declarative syntax directly encodes dependencies, we can
define relatively simple provenance graphs for it. For
convenience, we adopt a graph from our prior work [55],
which contains the following positive vertexes:

e EXIST([t1,t2], N, 7): Tuple 7 existed on node N
from time ¢; to to;

e INSERT(¢, N, 7), DELETE(¢, N, 7): Base tuple 7
was inserted (deleted) on node NV at time t;

e DERIVE(t,N,7), UNDERIVE(t, N,7): Derived
tuple 7 acquired (lost) support on N at time ;

e APPEAR(t, N, 7), DISAPPEAR(t, N, 7): Tuple 7
appeared (disappeared) on node N at time ¢; and

e SEND(t, N— N’ ,£7), RECEIVE(t, N« N’ £7):
+7 was sent (received) by node N to/from N’ at t.

Conceptually, the system builds the provenance graph in-
crementally at runtime: whenever a new base tuple is

inserted, the system adds an INSERT vertex, and when-
ever arule is triggered and generates a new derived tuple,
the system adds a DERIVE vertex. The APPEAR and
EXIST vertexes are generated whenever a tuple is added
to the database (after an insertion or derivation), and the
interval in the EXIST vertex is updated once the tuple is
deleted again. The rules for DELETE, UNDERIVE, and
DISAPPEAR are analogous. The SEND and RECEIVE
vertexes are used when a rule on one node has a tuple
7 on another node as a precondition; in this case, the
system sends a message from the latter to the former
whenever 7 appears (+7) or disappears (-7), and the two
vertexes are generated when this message is sent and re-
ceived, respectively. Notice that — at least conceptually —
vertexes are never deleted; thus, the operator can inspect
the provenance of past events.

The system inserts an edge (v1, v2) between two ver-
texes v1 and vy whenever the event represented by v; is
a direct cause of the event represented by v,. Deriva-
tions are caused by the appearance (if local) or reception
(if remote) of the tuple that satisfies the last precondi-
tion of the corresponding rule, as well as by the existence
of any other tuples that appear in preconditions; appear-
ances are caused by derivations or insertions, message
transmissions by appearances, and message arrivals by
message transmissions. The rules for underivations and
disappearances are analogous. Base tuple insertions are
external events that have no cause within the system.

So far, we have described only the vertexes for pos-
itive provenance. The full graph also supports nega-
tive events [55] by introducing a negative “twin” for
each vertex. For instance, the counterpart to APPEAR
is NAPPEAR, which represents the fact that a certain tu-
ple failed to appear. For a more detailed discussion of
negative provenance, please see [55].

3.2 The meta provenance graph

The above provenance graph can only represent causality
between data. We now extend the graph to track prove-
nance of programs by introducing two elements: meta
tuples, which represent the syntactic elements of the pro-
gram itself (such as conditions and predicates) and meta
rules, which describe the operational semantics of the
language. For clarity, we describe the meta model for
uDlog here; our meta model for the full NDlog language
is more complex but follows the same approach.

Meta tuples: We distinguish between two kinds of meta
tuples: program-based tuples and runtime-based tuples.
Program-based tuples are the syntactic elements that are
visible to the programmer: rule heads (HeadFunc),
predicates (PredFunc), assignments (Assign), con-
stants (Const), and operators (Oper). Runtime-based
tuples describe data structures inside the NDlog run-
time: base tuple insertions (Base), tuples (Tuple), sat-

hl Tuple (Q@C,Tab,Vall,val2)

pl TuplePred(QC,Rul, Tab,Argl,Arg2,VvVall,val2)
p2 PredFuncCount (QC,Rul, Count<N>)

j2 Join2(@C,Rul, JID,Argl,Arg2,vVall,val2)
N == 1, JID := f_unique().

el Expr (@C,Rul,JID,ID,Val)

e2 Expr (Q@C,Rul,JID,Argl,Vall)

al Headval (€C,Rul,JID,Arg,Val)
sl Sel(@C,Rul,JID,SID,Val)

Val := (vVal’ Opr Vval’’), ID’ != ID'’.

:— Base (Q@C, Tab,Vall,Val2).

:— Const (@C,Rul,ID,Val), JID
:— Join2(@C,Rul,JID,Argl,Arg2,vVall,val2).

e3-e7 // analogous to e2 for Arg2/Val2 (Join2) and Argl..4/Vall..4 (Joind)

:— Assign(@C,Rul,Arg, ID), Expr(@C,Rul,JID,ID,Val).

:- Oper (€C,Rul, SID, ID’,ID’’,0Opr), Expr(@C,Rul,JID’,ID’,Val’),
Expr (@C,Rul,JIDb’’,ID’’,val’’), True == fmatch(JID’,JID’’), JID := f_join(JID’,JID’'’),

h2 Tuple(Q@L,Tab,Vall,Vval2) :- HeadFunc(@C,Rul, Tab,Loc,Argl,Arg2), Headval (@C,Rul,JID,Loc,L), Val == True,
Headval (@C,Rul, JID1,Argl,Vall), Headval(QC,Rul,JID2,Arg2,Val2), Sel(QC,Rul,JID,SID,Val), Val’ == True,
Sel (@C,Rul,JID,SID’,Val’), True == f.match(JID1,JID), True == f_match(JID2,JID), SID != SID’.

:— Tuple(Q@C,Tab,Vall,Val2), PredFunc(@C,Rul,Tab,Argl,Arg2).

:— PredFunc (QC,Rul, Tab,Argl, Arg2) .

j1 Join4 (QC,Rul, JID,Argl,Arg2,Arg3,Arg4,vVall,val2,val3,vald)
TuplePred(@C,Rul, Tab’,Arg3,Arg4,vVal3,VvVald), PredFuncCount (€@C,Rul,N), N==2, Tab != Tab’, JID := f_unique().

:— TuplePred(@C,Rul, Tab,Argl,Arg2,Vall,val2), PredFuncCount (@C,Rul,N),

:— TuplePred(@C,Rul, Tab,Argl,Arg2,vVall,val2),

= k.

Figure 4: Meta rules for uDlog.

isfied predicates (TuplePred), evaluated expressions
(Expr), joins (Join), selections (Sel) and values in
rule heads (Headval). Although concrete implemen-
tations may maintain additional data structures (e.g., for
optimizations), these tuples are sufficient to describe the
operational semantics.

Meta rules: Figure 4 shows the full set of meta rules for
uDlog. Notice that these rules are written in NDlog, not
in puDlog itself. We briefly explain each meta rule below.

Tuples can exist for two reasons: they can be inserted
as base tuples (h1) or derived via rules (h2). Recall that,
in uDlog’s simplified syntax, each rule joins at most two
tables and has exactly two selection predicates to select
tuples from these tables. A rule “fires” and produces a
tuple T (a, b) iff there is an assignment of values to a,
and b that satisfies both predicates. (Notice that the two
selection predicates are distinguished by a unique selec-
tion ID, or SID.) We will return to this rule again shortly.

The next four meta rules compute the actual joins.
First, whenever a (syntactic) tuple appears as in a rule
definition, each concrete tuple that exists at runtime
generates one variable assignment for that tuple (pl).
For instance, if a rule r contains Foo (A, B), where
A and B are variables, and at runtime there is a con-
crete tuple Foo (5, 7), meta rule p1 would generate
a TuplePred (QC,r,Foo,A,B,5,7) meta tuple to
indicate that 5 and 7 are assignments for A and B.

Depending on the number of tuples in the rule body
(calcuated in rule p2), meta rule j1 or 72 will be trig-
gered: When it contains two tuples from different tables,
meta rule 71 computes a Join4 tuple for each pair of
tuples from these tables. Note that this is a full cross-
product, from which another meta rule (s1) will then se-
lect the tuples that match the selection predicates in the
rule. For this purpose, each tuple in the join is given a
unique join ID (JID), so that the values of the selection
predicates can later be matched up with the correct tu-
ples. If a rule contains only a tuple from one table, we
compute a Join2 tuple instead (J2).

The next seven meta rules evaluate expressions. Ex-
pressions can appear in two different places — in a rule
head and in a selection predicate — but since the eval-
uation logic is the same, we use a single set of meta
rules for both cases. Values can come from integer con-
stants (e1) or from any element of a Join2 or Join4
meta tuple (e2—e7). Notice that most of these val-
ues are specific to the join on which they were evalu-
ated, so each Expr tuple contains a specific JID; the
only exception are the constants, which are valid for
all joins. To capture this, we use a special JID wild-
card (), and we test for JID equality using a special
function f_match (JID1, JID2) that returns true iff
JID1==JID2 or if either of them is .

The last two meta rules handle assignments (al) and
selections (s1). An assignment simply sets a variable
in a rule head to the value of an expression. The s1
rule determines, for each selection predicate in a rule
(identified by SID) and for each join state (identified
by JID) whether the check succeeds or fails. Function
f_join (JID1, JID2) is introduced to handle JID
wildcard: it returns JID1 if JID2 is *, or JID2 other-
wise. The result is recorded in a Sel meta tuple, which
is used in h2 to decide whether a head tuple is derived.

uDlog requires only 13 meta tuples and 15 meta rules;
the full meta model for NDlog contains 23 meta tuples
and 23 meta rules. We omit the details here; they are
included in a technical report [54].

3.3 Meta provenance forests

So far, we have essentially transformed the original ND-
log program into a new “meta program”. In principle, we
could now generate meta provenance graphs by applying
a normal provenance graph generation algorithm on the
meta program — e.g., the one from [55]. However, this is
not quite sufficient for our purposes. The reason is that
there are cases where the same effect can be achieved
in multiple ways. For instance, suppose that we are ex-
plaining the absence of an X tuple, and that there are two
different rules, r1 and r2, that could derive X. If our goal

was to explain why X was absent, we would need to in-
clude explanations for both r1’s and r2’s failure to fire.
However, our goal is instead to make X appear, which
can be achieved by causing either r1 or r2 to fire. If
we included both in the provenance tree, we would gen-
erate only repairs that cause both rules to fire, which is
unnecessary and sometimes even impossible.

Our solution is to replace the meta provenance tree
with a meta provenance forest. Whenever our algorithm
encounters a situation with k possible choices that are
each individually sufficient for repair, it replaces the cur-
rent tree with k copies of itself and continues to explore
only one choice in each tree.

3.4 From explanations to repairs

The above problem occurs in the context of disjunctions;
next, we consider its “twin”’, which occurs in the context
of conjunctions. Sometimes, the meta provenance must
explain why a rule with multiple preconditions did rot
derive a certain tuple. For diagnostic purposes, the ab-
sence of one missing precondition is already sufficient to
explain the absence of the tuple. However, meta prove-
nance is intended for repair, i.e., it must allow us to find
a way to make the missing tuple appear. Thus, it is not
enough to find a way to make a single precondition true,
or even ways to make each precondition true individu-
ally. What we need is a way to satisfy all the precondi-
tions at the same time!

For concreteness, consider the following simple ex-
ample, which involves a meta rule A (x,y) : —B (%),
C(x,y),x+y>1,x>0. Suppose that the operator
would like to find out why there is no A (x,y) with
y==2. In this case, it would be sufficient to show that
thereisno C (x, y) with y==2 and x>0; cross-predicate
constraints, such as x+y>1, can be ignored. However,
if we want to actually make a suitable A (x, y) appear,
we need to jointly consider the absence of both B (x)
and C (x,y), and ensure that all branches of the prove-
nance tree respect the cross-predicate constraints. In
other words, we cannot explore the two branches sepa-
rately; we must make sure that their contents “match”.

To accomplish this, our algorithm automatically gen-
erates a constraint pool for each tree. It encodes the
attributes of tuples as variables, and it formulates con-
straints over these variables. For instance, given the
missing tuple Ag, we add two variables Ag.x and
Ap .vy. To initialize the constraint pool, the root of the
meta provenance graph must satisfy the operator’s re-
quirement: Ag.y == 2. While expanding any miss-
ing tuple, the algorithm adds constraints as necessary
for a successful derivation. In this example, three
constraints are needed: first, the predicates must join
together, ie., By.x == (Cp.x. Second, the predi-

cates must satisfy the constraints, i.e., By.x>0 and
Cy.x+Cy.y>1. Third, the predicates must derive the
head, i.e., Ag.x==Cy.x and Ag.y==Cy.y. In addi-
tion, tuples must satisfy primary key constraints. For
instance, suppose deriving B (x) requires Dg (9, 1)
while deriving C (x,y) requires D; (9,2). If x is
the only primary key of table D (x,vy), Dy (9, 1) and
Dy (9, 2) cannot co-exist at the same time. Therefore,
the explanation is inconsistent for generating repairs. To
address such cases, we encode additional constraints:
D.x == Dg.x implies D.y == landD.x ==
Di.x implies D.y ==

3.5 Generating meta provenance

In general, meta provenance forests may consist of in-
finitely many trees, each with infinitely many vertexes.
Thus, we cannot hope to materialize the entire forest. In-
stead, we adopt a variant of the approach from [55] and
use a step-by-step procedure that constructs the trees in-
crementally. We define a function QUERY(v) that, when
called on a vertex v from any (partial) tree in the meta
provenance forest, returns the immediate children of v
and/or “forks” the tree as described above. By calling
this function repeatedly on the leaves of the trees, we can
explore the trees incrementally. The two key differences
to [55] are the procedures for expanding NAPPEAR and
NDERIVE vertices: the former must now “fork” the tree
when there are multiple children that are each individ-
ually sufficient to make the missing tuple appear (Sec-
tion 3.3), and the latter must now explore a join across
all preconditions of a missing derivation, while collect-
ing any relevant constraints (Section 3.4).

To explore an infinite forest with finite memory, our al-
gorithm maintains a set of partial trees. Initially, this set
contains a single “tree” that consists of just one vertex
— the vertex that describes the symptom that the opera-
tor has observed. Then, in each step, the algorithm picks
one of the partial trees, randomly picks a vertex within
that tree that does not have any children yet, and then in-
vokes QUERY on this vertex to find the children, which
are then added to that tree. As discussed before, this step
can cause the tree to fork, adding multiple copies to the
set that differ only in the newly added children. Another
possible outcome is that the chosen partial tree is com-
pleted, which yields a repair candidate.

Each tree — completed or partial — is associated with
a cost, which intuitively represents the implausibility of
the repair that the tree represents. (Lower-cost trees are
more plausible.) Initially, the cost is zero. Whenever a
base tuple is added that represents a program change, we
increase the total cost of the corresponding tree by the
cost of that change. In each step, our algorithm picks
the partial tree with the lowest cost; if there are multi-
ple trees with the same cost, our algorithm picks the one

function GENERATEREPAIRCANDIDATES(P)
R < 0, 7 + ROOTTUPLE(P)
if M1SSINGTUPLE(T,-) then
C' < CONSTRAINTPOOL(P)
A < SATASSIGNMENT(C)
for (7;) € BASETUPLES(P)
if Mi1SSINGTUPLE(T;) then
R + R U CHANGETUPLE(T;,A)
else if EXISTINGTUPLE(7,) then
for (T;) € BASETUPLECOMBINATIONS(P)
Rei 0, Ra; < 0
C'; < SYMBOLICPROPAGATE(P,T5;)
A; < UNSATASSIGNMENT(C';)
for (Tl) eT;
Rci < Rci U CHANGETUPLE(T;,A;)
Rg4; <+ Ra4; U DELETETUPLE(T;)
R+ RUR: U Ry;
RETURN R

Figure 5: Algorithm for extracting repair candidates
from the meta provenance graph. For a description of
the helper functions, please see [54].

with the smallest number of unexpanded vertexes. Re-
pair candidates are output only once there are no trees
with a lower cost. Thus, repair candidates are found in
cost order, and the first one is optimal with respect to the
chosen cost metric; if the algorithm runs long enough,
it should eventually find a working repair. (For a more
detailed discussion, please see [54].) In practice, the al-
gorithm would be run until some reasonable cut-off cost
is reached, or until the operator’s patience runs out.

The question remains how to assign costs to program
changes. We assign a low cost to common errors (such as
changing a constant by one or changinga==toa ! =) and
a high cost to unlikely errors (such as writing an entirely
new rule, or defining a new table). Thus, we can prior-
itize the search of fixes to software bugs that are more
commonly observed in actual programming, and thus in-
crease the chances that a working fix will be found.

3.6 Limitations

The above approach is likely to find simple problems,
such as incorrect constraints or copy-and-paste errors,
but it is not likely to discover fundamental flaws in
the program logic that require repairs in many differ-
ent places and/or several new rules. However, software
engineering studies have consistently shown that simple
errors, such as copy-and-paste bugs, are very common:
simple typos already account for 9.4-9.8% of all seman-
tic bugs [32], and 70-90% of bugs can be fixed by chang-
ing only existing syntactic elements [41]. Because of
this, we believe that an approach that can automatically
fix “low-cost” bugs can still be useful in practice.

Our approach focuses exclusively on incorrect com-
putations; there are classes of bugs, such as concurrency
bugs or performance bugs, that it cannot repair. We spec-
ulate that such bugs can be found with a richer meta
model, but this is beyond the scope of the present paper.

NEXIST[Tuple(L=S3, Tab="FlowTable",
Val1=80, Val2=2) @C]

EXIST[Sel(Rul="r7", JID=8538,
SID="Hdr == 80", Val=True) @C]

SID=7/*, Val=True) @C]

NEXISTI[Sel(Rul="r7", JID=8538, ‘

P Y

- B
A -
/o NEXIST[Oper(Rul="r7", SID="Swi == 2",
ID'="Swi", ID"="2", Opr=") @C]
T

NEXIST[Expr(Rul="r7", JID=8538 or *, L\
1D="2", Val=3) @C] FIX: change constant value

"Swi == 2" =>"Swi > 2"

NEXIST[Const(Rul="r7", Fix: change constant

"Swi == 2" =>"Swi==3"

ID="2", Val=3) @C]

Figure 6: Meta provenance of a missing flow entry. It
consists of two trees (white + yellow, white + blue), each
of which can generate a repair candidate.

4 Generating repair candidates

As discussed in Section 3.5, our algorithm explores the
meta provenance forest in cost order, adding vertexes
one by one by invoking QUERY on a leaf of an existing
partial tree. Thus, the algorithm slowly generates more
and more trees; at the same time, some existing trees are
eventually completed because none of their leaves can be
further expanded (i.e., QUERY returns () on them). Once a
tree is completed, we invoke the algorithm in Figure 5 to
extract a candidate repair.

The algorithm has two cases: one for trees that have
an existing tuple at the root (e.g., a packet that reached
a host it should not have reached), and one for trees that
have a missing tuple at the root (e.g., a packet failed to
reach its destination). We discuss each in turn. Further-
more, we note that the ensuing analysis is performed on
the meta program, which is independent from the lan-
guage that the original program is written in.

4.1 Handling negative symptoms

If the root of the tree is a missing tuple, its leaves will
contain either missing tuples or missing meta tuples,
which can be then created by inserting the correspond-
ing tuples or program elements. However, some of these
tuples may still contain variables — for instance, the tree
might indicate that an A (x) tuple is missing, but without
a concrete value for x. Hence, the algorithm first looks
for a satisfying assignment of the tree’s constraint pool
(Section 3.4). If such an assignment is found, it will sup-
ply concrete values for all remaining variables; if not, the
tree cannot produce a working repair and is discarded.
As an example, Figure 6 shows part of the meta
provenance of a missing event. It contains two meta
provenance trees, which have some vertices in com-
mon (colored white), but do not share other vertices
(colored yellow and blue). The constraint pool in-
cludes Const0.vVal = 3,Const0.Rul = r7,and
Const0.ID = 2. Thatis, the repair requires the exis-

Val1=80, Val2=2) @C]

EXIST[Tuple(L=S3, Tab="FlowTable",

EXIST[Sel(Rul="r1", JID=3767, EXIST[Expr(Rul="r1", JID=3767,
SID=?/*, Val=(1 == Z)) @C] ID="Swi", Val=1) @C]
EXIST[Oper(Rul="r1", SID="Swi == 1", EXIST[Join4(Rul="r1", JID=3767 or *,
ID'="Swi", ID"="1", Opr='==") @C]

Arg1="Swi", Arg2="Hdr", ...) @C]
I

EXIST[Expr(Rul="r1", JID=3767
or*, ID="1", Val=2) @C]

EXIST[TuplePred(Rul="r1",
Tab="WebLoadBalancer", ...) @C]
I
EXIST[PredFunc(Rul="r1",
Tab="WebLoadBalancer", ...) @C]

EXIST[Const(Rul="r1", ’

ID="1", Val=2) @C, t1]

L4
Fix: change constant
"Swi == 1" => "Swi == 2"

v
Discarded fix: delete predicate
"WebLoadBalancer"

Figure 7: Meta provenance of a harmful flow entry. All
repairs (e.g., green and red) can prevent this derivation,
but the red one rederives the tuple via other meta rules.

tence of a constant of value 3 in rule r7. Therefore, we
can change value of the original constant (identified by
identical primary keys Rul and ID) to 3.

4.2 Handling positive symptoms

Meta provenance can also help with debugging scena-
rios with positive symptoms. Figure 7 shows the meta
provenance graph of a tuple that exists, but should not
exist. We can make this tuple disappear by deleting (or
changing in the proper way) any of the base tuples or
meta tuples on which the derivation is based.

However, neither base tuples nor meta tuples are al-
ways safe to change. In the case of meta tuples, we must
ensure that the change does not violate the syntax of the
underlying language (in this case, ;Dlog). For instance,
it would be safe to delete a PredFunc tuple to remove
an entire predicate, but it may not be safe to delete a
Const meta tuple, since this might result in an incom-
plete expression, such as Swi >.

In the case of changes to base tuples, the problem is to
find changes that a) will make the current derivation dis-
appear, and that b) will not cause an alternate derivation
of the same tuple via different meta rules. To handle the
first problem, we do not directly replace elements of a tu-
ple with a different value. Rather, we initially replace the
elements with symbolic constants and then re-execute the
derivation of meta rules symbolically while collecting
constraints over the symbolic constants that must hold
for the derivation to happen. Finally, we can negate these
constraints and use a constraint solver to find a satisfying
assignment for the negation. If successful, this will yield
concrete values we can substitute for the symbolic con-
stant that will make the derivation disappear.

For concreteness, we consider the green repair in Fig-
ure 7. We initially replace Const (' r1l’,1,1) with
Const (‘rl’,1,Zz) and then reexecute the derivation
to collect constraints — in this case, 1==7. Since Z=2
does not satisfy the constraints, we can make the tuple at

the top disappear by changing Z to 2 (which corresponds
to changing Swi==1 to Swi==2 in the program).

This leaves the second problem from above: even if
we make a change that disables one particular derivation
of an undesired tuple, that very change could enable
some other derivation that causes the undesired tuple
to reappear. For instance, suppose we delete the tuple
PredFunc (' rl’,’WebLoadBalancer’, ...),
which corresponds to deleting the WebLoadBalancer
predicate from the pDlog rule rl (shaded red in
Figure 7). This deletion will cause the Join4 tu-
ple to disappear, and it will change the value of
PredFuncCount from 2 to 1. As a result, the deriva-
tion through meta rule j1 will duly disappear; however,
this will instead trigger meta rule j2, which leads to
another derivation of the same flow entry.

Solving this for arbitrary programs is equivalent to
solving the halting problem, which is NP-hard. How-
ever, we do not need a perfect solution because this case
is rare, and because we can either use heuristics to track
certain rederivations or we can easily eliminate the cor-
responding repair candidates during backtesting.

4.3 Backtesting a single repair candidate

Although the generated repairs will (usually) solve the
problem immediately at hand, by making the desired tu-
ple appear or the undesired tuple disappear, each repair
can also have a broader effect on the network as a whole.
For instance, if the problem is that a switch forwarded a
packet to the wrong host, one possible “repair” is to dis-
able the rule that generates flow entries for that switch.
However, this would also prevent all other packets from
being forwarded, which is probably too restrictive.

To mitigate this, we adopt the maxim of “primum non
nocere” [20] and assess the global impact of a repair can-
didate before suggesting it. Specifically, we backtest the
repair candidates in simulation, using historical informa-
tion from the network. We can approximate past control-
plane states from the diagnostic information we already
record for the provenance; to generate a plausible work-
load, we can use a Netflow trace or a sample of packets.
We then collect some key statistics, such as the number
of packets delivered to each host. Since the problems
we are aiming to repair are typically subtle (total net-
work failures are comparatively easy to diagnose!), they
should affect only a small fraction of the traffic. Hence,
a “good” candidate repair should have little or no impact
on metrics that are not related to the specified problem.

In essence, the metrics play the role of the test suite
that is commonly used in the wider literature on auto-
mated program fixing. While the simple metric from
above should serve as a good starting point, operators
could easily add metrics of their own, e.g., to encode

’ r7(vl) FlowTable (@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 3, Hdr == 80, Prt := 2.
’ r7(v2) FlowTable (@Swi, Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi > 2, Hdr == 80, Prt := 2.
’ r7(v3) FlowTable (@Swi,Hdr,Prt) :— PacketIn(Q@C,Swi,Hdr), Swi != 2, Hdr == 80, Prt := 2.

r6(vl,v2,v3) FlowTable (@Swi,Hdr,Prt) :- PacketIn(Q@C,Swi,Hdr), Swi == 2, Hdr == 53, Prt := 2.
r7(vl,v2,v3) FlowTable (@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi == 3, Hdr == 80, Prt := 2.
r7(v2,v3) FlowTable (@Swi,Hdr,Prt) :- PacketIn(@C,Swi,Hdr), Swi > 3, Hdr == 80, Prt := 2.
r7(v3) FlowTable (@Swi,Hdr,Prt) :— PacketIn(@C,Swi,Hdr), Swi < 2, Hdr == 80, Prt := 2.

Figure 8: (a) Three repair candidates, all of which can generate forwarding flow entries for switch S2 by fixing r7 in
the original program in Figure 2; other parts of the program are unchanged. (b) Backtesting program that evaluates all
three repair candidates simultaneously while running shared computations only once.

performance goals (load balancing, link utilization) or
security restrictions (traffic from X should never reach
Y). However, recall that, in contrast to much of the ear-
lier work on program fixing, we do not rely on this “test
suite” to find candidate repairs (we use the meta prove-
nance for that); the metrics simply serve as a sanity check
to weed out repairs with serious side effects. The fact
that a given repair passed the backtesting stage is not a
guarantee that no side effects will occur.

As an additional benefit, the metrics can be used to
rank the repairs, and to give preference to the candidates
that have the smallest impact on the overall network.

4.4 Backtesting multiple repair candidates

It is important for the backtesting to be fast: the less
time it takes, the more candidate repairs we can afford
to consider. Fortunately, we can leverage another con-
cept from the database literature to speed up this process
considerably. Recall that each backtest simulates the be-
havior of the network with the repaired program. Thus,
we are effectively running many very similar “queries”
(the repaired programs, which differ only in the fixes
that were applied) over the same “database” (the histor-
ical network data), where we expect significant overlaps
among the query computations. This is a classical in-
stance of multi-query optimization, for which powerful
solutions are available in the literature [19, 35].

Multi-query optimization exploits the fact that almost
all computation is shared by almost all repair candidates,
and thus has to be performed only once. We accomplish
this by transforming the original program into a backtest-
ing program as follows. First, we associate each tuple
with a set of tags, we extend all relations to have a new
field for storing the tags, and we update all the rules such
that the tag of the head is the intersection of the tags in
the body. Then, for each repair candidate, we create a
new tag and add copies of all the rules the repair candi-
date modifies, but we restrict them to this particular tag.
Finally, we add rules that evaluate the metrics from Sec-
tion 4.3, separately for each tag.

The effect is that data flows through the program as
usual, but, at each point where a repair candidate has
modified something, the flow forks off a subflow that has
the tag of that particular candidate. Thus, the later in
the program the modification occurs, the fewer compu-
tations have to be duplicated for that candidate. Over-
all, the backtesting program correctly computes the met-
rics for each candidate, but runs considerably faster than
computing each of the metrics round after round.

As an example, Figure 8(a) shows three repair candi-
dates (v1, v2, and v3) for the buggy program in Fig-
ure 2. Each of them alters the rule r7 in a different way:
v1 changes a constant, v2 and v3 change an operator.
(Other rules are unchanged.)

In some cases, it is possible to determine, through
static analysis, that rules with different tags produce
overlapping output. For instance, in the above example,
the three repairs all modify the same predicate, and some
of the predicates are implied by others; thus, the output
for switch 3 is the same for all three tags, and the out-
put for switches above 3 is the same for tags v2 and v3.
By coalescing the corresponding rules, we can further
reduce the computation cost. Finding all opportunities
for coalescing would be difficult, but recall that this is
merely an optimization: even if we find none at all, the
program will still be correct, albeit somewhat slower.

5 Evaluation

In this section, we report results from our experimental
evaluation, which aim to answer five high-level ques-
tions: 1) Can meta provenance generate reasonable re-
pair candidates? 2) What is the runtime overhead of
meta provenance? 3) How fast can we process diagnos-
tic queries? 4) Does meta provenance scale well with the
network size? And 5) how well does meta provenance
work across different SDN frameworks?

5.1 Prototype implementation

We have built a prototype based on declarative and im-
perative SDN environments as well as Mininet [29]. It

generates and further backtests repair candidates, such
that the operator can inspect the suggested repairs and
decide whether and which to apply. Our prototype con-
sists of around 30,000 lines of code, including the fol-
lowing three main components.

Controllers: We validate meta provenance using three
types of SDN environments. The first is a declarative
controller based on RapidNet [44]; it includes a proxy
that interposes between the RapidNet engine and the
Mininet network and that translates NDlog tuples into
OpenFlow messages and vice versa. The other two are
existing environments: the Trema framework [51] and
the Pyretic language [37]. (Notice that neither of the lat-
ter two is declarative: Trema is based on Ruby, an im-
perative language, and Pyretic is an imperative domain-
specific language that is embedded in Python.)

At runtime, the controller and the network each record
relevant control-plane messages and packets to a log,
which can be used to answer diagnostic queries later. The
information we require from runtime is not substantially
different from existing provenance systems [10, 33, 55,
63], which have shown that provenance can be captured
at scale and for SDNs.

Tuple generators: For each of the above languages, we
have built a meta tuple generator that automatically gen-
erates meta tuples from the controller program and from
the log. The program-based meta tuples (e.g., constants,
operators, edges) only need to be generated once for
each program; the log-based meta tuples (e.g., messages,
constraints, expressions) are generated by replaying the
logged control-plane messages through automatically-
instrumented controller programs.

Tree constructor: This component constructs meta
provenance trees from the meta tuples upon a query. As
we discussed in Section 3.4, this requires checking the
consistency of repair candidates. Our constructor has an
interface to the Z3 solver [11] for this purpose. However,
since many of the constraint sets we generate are triv-
ial, we have built our own “mini-solver” that can quickly
solve the trivial instances on its own; the nontrivial ones
are handed over to Z3. The mini-solver also serves as
an optimizer for handling cross-table meta tuple joins.
Using a naive nested loop join that considers all com-
binations of different meta tuples would be inefficient;
instead, we solve simple constraints (e.g., equivalence,
ranges) first. This allows us to filter the meta tuples be-
fore joining them, and use more efficient join paradigms,
such as hash joins. Our cost metric is based on a study of
common bug fix patters (Pan et al. [41]).

5.2 Experimental setup

To obtain a representative experimental environment, we
set up the Stanford campus network from ATPG [58] in

10

Mininet [29], with 16 Operational Zone and backbone
routers. Moreover, we augmented the topology with
edge networks, each of which is connected to the main
network by at least one core router; we also set up 1
to 15 end hosts per edge network. The core network is
proactively configured using forwarding entries from the
Stanford campus network; the edge networks run a mix
of reactive and proactive applications. In our techinical
report [54], we include an experiment where the con-
troller reactively installs core routing policies. Overall,
our smallest topology across all scenarios consisted of
19 routers and 259 hosts, and our largest topology con-
sisted of 169 routers and 549 hosts. In addition, we cre-
ated realistic background traffic using two traffic traces
obtained in a similar campus network setting [5]; 1 to 16
of the end hosts replayed the traces continuously during
the course of our experiments. Moreover, we generated
a mix of ICMP ping traffic and HTTP web traffic on
the remaining hosts. Overall, 4.6-309.4 million packets
were sent through the network. We ran our experiments
on a Dell OptiPlex 9020 workstation, which has a 8-core
3.40 GHz Intel i7-4770 CPU with 16 GB of RAM and
a 128 GB OCZ Vector SSD. The OS was Ubuntu 13.10,
and the kernel version was 3.8.0.

5.3 Usability: Diagnosing SDNs

A natural first question to ask is whether meta prove-
nance can repair real problems. To avoid distorting
our results by picking our own toy problems to de-
bug, we have chosen four diagnostic scenarios from
four different networking papers that have appeared at
CoNEXT [13, 58], NSDI [7], and HotSDN [4], plus one
common class of bugs from an OSDI paper [31]. We fo-
cused on scenarios where the root cause of the problem
was a bug in the controller program. We recreated each
scenario in the lab, based on its published description.
The five scenarios were:

e Q1: Copy-and-paste error [31]. A server received
no requests because the operator made a copy-and-
paste error when modifying the controller program.
The scenario is analogous to the one in Figure 1, but
with larger topology and more realistic traffic.

e Q2: Forwarding error [58]. A server could not
receive queries from certain clients because the op-
erator made a error when specifying the action of
the forwarding rule.

e Q3: Uncoordinated policy update [13]. A firewall
controller app configured white-list rules for web
servers. A load-balancing controller app updated
the policy on an ingress point, without coordinat-
ing with the firewall app; this caused some traffic to
shift, and then to be blocked by the firewall.

Query description Result
Q1 H20 is not receiving HTTP requests from H2 9/2
Q2 H17 is not receiving DNS queries from H1 12/3
Q3 H20 is not receiving HTTP requests from H1 11/3
Q4 | First HTTP packet from H2 to H20 is not received 13/3
Q5 | H2’s MAC address is not learned by the controller 9/3

Table 1: The diagnostic queries, the number of repair
candidates generated by meta provenance, and the num-
ber of remaining candidates after backtesting.

e Q4: Forgotten packets [7]. A controller app
correctly installed flow entries in response to new
flows; however, it forgot to instruct the switches to
forward the first incoming packet in each flow.

e QS5: Incorrect MAC learning [4]. A MAC learn-
ing app should have matched packets based on their
source IP, incoming port, and destination IP; how-
ever, the program only matched on the latter two
fields. As a result, some switches never learned
about the existence of certain hosts.

To get a sense of how useful meta provenance would be
for repairing the problems, we ran diagnostic queries in
our five scenarios as shown in Table 1, and examined
the generated candidate repairs. In each of the scenarios,
we bounded the cost and asked the repair generator to
produce all repair candidates. Table 2 shows the repair
candidates returned for Q1; the others are included in
our technical report [54].

Our backtesting confirmed that each of the proposed
candidates was effective, in the sense that it caused the
backup web server to receive at least some HTTP traffic.
This phase also weeded out the candidates that caused
problems for the rest of the network. To quantify the side
effects, we replayed historical packets in the original net-
work and in each repaired network. We then computed
the traffic distribution at end hosts for each of these net-
works. We used the Two-Sample Kolmogorov-Smirnov
test with significance level 0.05 to compare the distribu-
tions before and after each repair. A repair candidate was
rejected if it significantly distorted the original traffic dis-
tribution; the statistics and the decisions are shown in Ta-
ble 2. For instance, repair candidate G deleted Swi==
and Dpt==53 in rule r6. This causes the controller to
generate a flow entry that forwards HTTP requests at S3;
however, the modified r6 also causes HTTP requests to
be forwarded to the DNS server.

After backtesting, the remaining candidates are pre-
sented to the operator in complexity order, i.e., the sim-
plest candidate is shown first. In this example, the sec-
ond candidate on the list (B) is also the one that most
human operators would intuitively have chosen — it fixes
the copy-and-paste bug by changing the switch ID in the
faulty predicate from Swi==2 to Swi==3.

Table 1 summarizes the quality of repairs our proto-
type generated for all scenarios for the RapidNet con-

11

Repair candidate (Accepted?) KS-test
A | Manually installing a flow entry (v) 0.00007
B | Changing Swi==2inr7 to Swi==3 (V) 0.00007
C | Changing Swi==2inr7to Swi!=2 (X) 0.00865
D | Changing Swi==2inr7 to Swi>=2 (X) 0.00826
E | Changing Swi==2inr7to Swi>2 (X) 0.00826
F | Deleting Swi==2 in r7 (X) 0.00867
G | Deleting Swi==2 and Dpt==53in r6 (X) 0.05287
H | Deleting Swi==2 and Dpt==80 in r7 (X) 0.00999
I | Changing Swi==2and Act=output-1linr5 | 0.05286

to Swi==3 and Act=output-2 (X)

Table 2: Candidate repairs generated by meta provenance
for Q1, which are then filtered by a KS-test.

troller. Each scenario resulted in two or three repair sug-
gestions. In the first stage, meta provenance produced
between 9 and 13 repair candidates for each query, for
a total of 54 repair candidates. Note that these numbers
do not count expensive repair candidates that were dis-
carded by the ranking heuristic (Section 3.5). The back-
testing stage then confirmed that 48 of these candidates
were effective, i.e., they fixed the problem at hand (e.g.,
the repair caused the server to receive at least a few pack-
ets). However, 34 of the effective candidates caused non-
trivial side effects, and thus were discarded.

We note that the final set of candidates included a few
non-intuitive repairs — for instance, one candidate fixed
the problem in Q1 by manually installing a new flow en-
try. However, these repairs were nevertheless effective
and had few side effects, so they should suffice as an ini-
tial fix. If desired, a human operator could always refac-
tor the program later on.

5.4 Runtime overhead

Latency and throughput: To measure the latency
and throughput overhead incurred by maintaining meta
provenance, we used a standard approach of stress-
testing OpenFlow controllers [14] which involves
streaming incoming packets through the Trema con-
troller using Cbench. Latency is defined as the time
taken to process each packet within the controller. We
observe that provenance maintenance resulted in a la-
tency increase of 4.2% to 54ms, and a throughput reduc-
tion of 9.8% to 45, 423 packets per second.

Disk storage: To evaluate the storage overhead, we
streamed the two traffic traces obtained from [5] through
our SDN scenario in Q1. For each packet in the trace,
we recorded a 120-byte log entry that contains the packet
header and the timestamp. The logging rates for the two
traces are 20.2 MB/s and 11.4 MB/s per switch, respec-
tively, which are only a fraction of the sequential write
rate of commodity SSDs. Note that this data need not be
kept forever: most diagnostic queries are about problems
that currently exist or have appeared recently. Thus, is
should be sufficient to store the most recent entries, per-
haps an hour’s worth.

120
100
80
60
40

Constraint solving s
History lookups s

Replay ——

—e— Sequential
Patch generation mmmm q

Turnaround time (s)
Turnaround time (s)

20

—e— With multi-query optimization

60
50
40
30
20
10

Replay ——1
Patch generation
Constraint solving s
History lookups

Latency (s)

Q1 Q2 Q3

Scenario

Q4 Q5 0 1 2 3

(a) Time to generate the repairs for each
of the scenarios in Section 5.3.

4

Repair candidates tested

49

Number of switches in the network

5 6 7 8 9 19 79 109 139 169

(b) Time needed to jointly backtest the (c) Scalability of repair generation phase
first k repair candidates from Q1.

with network size for Q1.

Figure 9: Repair generation speed for all queries; backtesting speed and scalability result for Q1.

5.5 Time to generate repairs

Diagnostic queries does not always demand a real-time
response; however, operators would presumably prefer a
quick turnaround. Figure 9a shows the turnaround time
for constructing the meta provenance data structure and
for generating repair candidates, including a breakdown
by category. In general, scenarios with more complex
control-plane state (Q1, Q4, and Q5) required more time
to query the time index and to look up historical data;
the latter can involve loop-joining multiple meta tables,
particularly for the more complicated meta rules with
over ten predicates. Other scenarios (Q2 and Q3) forked
larger meta-provenance forests and thus spent more time
on generating repairs and on solving constraints. How-
ever, we observe that, even when run on a single ma-
chine, the entire process took less than 25 seconds in all
scenarios, which does not seem unreasonable. This time
could be further reduced by parallelization, since differ-
ent machines could work on different parts of the meta-
provenance forest in parallel.

5.6 Backtesting speed

Next, we evaluate the backtesting speed using the repair
candidates listed in Table 2. For each candidate, we sam-
pled packet traces at the network ingresses from the log,
and replayed them for backtesting. The top line in Fig-
ure 9b shows the time needed to backtest all the candi-
dates sequentially; testing all nine of them took about
two minutes, which already seems reasonably fast. How-
ever, the less time backtesting takes, the more repair
candidates we can afford to consider. The lower line
in Figure 9b shows the time needed to jointly backtest
the first k candidates using the multi-query optimization
technique from Section 4.4, which merges the candidates
into a single “backtesting program”. With this, testing
all nine candidates took about 40 seconds. This large
speedup is expected because the repairs are small and
fairly similar (since they are all intended to fix the same
problem); hence, there is a substantial amount of overlap
between the individual backtests, which the multi-query
technique can then eliminate.

12

5.7 Scalability

To evaluate the scalability of meta provenance with re-
gard to the network size, we tested the turnaround time
of query Q1 on larger networks which contained up to
169 routers and 549 hosts. We obtained these networks
by adding more routers and hosts to the basic Stanford
campus network. Moreover, we increased the number of
hosts that replay traffic traces [5] to up to 16. We gen-
erated synthetic traffic on the remaining hosts, and used
higher traffic rates in larger networks to emulate more
hosts. As we can see from Figure 9c, the turnaround time
increased linearly with the network size, but it was within
50 seconds for all cases. As the breakdown shows, the
increase mainly comes from the latency increase of the
historical lookups and of the replay. This is because the
additional nodes and traffic caused the size of the con-
troller state to increase. This in turn resulted in a longer
time to search through the controller state, and to replay
the messages. Repair generation and constraint solving
time only see minor increases. This is expected because
the meta provenance forest is generated from only rele-
vant parts of the log, the size of which is relatively stable
when the affected flows are given.

5.8 Applicability to other languages

To see how well meta provenance works for languages
other than NDlog, we developed meta models for
Trema [51] and Pyretic [37]. This required only a moder-
ate effort (16 person-hours). Our Trema model contains
42 meta rules and 32 meta tuples; it covers basic con-
trol flow (e.g., functional calls, conditional jumps) and
data flow semantics (e.g., constants, expressions, vari-
ables, and objects) of Ruby. The Pyretic model contains
53 meta rules and 41 meta tuples; it describes a set of
imperative features of Python, similar to that of Ruby. It
also encodes the Pyretic NetCore syntax (from Figure 4
in [37]). Developing such a model is a one-time invest-
ment — once rules for a new language are available, they
can be applied to any program in that language.

To verify that these models generate effective fixes,
we recreated the scenarios in Section 5.3 for Trema and
Pyretic. We could not reproduce Q4 in Pyretic because

Q1
72
4/2

Q2
1072
1172

Q3
1172
912

Q4
10/2

Q5
14/3
14/3

Trema (Ruby)
Pyretic (DSL + Python)

Table 3: Results for Trema and Pyretic. For each sce-
nario from Section 5.3, we show how many repair candi-
dates are generated, and how many passed backtesting.

the Pyretic abstraction and its runtime already prevents
such problems from happening. Table 3 shows our re-
sults. Overall, the number of repairs that were gener-
ated and passed backtesting are relatively stable across
the different languages. For Q1, we found fewer repair
candidates for Pyretic than for RapidNet and Trema; this
is because an implementation of the same logic in differ-
ent languages can provide different “degrees of freedom”
for possible repairs. (For instance, an equality check
Swi==2 in RapidNet would be match(switch = 2) in
Pyretic; a fix that changes the operator to > is possible in
the former but disallowed in the latter because of the syn-
tax of match.) In all cases, meta provenance produced
at least one repair that passed the backtesting phase.

6 Related Work

Provenance: Provenance [6] has been applied to a wide
range of systems [3, 12, 18, 38, 57]. It has been used for
network diagnostics before —e.g., in [10, 55, 62, 63] — but
these solutions only explain why some data was or was
not computed from some given input data; they do not in-
clude the program in the provenance and thus, unlike our
approach, cannot generate program fixes. We have pre-
viously sketched our approach in [53]; the present paper
adds a full algorithm and an experimental evaluation.
Program slicing: Given a specification of the output,
program slicing [1, 42, 52] can capture relevant parts of
the program by generating a reduced program, which is
obtained by eliminating statements from the original pro-
gram. However, slices do not encode causality and thus
cannot be directly used for generating repairs.

Network debugging: There is a rich literature on find-
ing bugs and/or certifying their absence. Some systems,
such as [15, 17, 24, 25, 26, 59], use static analysis for
this purpose; others, including [46, 47, 56, 58], use dy-
namic testing. Also, some domain-specific languages
can enable verification of specific classes of SDN pro-
grams [2, 28, 39]. In contrast, the focus of our work is
not verification or finding bugs, but generating fixes.
Automated program repair: Tools for repairing pro-
grams have been developed in several areas. The soft-
ware engineering community has used genetic program-
ming [30], symbolic execution [40], and program synthe-
sis [8] to fix programs; they usually rely on a test suite
or a formal specification to find fixes and sometimes pro-
pose only specific kinds of fixes. In the systems commu-
nity, ClearView [43] mines invariants in programs, corre-

13

lates violations with failures, and generates fixes at run-
time; ConfDiagnoser [60] compares correct and unde-
sired executions to find suspicious predicates in the pro-
gram; and Sidiroglou et al. [48] runs attack vectors on
instrumented applications and then generates fixes au-
tomatically. In databases, ConQueR [50] can refine a
SQL query to make certain tuples appear in, or disappear
from, the output; however, it is restricted to SPJA queries
and cannot handle general controller programs. These
systems primarily rely on heuristics, whereas our pro-
posed approach uses provenance to track causality and
can thus pinpoint specific root causes.

In the networking domain specifically, the closest so-
lutions are NetGen [45] and Hojjat et at. [22], which syn-
thesize changes to an existing network to satisfy a desired
property or to remove incorrect configurations, which are
specified as regular expressions or Horn clauses. While
these tools can generate optimal changes, e.g., the small-
est number of next-hop routing changes, they are de-
signed for repairing the data plane, i.e., a snapshot of the
network configuration at a particular time; our approach
repairs control programs and considers dynamic network
configuration changes triggered by network traffic.
Synthesis: One way to avoid buggy network configura-
tions entirely is to synthesize them from a specification
of the operator’s intent as, e.g., in Genesis [49]. How-
ever, it is unclear whether this approach works well for
complex networks or policies, so having a way to find
and fix bugs in manually written programs is still useful.

7 Conclusion

Network diagnostics is almost a routine for today’s op-
erators. However, most debuggers can only find bugs,
but not suggest a fix. In this paper, we have taken a
step towards better tool support for network repair, us-
ing a novel data structure that we call meta provenance.
Like classic provenance, meta provenance tracks causal-
ity; but it goes beyond data causality and treats the pro-
gram as just another kind of data. Thus, it can be used to
reason about program changes that prevent undesirable
events or create desirable events. While meta provenance
falls short of our (slightly idealistic) goal of an automatic
“Fix it!” button for SDNs, we believe that it does rep-
resent a step in the right direction. As our case studies
show, meta provenance can generate high-quality repairs
for realistic network problems in one minute, with no
help from the human operator.

Acknowledgments: We thank our shepherd Nate Fos-
ter and the anonymous reviewers for their comments
and suggestions. This work was supported in part
by NSF grants CNS-1054229, CNS-1065130, CNS-
1453392, CNS-1513679, and CNS-1513734, as well as
DARPA/I20 contract HR0011-15-C-0098.

References

[1] H. Agrawal and J. R. Horgan. Dynamic program
slicing. In Proc. PLDI, 1990.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jean-
nin, D. Kozen, C. Schlesinger, and D. Walker.
NetKAT: Semantic foundations for networks. In
Proc. POPL, 2014.

[3] A. Bates, D. Tian, K. R. Butler, and T. Moyer.
Trustworthy whole-system provenance for the
Linux kernel. In Proc. USENIX Security, 2015.

[4] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rex-
ford, and D. Walker. An assertion language for de-
bugging SDN applications. In Proc. HotSDN, 2014.

[5] T. Benson, A. Akella, and D. A. Maltz. Network
traffic characteristics of data centers in the wild. In
Proc. IMC, 2010.

[6] P. Buneman, S. Khanna, and T. Wang-Chiew. Why
and where: A characterization of data provenance.
In Proc. ICDT, 2001.

[7] M. Canini, D. Venzano, P. Pere$ini, D. Kosti¢, and
J. Rexford. A NICE way to test openflow applica-
tions. In Proc. NSDI, 2012.

[8] S. Chandra, E. Torlak, S. Barman, and R. Bodik.
Angelic debugging. In Proc. ICSE, 2011.

[9] A. Chapman and H. Jagadish. Why not? In Proc.
SIGMOD, 2009.

[10] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T.

Loo. The Good, the Bad, and the Differences: Bet-

ter Network Diagnostics with Differential Prove-

nance. In Proc. SIGCOMM, 2016.

L. De Moura and N. Bjgrner. Z3: An efficient SMT

solver. In Proc. TACAS, 2008.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.

Wallach. Quire: Lightweight provenance for smart

phone operating systems. In Proc. USENIX Secu-

rity, 2011.

R. Durairajan, J. Sommers, and P. Barford.

Controller-agnostic SDN debugging. In Proc.

CoNEXT, 2014.

[14] D. Erickson. The Beacon OpenFlow controller. In
Proc. HotSDN, 2013.

[15] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In Proc.
NSDI, 2005.

[16] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger,
and B. Maggs. Locating Internet routing instabili-
ties. In Proc. SIGCOMM, 2004.

[17] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-
Sullivan, R. Govindan, R. Mahajan, and T. Mill-
stein. A general approach to network configuration
analysis. In Proc. NSDI, 2015.

[11]

[12]

[13]

14

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

A. Gehani and D. Tariq. SPADE: Support for
provenance auditing in distributed environments. In
Proc. Middleware, 2012.

G. Giannikis, G. Alonso, and D. Kossmann.
SharedDB: Killing one thousand queries with one
stone. In Proc. VLDB, 2012.

Z. Guo, S. McDirmid, M. Yang, L. Zhuang,
P. Zhang, Y. Luo, T. Bergan, M. Musuvathi,
Z. Zhang, and L. Zhou. Failure recovery: When
the cure is worse than the disease. In Proc. HotOS,
2013.

N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres,
and N. McKeown. I know what your packet did
last hop: Using packet histories to troubleshoot net-
works. In Proc. NSDI, 2014.

H. Hojjat, P. Reummer, J. McClurgh, P. Cerny, and
N. Foster. Optimizing Horn solvers for network re-
pair. In Proc. FMCAD, 2016.

E. Katz-Bassett, H. V. Madhyastha, J. P. John,
A. Krishnamurthy, D. Wetherall, and T. Anderson.
Studying black holes in the Internet with Hubble.
In Proc. NSDI, 2008.

P. Kazemian, M. Chang, H. Zeng, G. Varghese,
N. McKeown, and S. Whyte. Real time network
policy checking using header space analysis. In
Proc. NSDI, 2013.

P. Kazemian, G. Varghese, and N. McKeown.
Header space analysis: Static checking for net-
works. In Proc. NSDI, 2012.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying network-wide invari-
ants in real time. In Proc. NSDI, 2013.

D. Kim, J. Nam, J. Song, and S. Kim. Auto-
matic patch generation learned from human-written
patches. In Proc. ICSE, 2013.

H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feam-
ster, and R. Clark. Kinetic: Verifiable dynamic net-
work control. In Proc. NSDI, 2015.

B. Lantz, B. Heller, and N. McKeown. A network
in a laptop: rapid prototyping for software-defined
networks. In Proc. HotNets, 2010.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated pro-
gram repair: Fixing 55 out of 105 bugs for $8 each.
In Proc. ICSE, 2012.

Z.L1i, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
A tool for finding copy-paste and related bugs in
operating system code. In Proc. OSDI, 2004.
Z.Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now?: An empirical study of
bug characteristics in modern open source software.
In Proc. ASID, 2006.

[33] D. Logothetis, S. De, and K. Yocum. Scalable lin-
eage capture for debugging DISC analysis. Techni-
cal Report CSE2012-0990, UCSD, 2012.

[34] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay,
J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Comm. ACM, 52(11):87-95, 2009.

[35] S. Madden, M. Shah, J. M. Hellerstein, and V. Ra-
man. Continuously adaptive continuous queries
over streams. In Proc. SIGMOD, 2002.

[36] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In Proc. SIGCOMM, 2011.

[37] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing software-defined networks.
In Proc. NSDI, 2013.

[38] K.-K. Muniswamy-Reddy, D. A. Holland,
U. Braun, and M. Seltzer. Provenance-aware
storage systems. In Proc. USENIX ATC, 2006.

[39] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Kr-
ishnamurthi. Tierless programming and reason-
ing for software-defined networks. In Proc. NSDI,
2014.

[40] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. SemFix: Program repair via seman-
tic analysis. In Proc. ICSE, 2013.

[41] K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an
understanding of bug fix patterns. Empirical Soft-
ware Engineering, 14(3):286-315, 2009.

[42] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy.

Functional programs that explain their work. In

Proc. ICFP, 2012.

J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,

J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,

S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,

M. D. Ernst, and M. Rinard. Automatically patch-

ing errors in deployed software. In Proc. SOSP,

2009.

RapidNet project web page. http://netdb.

cis.upenn.edu/rapidnet/.

S. Saha, S. Prabhu, and P. Madhusudan. NetGen:

Synthesizing data-plane configurations for network

policies. In Proc. SOSR, 2015.

C. Scott, A. Panda, V. Brajkovic, G. Necula, A. Kr-

ishnamurthy, and S. Shenker. Minimizing faulty

executions of distributed systems. In Proc. NSDI,

2016.

C. Scott, A. Wundsam, B. Raghavan, A. Panda,

A. Or, J. Lai, E. Huang, Z. Liu, A. EI-

Hassany, S. Whitlock, H. Acharya, K. Zarifis, and

S. Shenker. Troubleshooting blackbox SDN control

software with minimal causal sequences. In Proc.

[43]

[44]

[45]

[46]

[47]

15

SIGCOMM, 2014.

[48] S. Sidiroglou and A. D. Keromytis. Countering net-
work worms through automatic patch generation.
Proc. IEEE Security and Privacy, 2005.

[49] K. Subramanian, L. DAntoni, and A. Akella. Gene-
sis: Synthesizing forwarding tables in multi-tenant
networks. In Proc. POPL, 2017.

[50] Q. T. Tran and C.-Y. Chan. How to conquer why-
not questions. In Proc. SIGMOD, 2010.

[51] Trema: Full-Stack OpenFlow Framework in Ruby
and C, 2019. https://trema.github.io/
trema/.

[52] M. Weiser. Program slicing. In Proc. ICSE, 1981.

[53] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T.

Loo. Automated network repair with meta prove-

nance. In Proc. HotNets, 2015.

Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T.

Loo. Automated bug removal for software-defined

networks. Technical Report MS-CIS-17-02, Uni-

versity of Pennsylvania, 2017.

Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and

B. T. Loo. Diagnosing missing events in distributed

systems with negative provenance. In Proc. SIG-

COMM, 2014.

A. Wundsam, D. Levin, S. Seetharaman, and

A. Feldmann. OFRewind: Enabling record and

replay troubleshooting for networks. In Proc.

USENIX ATC, 2011.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and

I. Stoica. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster comput-

ing. In Proc. NSDI, 2012.

H. Zeng, P. Kazemian, G. Varghese, and N. McK-

eown. Automatic test packet generation. In Proc.

CoNEXT, 2012.

H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju,

J. Liu, N. McKeown, and A. Vahdat. Libra: Divide

and conquer to verify forwarding tables in huge net-

works. In Proc. NSDI, 2014.

S. Zhang and M. D. Ernst. Automated diagnosis of

software configuration errors. In Proc. ICSE, 2013.

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T.

Loo, and M. Sherr. Secure network provenance. In

Proc. SOSP, 2011.

[62] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen,
Z. Ives, B. T. Loo, and M. Sherr. Distributed time-
aware provenance. In Proc. VLDB, 2013.

[63] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and
Y. Mao. Efficient querying and maintenance of net-
work provenance at Internet-scale. In Proc. SIG-
MOD, 2010.

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

