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Abstract

Network covert channels are an advanced threat to the secu-

rity of distributed systems. Existing defenses all come at the

cost of performance, so they present significant barriers to

a practical deployment in high-speed networks. We propose

NetWarden, a novel defense whose key design goal is to pre-

serve TCP performance while mitigating covert channels. The

use of programmable data planes makes it possible for Net-

Warden to adapt defenses that were only demonstrated before

as proof of concept, and apply them at linespeed. Moreover,

NetWarden uses a set of performance boosting techniques

to temporarily increase the performance of connections that

have been affected by covert channel mitigation, with the ul-

timate goal of neutralizing the overall performance impact.

NetWarden also uses a fastpath/slowpath architecture to com-

bine the generality of software and the efficiency of hardware

for effective defense. Our evaluation shows that NetWarden

works smoothly with complex applications and workloads,

and that it can mitigate covert timing and storage channels

with little performance disturbance.

1 Introduction

Network covert channels are an advanced class of security

threats to distributed systems. Using covert channels, an at-

tacker can exfiltrate secret information from compromised

machines without raising suspicion from firewalls, which

typically only inspect packet payload. Covert timing chan-

nels [20, 21, 32, 46, 49, 61, 67] modulate packet timing to

leak data, e.g., by using large and small inter-packet delays

(IPDs) to encode ones or zeros in a secret message [21].

Covert storage channels [11, 24, 33, 37, 41, 51, 59], on the

other hand, embed data inside packet headers, e.g., in the TCP

sequence number [24] or ACK [50,51] fields. Covert channels

have been demonstrated to be viable “in the wild” over long

distances [21, 50], and major computer security standards—

including the U.S. TCSEC [26], the European ITSEC [4], and

the International standard Common Criteria [3]—explicitly

require protection against covert channels.

Over the years, researchers have developed a variety

of solutions to detect and mitigate network covert chan-

nels [17, 21, 24, 31, 52, 57]. For instance, in order to detect

timing channels, existing detectors rely on statistical prop-

erties of known-good traffic IPDs to detect anomalous IPD

modulation in a given traffic trace [21, 31]. In order to detect

storage channels, existing detectors analyze packet header

fields that could be used to encode data (e.g., TCP sequence

number [24]) and look for anomalies. Upon detection, a range

of mitigation techniques can then be applied, including buffer-

ing or delaying packets to disrupt the IPD patterns (for timing

channels) [17,31], or setting certain header fields to controlled

values (for storage channels) [24, 52].

It is perhaps unsurprising that no detector—whether for

timing or storage channels—can achieve 100% accuracy. This

is because the timing and header values of network traffic

can be highly non-deterministic, as they depend on subtle

interactions between the hosts and the network. For instance,

a timing channel detector may raise a false alarm if IPDs

suddenly increase, but this may have been caused merely by

congestion. As further examples, the TCP protocol, which

carries 99%+ traffic in modern datacenters [13], leaves many

header values underspecified—e.g., the advertised receive

window size may change dynamically based on the receiver’s

available buffer size, and the ACK number would reflect the

amount of bytes that have been successfully received. A covert

channel could easily hide itself in the permitted behaviors of

TCP by “repurposing” these headers [50].

To compensate for detection inaccuracy, we could be more

aggressive in mitigation—e.g., applying a blanket defense to

all connections that might contain a channel. The obvious

consequence here is performance degradation. Since most

connections may be benign, an aggressive defense may un-

duly penalize legitimate flows. For instance, in order to miti-

gate covert timing channels, we could buffer or delay packets

in a flow to disrupt their IPD patterns. However, this would

increase latency and degrade TCP throughput. In order to miti-

gate covert storage channels, we could reset suspicious header

fields to conservative values (e.g., reducing the receive win-

dow size), but this again would adversely affect the network

transfer performance. Overall, we are faced with a concrete

instance of the more general phenomenon that security comes

at the cost of performance. Unfortunately, performance is a

non-negotiable requirement in modern networks.

Our contribution. The key contribution of this paper is

the design of a novel defense called NetWarden. It is a sys-

tem that can support a range of covert channel defenses in a

performance-preserving manner using a combination of three

key techniques. First, NetWarden leverages programmable

data planes in emerging switch hardware as a practical ba-

sis for covert channel defense. Programmable data planes

can perform per-packet operations over header fields, which

enables NetWarden to inspect and modify headers for stor-

age channel mitigation without stalling the traffic. They can



also support sophisticated data structures directly in switch

hardware, which provides a building block for NetWarden to

precisely monitor each connection and discover problematic

protocol behaviors (e.g., abnormal IPDs, incorrect ACKs).

Leveraging these features, NetWarden adapts a range of de-

fenses that only exist as “proof of concept” today, and applies

them to linespeed traffic with nanoseconds of extra delay.

Second, NetWarden also uses a set of performance boost-

ing techniques to counteract the performance penalty due

to covert channel defense. These techniques are inspired

by results showing that the TCP congestion control mech-

anism can be manipulated to artificially inflate the sending

rate [39]; NetWarden uses similar techniques for a very dif-

ferent goal. Concretely, NetWarden uses ACK boosting and

receive window boosting to increase the sending rate of a con-

nection. ACK boosting creates the illusion of a fast network,

and receive window boosting creates the illusion of a high-

performance receiver, ramping up the sending rate of the data

source. NetWarden also temporarily caches excess packets

locally; should any packets be dropped on their way to the

receiver, NetWarden can still serve the data to the receiver as a

proxy. NetWarden then uses these techniques in combination

with defenses that usually lead to performance degradation,

so that they neutralize each other’s effects.

The third novelty in NetWarden comes from its fastpath/s-

lowpath architecture. Programmable data planes have re-

stricted programming models, so they cannot easily support

all operations needed for covert channel defense. In the Net-

Warden architecture, the hardware fastpath supports a few

key operations that need to run at linespeed, and the software

slowpath supports more expressive, general-purpose opera-

tions that can only be invoked sparingly. Generally speaking,

per-packet operations over constant-size states are pushed

down to the fastpath for efficiency, and batch operations over

growing states are hoisted up to the slowpath for generality.

Having opposite tradeoffs, these two components complement

each other in NetWarden to achieve an effective defense.

We have implemented a hardware prototype of NetWarden

in P4 [9], performed a comprehensive set of evaluation us-

ing realistic traffic traces and applications, and released the

source code in an online repository [7]. We have found that

NetWarden can detect a range of network covert channels

at full linespeed, mitigate them with negligible performance

disturbance, and work smoothly with complex applications.

2 Overview

In this section, we introduce more background on network

covert channels, discuss existing defenses and their limita-

tions, and describe the key design techniques in NetWarden.

2.1 Network covert channels

Covert timing channels. Covert timing channels [21, 31, 45,

49] can exfiltrate secret data by modulating the IPDs of net-

work traffic, e.g., by using large (small) IPDs to encode ones

(zeros). Existing work has shown that these channels are prac-

tical even over a long distance.

Detection. Since the modulated traffic trace would have

different IPD distributions from these of normal traffic, tim-

ing channel detectors look for statistical deviations between

a given IPD distribution and a known-good distribution as

obtained from training data [21, 21, 31, 57]. For instance, sup-

posing that the known-good IPD data exhibits a normal dis-

tribution, a covert channel that uses small and large IPDs

would distort that into a bimodal distribution. A detector

can therefore detect signs of covert timing channels by look-

ing for anomalous IPD distributions, e.g., by performing a

Kolmogorov-Smirnov test [57] over IPD data. In practice,

however, this is only viable in an offline manner—streaming

high-speed traffic through these statistical detectors in real

time would cause enormous overhead.

Mitigation. In principle, mitigating timing channels is easy.

As discussed, we could buffer or inject random delays to net-

work traffic to disrupt the IPD modulation [17]. However, this

is only practical if detectors can precisely pinpoint flows for

delay randomization. Otherwise, false positives in statistical

detectors would cause normal flows to be penalized.

Covert storage channels. The simplest storage channels

(Type-I) can encode data in optional or unused TCP/IP header

fields, such as ToS, Urgent Pointer, and IPID fields [27]. More

advanced channels (Type-II) encode data in header fields

that are essential for protocol correctness, such as the TCP

initial sequence number [24]. A particularly tricky class of

channels (Type-III) can hide themselves in the inherent non-

determinism of network traffic, e.g., embedding data into the

receive window size or ACK fields [50].

Detection. A common strategy for detection is to inspect

all header fields, and look for the existence of header fields

that are rarely used or contain suspicious values. However, the

need to inspect (and potentially modify) all packet headers

already makes most software-based detectors impractical.

Mitigation. Temporarily shelving performance concerns,

Type-I channels can be mitigated by setting optional header

fields to controlled values. Type-II channels can also be mit-

igated using a similar strategy, but the defense needs to be

stateful and apply the same actions to all packets in the flow

to maintain correctness (e.g., adding a fixed offset to all TCP

sequence numbers [24]). Type-III channels are the hardest,

as they exploit the non-determinism in network traffic. To

the best of our knowledge, no effective defenses exist today.

NetWarden is the first defense against these channels, and

it relies on visibility into the network traffic to resolve the

non-determinism as much as possible.

2.2 Requirements for a practical defense

To summarize the above, existing defenses suffer from sev-

eral limitations: the overhead that comes with inspecting all

2



Challenge Technique(s) Section(s)

Real-time header inspection/modification Linespeed per-packet operations on programmable data planes 3.1

Resolving ambiguity when detecting advanced storage channels Per-connection TCP state tracking 3.1

Boosting connection performance ACK boosting + receive window boosting 3.2

Preserving performance despite mitigation The principle of maximized transparency 3.3+3.4

Addressing the restrictions of the hardware programming model Fastpath/slowpath defense architecture 4.1

Computing IPD in real time Leveraging hardware timestamps + linespeed per-packet operations 4.2

Handling growing IPD state IPD intervalization + sketching + software backstore 4.2+4.3

Minimizing fastpath/slowpath interaction Fastpath IPD pre-checks + exact IPD monitoring for selected flows 4.2

Supporting sophisticated statistical tests Fastpath characterizes IPDs, slowpath performs tests 4.2+4.3

Table 1: Key challenges and techniques in the design of NetWarden.

packet headers and/or timestamps in software, the inability to

develop perfect detectors, and the performance penalty due

to mitigation. Below, we dive deeper on these limitations to

distill two key requirements for a practical defense.

Detection: inefficiency. Detecting covert channels requires

per-packet operations, such as examining packet header fields

and computing packet IPDs. At first glance, these opera-

tions do not seem very complicated to perform. However,

the sheer volume and velocity of traffic in modern networks

(e.g., 100Gbps per port, Tbps in aggregate) make even such

operations infeasible unless we have specialized hardware

support. Existing detectors built in general-purpose software

are only demonstrated as proof of concept, working mostly

in offline mode over low-speed or small samples of network

traffic [20, 21, 32, 49].

Platforms that can handle high-speed traffic do exist—the

switch hardware is customized to process traffic at linespeed

with minimal overheads. However, traditional switches can

only perform simple operations such as IP-based packet for-

warding. Covert channel defense requires more sophisticated

operations, such as inspecting/modifying headers and com-

puting/testing IPDs, which go much beyond the capability of

traditional switch hardware.

As a very basic requirement, we need an efficient detector

that can operate over linespeed traffic without stalling it.

Detection: inaccuracy. A detector’s accuracy in terms of

false positive and negative rates is equally important. As we

discussed, statistical detectors inevitably have some level of in-

accuracy due to the inherent ambiguity and non-determinism

of network traffic. Training data might be too small or too

specific, or network conditions may have changed over time.

One could always re-train the detectors with higher-quality or

more data to improve the accuracy, but developing a perfect

statistical detector is always difficult.

Alternatively, we could avoid the need for statistical tests

by eliminating non-determinism. Suppose we could tightly

control a system’s expected behaviors (e.g., buffer size, ker-

nel state, execution timing), then we can precisely detect

with high (or perhaps even perfect!) accuracy when some-

thing goes wrong. Indeed, such software can be built using

system-enforced determinism [16,22,68], which in turn yields

very high accuracy in covert channel detection [22] and mit-

igation [68]. However, systems like these require intrusive

changes to, or complete rewrites of, the OS kernel or the

VMM, rendering a practical deployment quite challenging.

Mitigation: performance penalty. The inaccuracy of detec-

tors does not interact well with the fact that mitigation tech-

niques tend to cause performance penalty, e.g., injecting extra

packet delays. If we could detect with perfect accuracy that

a connection contains a covert channel, then we can aggres-

sively mitigate the channel despite performance penalty, or

perhaps even shut down the connection altogether. However,

with unreliable detectors, this runs into the risk of causing

performance drops of legitimate flows. Unfortunately, when

faced with making tradeoffs between security and perfor-

mance, the balance tends to tip towards the latter. While

this practice could (and should) change over time, having

to choose between security and performance certainly hinders

practical defenses even further.

We thus arrive at our second requirement: to achieve a prac-

tical defense, we either need a perfect detector, or we tolerate

detection inaccuracy by designing mitigation techniques that

preserve performance.

2.3 Key techniques of NetWarden

NetWarden satisfies the above requirements by designing line-

speed covert channel detectors and performance-preserving

mitigation techniques. Table 1 summarizes the new tech-

niques in our design; we elaborate more below.

Technique #1: Use programmable data planes. NetWarden

achieves linespeed detection by leveraging programmable

data planes, which are available in recent switch and NIC

models (e.g., Intel FlexPipe [5], Broadcom Trident 4 [2],

Netronome Agilio [6], and Barefoot Tofino [1]). These hard-

ware provide new features that were originally designed for

better networking, but interestingly, we observe that the same

features match the requirements of covert channel defense

surprisingly well.

Programmable data planes can perform per-packet header

operations at linespeed. The packet processing pipeline in re-

cent switches can be programmed using high-level languages

(e.g., P4 [9]) to specify custom match/action behaviors and

perform header inspections/modifications. This can be used

as a building block for defending against covert storage chan-

nels. Moreover, they have a fine-grained timestamping facility.

This was originally designed for achieving higher network

visibility for diagnosis, but it also provides useful support for

timing channel detection. Finally, they support sophisticated
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Figure 1: NetWarden can be deployed in a ToR switch to

protect a rack of servers hosting sensitive data.

data structures that can sustain linespeed reads and writes

using stateful registers. NetWarden can use this feature for

precise connection monitoring, which further enables targeted

covert channel mitigation.

Technique #2: Performance boosting. Moreover, NetWar-

den specifically designs for a key goal: preserving perfor-

mance. In addition to customizing existing (and performance-

degrading) defenses for programmable data planes, we also

design a set of performance-boosting defenses. Using them

in combination, NetWarden can neutralize the overall perfor-

mance impact of covert channel mitigation. Some of these

defenses, however, go beyond the capability of the switch

hardware, and require a certain level of general-purpose soft-

ware support, leading to our third technique.

Technique #3: Fastpath/slowpath defense. Programmable

data planes have a rather restricted programming model, so

they cannot support all operations that we need for covert

channel defense. For instance, they can provide packet times-

tamps and perform simple IPD range checks, but statistical

tests over IPD distribution are not implementable in hardware.

Therefore, another design principle of NetWarden is to offload

key primitives to the data plane as a fastpath defense, and then

perform the rest of the processing in software slowpath. The

slowpath could either reside in the local switch control plane,

which has general-purpose CPUs and abundant RAM, or in a

co-located server directly connected to the switch [43]. Either

way, the defense is achieved by a division of labor between

the fastpath and the slowpath.

2.4 Scenarios, assumptions, and non-goals

Combining these techniques, NetWarden can be easily de-

ployed on a Top-of-Rack (ToR) switch to protect a rack of

machines (Figure 1), whether in a cloud datacenter or an en-

terprise network, as their settings are similar in many aspects

(e.g., servers organized in racks, served by ToR switches).

It is not necessary that all servers or VMs in a NetWarden-

enabled rack must use its service—since covert channels are

used to exfiltrate secret data, we expect that the protected ma-

chines/VMs are typically sensitive file servers. An operator

could easily configure NetWarden to inspect only a subset of

the traffic (e.g., to/from the sensitive file servers) and directly

forward the rest using regular routing tables.

Assumptions and threat model. Similar as existing work,

we assume that NetWarden has access to known-good IPD

data collected by the administrator to perform statistical tests.

This is a reasonable assumption, because the protected servers

are controlled by the network administrator, and the hosted

services are typically configured by the administrator. Our

threat model is that any layer of the server/VM stack can be

compromised by an attacker, who wants to exfiltrate data to an

external accomplice via network covert channels. Attackers

leaking data explicitly via packet payload are outside our

model. We also assume that the NetWarden device is trusted.

Non-goals. We note that the primary contribution of NetWar-

den is a general system that can support a wide range of exist-

ing and new defenses while preserving network performance.

As such, improving existing techniques for mitigating spe-

cific channels, or designing detection algorithms with higher

accuracy, are not our main focus.

3 Performance-Preserving Defenses

In this section, we first describe how NetWarden can support

a set of basic defenses that do not consider performance impli-

cations. We then characterize how some of them may degrade

performance, and design performance-boosting techniques to

neutralize the overall impact.

3.1 Programmable data plane defenses

We describe a basic set of defenses that NetWarden can sup-

port in the data plane, and explain the hardware features they

rely on. Most of the defenses below are simply adapted from

existing work, with the exception of Type-III storage channel

defenses—they are made possible because NetWarden can

precisely monitor every single packet in every connection.

Type-I storage channel defenses. The simplest of storage

channels embed covert data into optional or unused fields,

such as the TCP reserved bits, optional TCP flags (e.g., URG,

NS, ECE), IPID, and TTL. Existing work has developed de-

terministic and stateless defenses, which can be naturally sup-

ported by NetWarden’s ability to perform linespeed header

inspection and modification. For instance, we can set these

fields to values configured by the network operator—e.g.,

clearing reserved bits, substituting the IPID with a random

number, and setting TTL to 64. For optional TCP flags that

are rarely in use, we can simply clear these bits. To apply

these defenses, the operator needs to ensure that the config-

ured values do not break needed functionality (e.g., the TTL

should be large enough to avoid premature packet drops).

Type-II storage channel defenses. More advanced storage

channels overload header fields that are essential to protocol

correctness, e.g., the TCP sequence number and non-optional

TCP flags (e.g., SYN/ACK/RST/FIN). Statically setting these

fields to fixed values would break TCP semantics; instead,
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we need stateful defenses against these channels. For TCP se-

quence numbers, we could replace the initial sequence number

with another number, record the offset in a table, and consis-

tently apply the same offset to all subsequent packets. For

TCP flags, the defense needs to ensure that SYN packets only

appear during connection establishment, and RST/FIN pack-

ets during teardown. NetWarden can support Type-II defenses

due to its ability to modify headers efficiently and the support

for stateful tables that can sustain linespeed reads/writes.

Type-III storage channel defenses (new). These channels

hide themselves in the inherent non-determinism of protocol

behaviors, so they require more sophisticated defenses. For

instance, the partial ACK channel [50] can encode data in the

offset between the ACK number n and the highest sequence

number N seen, i.e., leaking a secret δ = N −n. The receive

window size channel embeds secret data into the advertised

receive window field in the TCP header; since this value de-

pends on the available buffer size, it may naturally change

over the course of a connection. Defenses against these chan-

nels need to explicitly handle the non-determinism. Here,

programmable data planes play a critical role—NetWarden

can track the state of every connection on a per-packet basis

to resolve the ambiguity as much as possible. This leads to

several new defenses that are unique to NetWarden.

Concretely, NetWarden remembers for each connection the

highest sequence number seen, and detects whether a given

ACK packet acknowledges the full or a partial sequence space.

It then performs ACK aggregation to drop partial ACKs and

wait for the full ACK to arrive (when the host has processed

all received bytes). If the full ACK does not arrive after a

timeout period, NetWarden generates an ACK that acknowl-

edges the highest/full sequence number of the previous batch

of packets. This would mitigate the partial ACK channel with

a tunable amount of extra delay that can be configured by

NetWarden. To mitigate the receive window size channel, Net-

Warden performs receive window sanitization to remove the

least significant bits of rwnd, reducing the number of bits that

can be repurposed by a tunable amount, e.g., rwnd&=0xff00.

Here, ACK aggregation might incur extra delay, and receive

window sanitization might potentially limit the sending win-

dow growth (if the connection happens to be bottlenecked

by the receive window size). Nevertheless, we can config-

ure the amount of delay or window reduction to minimize

performance penalty; when needed, we can always boost the

performance of the affected connections.

Timing channel defenses. Covert timing channel detec-

tors [21,21,31,57] work by measuring the statistical deviation

between a given trace and a known-good trace in terms of

their IPD distributions, e.g., using a Kolmogorov-Smirnov

test [57]. Upon detection, the defense could add random delay

or buffer packets to destroy the IPD modulation. NetWarden

can compute IPDs for all connections in hardware, so the

software only needs to perform statistical tests and IPD mod-

ulation. This is already more efficient than existing detectors

that perform both in software; in Section 4, we will further

optimize this to avoid sending all IPD data to software.

3.2 Performance boosters

The above defenses always make conservative decisions, so

they are always safe. However, some of them could cause per-

formance degradation (discussed later in Section 3.3). Before

delving into the details of the performance analysis, we first

design a set of defenses that can boost performance—they are

essentially “positive twins” of the defenses above. The per-

formance boosters work by manipulating the TCP congestion

control mechanism to present false illusions to the sender and

receiver, somewhat analogous to “performance-enhancing”

proxies [18]. Since TCP tightly couples congestion control

with reliability mechanisms, we need to ensure that these

defenses do not break the reliability of the transfer.

ACK boosting. This technique aims to counteract the effect

of extra delays due to covert channel defense. The primary

source of extra delays is the timing channel defense that dis-

rupts IPD patterns by buffering packets. (ACK aggregation

only results in small amounts of delay, because TCP usually

acknowledges every other packet.) This technique prefetches

data from the sender by generating ACK packets from Net-

Warden on behalf of the actual receiver. This defense can be

further parameterized by δt ∈ [0,RT T ], which is the interval

between the time NetWarden sees a data packet and the time

it generates an ACK. The lower-bound 0 comes from the fact

that NetWarden cannot proactively acknowledge a packet be-

fore it is sent; the upper-bound RTT comes from the fact that,

the actual client ACK arrives an RTT later, so applying ACK

boosting after an RTT would not be useful. This technique

hides the latency for a) the data packet to propagate to the

receiver, b) the receiver to process the data and generate the

real ACK, and c) for the ACK to propagate back to the sender.

In effect, it creates the illusion of a shorter RTT as perceived

by the sender, thus ramping up the sending rate faster.

Receive window boosting. This technique counteracts re-

ceive window sanitization, by enlarging the receive win-

dow size field of a packet to create the illusion of a high-

performance receiver. A simple heuristic, for instance, is to

ensure a similar amount of boosting as the window reduction.

Buffering + proxying. The above two techniques may trig-

ger extra packets. Therefore, NetWarden needs to buffer these

packets temporarily in case the receiver does not have suffi-

cient buffer size to process them, or if these packets would be

lost in transmission; NetWarden serves them to the receiver

from its buffer when needed. The buffered data will be gradu-

ally removed when the actual ACKs from the receiver arrive

at NetWarden. For ACK boosting, the actual ACKs do not

need to be forwarded to the sender, since from the sender’s

perspective, the corresponding data packets have already been

successfully received.
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3.3 Performance implications

Next, we explain the performance implications of these de-

fenses and how we can use them in combination to preserve

performance. At a high level, TCP performance depends on

three factors: a) the amount of available data at the source,

b) the receiver’s ability to ingest incoming data, and c) the

network condition. The TCP sender transmits data in rounds,

dumping one window of packets per round-trip time (RTT).

The sending window size swnd is determined by the minimum

of congestion window size cwnd, which reflects the network

condition, and the receive window size rwnd, which reflects

the receiver’s ability to process new data. The rwnd value can

be directly retrieved from the TCP packet header, as adver-

tised by the receiver. The cwnd value, on the other hand, is

computed by the sender for each RTT based on its congestion

control algorithm. A wide variety of TCP variants exist, and

at the heart of their difference is the congestion signals they

rely on, and their algorithms for adjusting the window size.

• Loss-based congestion control. Classic TCP variants,

such as Reno [14], New Reno [28], and CUBIC [58], respond

to packet loss as signals of congestion. A much simplified

view of New Reno, for instance, is that it initially sets cwnd

to be a small constant (e.g., 10 MSS), and then doubles the

window size for each RTT, resulting in exponentially larger

bursts of packets. After cwnd reaches a certain threshold, the

growth rate would change from exponential to linear, e.g., by

one MSS per RTT. Such window growth would be disrupted

if there is packet loss. Loss is detected when the sender has

received three duplicate ACK packets, or when no ACK pack-

ets have arrived for an extended period of time (i.e., an RTO,

or retransmission timeout). Upon duplicate ACKs, the sender

cuts back its cwnd (e.g., roughly in half). Upon RTO, which

indicates more severe congestion, it cuts back the cwnd more

aggressively (e.g., resetting it to one MSS). In both cases,

TCP retransmits the unacknowledged packets until the arrival

of new ACKs drives it back to its normal course.

Takeaway #1: Preserving sending dynamics. Suppose that

the source has infinite amount of data to send, and that no

packet loss happens, then we can statically determine the TCP

sending dynamics—a series w= w0,w1, · · · ,w∞, where wi is

the cwnd size for the i-th RTT as measured by the number

of MSS-sized packets. It is worth noting that only when the

source runs out of data or packets get dropped would the

sending dynamics change. In particular, the RTT values does

not impact the series w. Therefore, as long as our defenses do

not cause packet drops, as perceived by the sender in the form

of triple duplicate ACKs and RTOs, then we can preserve

the sending dynamics and the number of RTTs it takes to

transfer a file. If a file has N×MSS bytes, then the number

of rounds for the transfer to complete is the smallest k for

which ∑
k
i=0 wi ≥ N holds. Consider a timing channel defense,

where we buffer each burst of packets by a fixed delay ∆ to

destroy IPD modulation. From the sender’s perspective, it

would only perceive a path with an increased latency, i.e.,

RT T+ = RT T +∆, but the dynamics would stay the same.

Takeaway #2: Preserving throughput. However, there is

still a performance penalty due to the “increased” RTT. Al-

though TCP takes the same number of rounds to transfer

the same amount of data, the absolute value of an RTT has

increased due to the mitigation. Assuming this inflates the

RTT by ∆, then overall it would increase the flow completion

time by k×∆, because the throughput for the i-th burst has

decreased from wi
RT T

to wi
RT T+∆

. Therefore, if a defense wants

to preserve the throughput of TCP, then it could either a) en-

sure that (or create the illusion of) ∆ = 0, or b) change the

sending dynamics of TCP by increasing the burst sizes, with

the eventual goal of ensuring wi
RT T

=
wi+wδi
RT T+∆

where wδi
is the

amount of size increase for the i-th burst.

Applying this takeaway to the defenses, if a defense does

not affect the RTT (e.g., Type-I/II defenses), then they already

preserve TCP throughput. If a defense increases RTT, then

we can either ramp up the sending window by generating

boosted ACKs to enlarge each burst size; or, equivalently, we

can ensure that the sender perceives the same RTT before

the defense, e.g., by injecting ACKs exactly one RTT after a

burst is sent. In this way, although the actual receiving time of

packets is still delayed by ∆, the delays per batch are masked

by the parallelized sending. Without mitigation, the sender

sends out the last batch of packets at k×RT T , and they arrive

at the receiver at (k+ 1)×RT T ; with mitigation, the sender

still sends out the last batch at k×RT T , but they arrive at

the receiver at (k+1)×RT T +∆. In other words, the overall

increase of transfer time is only ∆ for the entire transfer.

• Delay-based congestion control. Some TCP variants such

as TCP Vegas [19] and FAST [40] adjust their cwnd based

on delay increase rather than loss, so that they can detect the

onset of congestion early before loss occurs. TCP Vegas, for

instance, keeps track of the lowest RTT seen in a connection,

and continues to measure the RTT experienced by a batch of

packets. It can then compute whether the current sending rate

cwnd/RTT is too high or too low, and decrease or increase the

window accordingly. In other words, if a defense results in

a sudden RTT increase, then TCP Vegas would take this as

a congestion signal, and start to reduce its sending window,

resulting in a different (slower) sending dynamics.

Takeaway #3: Preserving latency. For these TCP variants,

we need to ensure that they do not perceive the extra delay

due to covert channel mitigation. One solution for this is

to use a stable RTT, e.g., as measured in the beginning of

the connection, for all boosted ACKs. This achieves stable

performance, but does not account for potential performance

changes during the connection. A more advanced method is

to measure the RTT continuously, and use the latest measure-

ment results to drive the generation of pre-ACKs, adjusting

to RTT changes in real time.

6



3.4 Principle of maximized transparency

Our final principle for applying these defenses is to make

NetWarden as transparent to the end hosts as possible. Con-

cretely, NetWarden always tracks the RTT of a connection,

and it periodically relays the most recent RTT value to the

sender by generating pre-ACKs at that time. This principle

of “maximized transparency” allows us to apply defenses

without requiring exact knowledge about the TCP variants in

use. By faithfully relaying RTT and loss signals to the sender,

NetWarden also minimizes the amount of “discrepancy” be-

tween the perceived network condition at the sender and the

actual network condition. In other words, NetWarden does

not blindly create the illusion of stable RTTs or low loss, but

rather adjusts to the network condition in real time.

4 The NetWarden System

Next, we describe the fastpath/slowpath architecture of Net-

Warden, and how the two components work with each other

for covert channel mitigation.

4.1 Design principles

The main research question in architecting NetWarden is to

identify the right “division of labor” between the fastpath and

the slowpath, and to carve out a proper boundary between

the two to minimize crosstalk. Overall, our architecture is

centered around three guiding principles.

• Principle #1: Per-packet operations are pushed down to

the fastpath for acceleration, and batch operations are lifted

up to the slowpath for generality.

The data plane hardware is highly-optimized for packet pro-

cessing. Therefore, operations that need to be performed over

every single packet should be offloaded to the fastpath for high

efficiency. Operations invoked over batches of packets, on the

other hand, usually involve loops or other sophisticated pro-

cessing; these go beyond the programming model of the data

plane. Fortunately, batch operations are usually performed at

lower frequency and are not in the critical path for processing,

making them a better fit for the software slowpath.

• Principle #2: Data structures accessed per-packet are im-

plemented in the fastpath. Data structures with constant state

are preferred when possible, and data structures whose state

could grow over time would require backstore support.

The slowpath DRAM cannot sustain per-packet memory

accesses at linespeed. Programmable data plane hardware, on

the other hand, is customized for linespeed memory accesses.

Moreover, it is preferable to use data structures whose state

is small and does not grow over time. If state could grow

in a per-packet manner, the data structure would need to be

co-designed with slowpath support, using an abstraction that

we call “backstores” (Section 4.3). When needed, fastpath

state can be evicted to and fetched back from the slowpath.

• Principle #3: The frequency and volume of communication

between the fastpath and the slowpath should be minimized.

The interconnect between the fastpath and the slowpath has

bandwidth and latency bottlenecks, whether it is a PCIe bus

that connects the switch control and data planes, or an Ether-

net/RDMA [43] cable that connects the switch to an external

server. Therefore, we should design the fastpath/slowpath

interface to minimize crosstalk as much as possible.

Individually, both the fastpath and the slowpath have no-

table limitations, but when taken together, they complement

each other. NetWarden combines their respective advantages

to achieve an effective defense. Applying these principles to

covert channel mitigation results in the following division

of labor: The fastpath performs a) connection monitoring, b)

IPD characterization and pre-checks, and c) storage channel

defense. The slowpath performs a) statistical IPD tests, b) tim-

ing channel defense, and c) performance boosting. Figures 2

illustrates these components; we discuss more below.

4.2 The fastpath defense

• A key primitive for detecting covert channels is a hardware

data structure that monitors every TCP connection.

Connection monitoring. The monitoring table is organized

as a key/value store, where the key is a TCP connection’s flow

ID (i.e., source/destination IPs and ports), and the value is

an index to a set of register arrays. Using this index, we can

further write into or read from stateful registers that record

the TCP state for each direction of this connection, such as

a) the highest sequence number seen, b) the timestamp of the

last outgoing packet, c) receive window size penalty, and d)

an RTT estimate. NetWarden uses a packet’s flow ID to index

this table, and updates a)-c); for each burst, it computes the

timestamp difference between the outgoing and the returning

packets to maintain d) an RTT estimate. For new connections,

NetWarden sends the SYN packets to the control plane for

entry installation. The size of this connection table is pre-

defined at compilation stage to accommodate the maximum

number of connections the operator wants to support; its state

does not grow at runtime.

• NetWarden has several components for detecting covert

timing channels.

IPD computation. Computing IPDs requires per-packet op-

erations, therefore it needs to occur on the fastpath (principle

#1). NetWarden leverages the fine-grained timestamp facility

in the switch, which provides nanosecond granularity times-

tamps when packets enter the processing pipeline. Retrieving

timestamps is akin to accessing registers, which can be per-

formed at linespeed.

Since every packet would produce additional IPD data, this

creates challenges for state maintenance. Directly apply prin-

ciple #2 above would result in a solution that sends all IPD

data to the software slowpath. However, this would create

very high communication overheads between the fastpath and
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Key (4-tuple) Val

10.0.0.2:22:1.2.3.4:80 1

10.0.1.3:80:152.2.0.9:87 2

10.0.0.4:22:150.12.0.1:53 0

10.0.0.4:21:150.12.0.2:52 3

Idx Rwnd Seq Time Precheck Decision

0 32400 23412367 6435876 Alert Mal.

1 24600 91820234 6436112 Pass Benign

2 16400 3817443 6431002 Pass Benign

3 8000 452319034 6440987 Pass Benign

Connection table State variables

Fastpath (data plane)

Slowpath (control plane)

Data packets

Conn. state

Connection Installation

CM1 CM2 CM3 CM4

273 6555 182 381

137 6000 9182 37

32 2048 3817 2

822 1000 4523 42

Count-min sketches

Packet buffersStatistical tests

Type I channel defense

Type II channel defense

Type III channel defense

Update IPD precheck result

Update KS-test result

Exact IPDs for KS-test

Caching data packets for 

timing channel defense

Caching data packets for 

storage channel defense

Storage channel defenses

IPDs

State update

Figure 2: The architecture of the NetWarden system.

the slowpath. NetWarden instead designs four optimization

techniques to reduce state growth as much as possible, and

only invokes the slowpath to monitor connections that might

contain covert timing channels. Specifically, a) IPD interval-

ization prevents state from accumulating per packet, b) IPD

sketching further reduces the state using approximation, c)

IPD pre-checks perform simple range checks in hardware, and

d) we only send exact IPD data to the slowpath if a connection

is labeled by the pre-checks as suspicious.

IPD intervalization. This technique trades off some IPD ac-

curacy to prevent per-packet state growth. Concretely, we can

keep the distribution of the IPDs instead of the exact IPD

values. This can be achieved by, for instance, maintaining k

counters for a fixed numbers of IPD intervals [0, t2), [t2, t3),

· · · , [tk,∞), and incrementing the counter for a particular in-

terval for each computed IPD. These intervals are constant in

state and do not grow over time, which is already a step for-

ward. However, keeping a set of counters for each connection

still requires a significant amount of memory resources.

IPD sketching. We further avoid the need of keeping per-

connection intervals using sketching, which trades off per-

connection granularity for space savings using count-min

sketches (CMSketches) [23]. At a high level, a CMSketch

consists of an array of counters that can be shared by all

connections. Instead of using k counters for each connec-

tion, we could use k CMSketches for all connections. If

an IPD falls into [ti, ti+1), we increment the counter for the

corresponding connection in the i-th sketch. To increment

the counter for a connection, the CMSketch first computes

h CRC hash values of the connection/flow ID, obtaining

i1 =CRC1(conn), · · · , ih =CRCh(conn). It then uses i1-ih as

indexes into the counter array c[·], and increments the re-

spective counters c[i1], · · · ,c[ih]. To retrieve a counter for a

connection, we similarly compute h indexes using the same

CRC functions, and use the minimum value as the estimate:

min{c[i1], · · · ,c[ih]}. Though simple, CMSketches provide

strong accuracy guarantees [23]. CRC hash functions and

counters are supported by the switch hardware, as they are

needed by functions like load balancing. NetWarden leverages

these features to perform IPD sketching entirely in hardware.

IPD pre-checks. NetWarden also performs simple range

checks on the IPD distribution as a first-pass detection. Pe-

riodically (e.g., for every i-th packet in a connection), Net-

Warden queries the IPD distributions from the CMSketches

and compares them with the known-good distribution. These

pre-checks only involve arithmetic comparisons, which are

supported by the switch hardware. If a connection exhibits

a notably abnormal deviation from the expected distribution,

NetWarden would label the connection as suspicious and per-

form the next step for exact IPD monitoring.

Selective exact IPD monitoring. Connections that exceed

the pre-check thresholds are subjected to tighter scrutiny. Net-

Warden performs software-based statistical tests for these

connections in the slowpath using exact IPD data. NetWarden

skips the IPD intervalization and sketching steps for suspi-

cious connections, and directly inserts them into a separate

table instead. For all connections in this table, NetWarden

sends all computed IPDs without any approximation in order

to achieve full fidelity.

• Performance-degrading defenses against storage channels

can be fully supported on the fastpath.

Performance-degrading defenses. These defenses modify

headers of outgoing packets and set them to controlled values.

These operations are needed per packet and they involve con-

stant (Type-II/III) or no (Type-I) state. Per principles #1 and

#2, such defenses are hosted on the fastpath.

4.3 The slowpath defense

• Statistical IPD tests and timing channel mitigation only

need to be performed occasionally over batches of packets,

so NetWarden hosts them in the software slowpath.
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Statistical IPD tests. This component works together with

IPD pre-checks on the fastpath. It receives exact IPDs from

connections identified by the pre-checks as potentially ma-

licious, and performs full-blown statistical tests for timing

channel detection. NetWarden can easily support existing

detectors (e.g., KS test [57]) or new detectors that may be

developed in the future. These statistical detectors measure

the distance between a given IPD distribution and the known-

good distribution, and raise alarms if the distance exceeds

a pre-defined threshold. Upon detection, NetWarden would

apply mitigation techniques to the detected connections.

Timing channel mitigation. This component buffers packets

in suspicious connections identified by the statistical tests to

disrupt the timing modulation. NetWarden temporarily holds

a burst of packets in a cache and sends them out back-to-back

when a timer fires. The buffering time can be configured by

the network administrator.

• All performance boosters require slowpath support, be-

cause they may cause extra data packets to be transmitted.

This in turn requires temporary buffering and proxying.

Backstores. The key abstraction NetWarden provides in the

slowpath is backstores. A backstore provides support for the

defense by mapping a connection to its relevant state and

pointing to functions that need to be applied on this state.

NetWarden has three backstores: two for boosting the per-

formance of connections that have gone through timing and

storage channel mitigation, respectively, and a third for statis-

tical IPD tests. The fastpath and the slowpath communicate

with each other through these backstores by sending network

packets (for packet buffers) and by a hardware mechanism

in the switch called “digests” (for IPD data; see Section 5.1).

The fastpath could send data to the respective backstore by

tagging the packets using the backstore ID (e.g., IPD data

for statistical tests). The slowpath could also inject packets

from the backstore back to the fastpath (e.g., pre-ACKs for

boosting performance).

The first backstore keeps a periodic timer for the connec-

tion, whose value is set to the connection’s estimated RTT; it

also keeps a list of buffered packets. NetWarden uses these

timers to trigger pre-ACKs for maintaining the TCP send-

ing rate. The extra packets that are triggered by the boost-

ing would be appended to the packet buffers. The second

backstore buffers packets for receive window boosting. Here,

enlarging the window size can be performed entirely by the

fastpath. However, this may trigger extra packets that the re-

ceiver is not yet ready to process. NetWarden appends these

packets to the buffer in case they will not be successfully

received. The third backstore is for statistical tests, whose

purpose we have already explained above. NetWarden sup-

ports this using the same backstore abstraction, which maps

connections to IPD data, and includes function pointers to

statistical tests as well as timing channel mitigation.

4.4 Self defense

Principle #3 allows us to systematically understand the condi-

tions under which the fastpath and the slowpath may commu-

nicate. This further enables us to identify traffic patterns that

would create expensive processing in software, and monitor

these patterns to guard against potential attacks. Specifically,

two of NetWarden’s backstores buffer packets for mitigating

timing and storage channels, and the third backstore keeps

IPD data for statistical tests. Apart from these backstores,

NetWarden also invokes the software for inserting new con-

nections to the monitor table (Section 4.2). This leads to three

potential attack vectors we should protect against.

Bufferbloat attacks. An adversary could intentionally cause

a large amount of packet buffering to launch a memory-based

denial-of-service attack to NetWarden. When boosting per-

formance (whether for timing or storage channel defense),

NetWarden needs to buffer the extra packets temporarily. An

attacker can pretend to never receive the data packets, e.g., by

always using old acknowledgment numbers to cause perpet-

ual buffering. To mitigate this, NetWarden monitors its cache

usage to detect signs of attacks. If a connection buffers data

in the backstore excessively without making progress in the

transfer (e.g., packets are never or very slowly acknowledged),

NetWarden can simply shut down the connection using RST

packets.

Excessive IPDs. In the common case, NetWarden maintains

timestamps in sketches; but exact IPDs are exported to the

slowpath if a connection has suspicious patterns. An adver-

sary may also intentionally modulate packets to cause many

timestamps to be sent to the slowpath, resulting in excessive

communications. This would overwhelm the communication

channel between the fastpath and the slowpath, interfering

with the installation of new connections that needs to go

through the same channel. To defend against this, NetWarden

monitors the amount of suspicious connections and ensures

that they are always under a pre-defined threshold; abnormally

large counts would trigger alarms to the network operator and

NetWarden would shut down all subsequent connections la-

beled as suspicious.

Connection table flooding. Aside from the backstores, the

only other operation that would trigger software processing

is new connection insertion. Upon seeing a new connection,

NetWarden sends the new connection information to the con-

trol plane using “digests”, so that the corresponding entry

will be populated in the connection table. An adversary may

maliciously generate many new connections to overwhelm

the control plane and to occupy entries in this connection

table. This is akin to a SYN flooding attack, against which

well-established defenses exist [10]. In addition to relying

on these defenses, NetWarden also rate limits the number

of connections that an IP address can establish, and clears

connections that have not been active for a long time.
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5 Evaluation

Our evaluation of NetWarden is designed to answer four key

research questions: a) how much overhead does NetWarden

introduce? b) how effective is NetWarden in detecting and

mitigating covert channels? c) how well can NetWarden pre-

serve network performance when mitigating channels? and d)

how well can NetWarden support real-world applications?

5.1 Prototype implementation

We have built our NetWarden prototype using ∼5500 lines of

code. The fastpath contains 2500 lines of code in P4, and the

slowpath contains 3000 lines of code in C and Python. Our

prototype can defend against six types of network covert chan-

nels: a) a Type-I storage channel that embeds data into the

IPID field, b) a Type-II storage channel that embeds data into

the TCP sequence number, c) three Type-III storage channels,

including the receiver window size channel, and two vari-

ants of partial ACK channels (one acknowledging sequence

numbers contained in received packets, and another acknowl-

edging any offsets in a packet), and d) covert timing channels.

The fastpath of our prototype runs in a hardware switch.

Our switch has a hardware mechanism called “digests”, which

can compress per-flow data (e.g., IPDs) and send new connec-

tions to the switch control plane for installation. Therefore, we

have implemented the IPD statistical checks and the logic for

installing new connections directly in the switch control plane.

The packet buffer, on the other hand, needs to receive and

re-inject entire packets; in order to provision more bandwidth

for packet buffering, we run this component in a server that is

connected to the switch via a 25Gbps Ethernet cable.1 This

component buffers and proxies packets for covert channel

defense, and it is the overall bottleneck of the system.

5.2 Experimental setup

We have conducted a series of experiments by deploying Net-

Warden to a Wedge 100BF-32X Tofino switch, which has

32× 100Gbps ports and can be programmed in P4. It is con-

figured as a Top-of-Rack switch in our cluster, and one of

these switch ports is connected via a 100Gbps-to-25Gbps

breakout cable to the slowpath server. The server that hosts

sensitive data is also directly connected to the NetWarden

switch, and it communicates with remote clients over emu-

lated wide-area network links with realistic latency, jitter, and

loss rates. All machines in our experiments have a six-core

Intel Xeon E5-2643 CPU, 16 GB RAM, 1 TB hard disk, and

1A recent work [43] shows that a more efficient approach would be to

connect the P4 switch to the server using RDMA, which can achieve 1–2µs la-

tency and 34Gbps throughput over a 40Gbps NIC. Our current prototype uses

libpcap to capture Ethernet packets and is bottlenecked by this library; as a

result, it can only achieve a fraction of the full bandwidth (25Gbps) the NIC

can support. As future work, this cited work could be a drop-in replacement

for our slowpath/fastpath communication as performance optimizations.
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Figure 3: NetWarden incurs extra latency on the order of

nanoseconds, and it achieves linespeed throughput.

they are installed with an Ubuntu 18.04 OS with the default

TCP version (CUBIC). The attacker has full control over the

sensitive server, and can modulate any outgoing packets to

leak secret data. The attacker’s goal is to exfiltrate a 2048-bit

RSA key via covert channels.

Workloads. For a comprehensive evaluation, we have used

three sets of workloads in our experiments. In Sections 5.3–

5.4, we perform a set of microbenchmarks and overhead

evaluations using synthetic traces as a “stress test” of Net-

Warden. In Sections 5.5–5.7, we adopt the widely used

DCTCP workloads [13], which represent the traffic charac-

teristics of a production-scale data center. The same work-

loads have been used in many previous projects for evalua-

tion [12, 29, 34, 36, 38, 48, 55, 64]. In Section 5.8, we further

evaluate NetWarden using a set of real-world applications,

including Apache web server, Node.js, and FTP, to understand

how well NetWarden can support complex systems.

5.3 Microbenchmarks

We start by performing a set of microbenchmarks using syn-

thetic traces that are designed as a “stress test”. This subsec-

tion focuses on measuring the performance of the fastpath,

and the next subsection measures the fastpath/slowpath com-

munication and the slowpath overheads.

Maximum number of connections. The first metric we have

used is the maximum number of connections that NetWarden

can support. Unlike software programs, where increasing the

program size merely results in a somewhat slower program,

P4 programs are mapped to the hardware by the compiler

in an “all-or-nothing” flavor. The P4 compiler ensures that

only programs that fit within the resource constraints would

compile to the switch, and that such programs are guaranteed

to run at linespeed. On the other hand, programs that exceed

the maximum amount of available resources would be re-

jected at compilation time. Therefore, the maximum number

of connections a P4 program can support is determined at

compilation time rather than runtime. To measure this, we

gradually increased the number of connections in NetWar-

den’s connection table, which resulted in larger and larger

program sizes, until the P4 compiler rejected the program due

to insufficient switch resources. We found that the compiler

successfully compiles and maps NetWarden to the switch up

to 200 k connections. This is larger than the maximum num-
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Figure 4: The compute overhead of NetWarden slowpath.

ber of active connections in typical ToR switches in Facebook

frontend clusters (10k-100k) [54].

Latency. We then measured the extra latency of NetWarden,

using a baseline system (“Fwd”) that runs an “empty” P4

program that simply forwards packets without any other pro-

cessing. Figure 3a shows the results. As we can see, Type-

I/II storage channels incur the least amount of overhead, be-

cause their defenses simply perform header modifications or

table lookups. Type-III storage channels have higher over-

head, because they require keeping a larger amount of state

for each connection and updating these states per packet.2

Timing channels have the highest overheads because they

have more complex logic for IPD computation, sketching,

and pre-checks. Nevertheless, compared to the baseline pro-

gram, NetWarden defenses lead to an extra delay from 3-101

nanoseconds. Since the RTT of a typical network path is on

the order of milliseconds, this extra delay is negligible.

Throughput. Despite the slight latency increase, the

pipelined nature of the switch hardware can hide latency per

packet by parallelizing the processing. As Figure 3b shows,

the throughput of NetWarden is stable at about 99.98Gbps

per port across scenarios; the maximum bandwidth per port

is 100Gbps.3 These results are expected, because the P4 com-

piler guarantees that all programs that successfully compile

would run at linespeed.

These microbenchmarks demonstrate that NetWarden can

indeed process linespeed traffic with negligible overheads.

This property alone already sets NetWarden apart from all

existing covert channel defenses that run in software.

5.4 Fastpath/slowpath overheads

Next, we evaluate the overhead of the fastpath/slowpath in-

teraction in the presence of different types of covert traffic,

as well as the compute and memory overheads of the slow-

path for packet caching and performance boosting. As dis-

cussed, the IPD statistical tests and new entry installation are

performed in the switch control plane, and these operations

2PA1 (partial ACK channel variant 1) acknowledges arbitrary offsets in a

packet; PA2 acknowledges exact packet boundaries, so it is more stealthy.
3This stress testing was performed using a hardware traffic generator in

the switch, as software packet generators cannot saturate the switch linespeed.
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Figure 5: The memory overhead of NetWarden slowpath.

happen very occasionally; the packet buffering and proxy-

ing defense resides in the slowpath on the server, which we

have confirmed to be the scalability bottleneck. Therefore, the

following measurements stress test this packet buffer.

We gradually increased the amount of malicious traffic to

trigger more and more processing in the packet buffer un-

til it cannot keep up (i.e., incurs packet loss), and measured

the maximum bandwidth for covert traffic. Since Type-I/II

defenses are performed entirely in the fastpath, they do not

incur any overheads at the slowpath. Also, we found that the

new defenses we proposed in NetWarden against the partial

ACK channels (PA1 and PA2) only lead to very small delay

increase and do not need ACK boosting or slowpath involve-

ment. Therefore, below, we show the results for the covert

timing channel and the receive window size storage channel.

The fastpath/slowpath communication. This experiment

measures the maximum amount of covert traffic the packet

buffer can process. We started by testing whether the bot-

tleneck comes from the slowpath processing speed, or the

fastpath/slowpath communication. Our results show that the

communication, not the slowpath logic itself, is the bottleneck.

Whereas the Ethernet connection has a 25Gbps throughput,

the libpcap packet capture utility was only able to sustain

4.5Gbps traffic without causing packet loss, both for the covert

timing and storage channels. The maximum number of new

flows per second NetWarden can sustain is 1200, which is

larger than the medium flow arrival rate (500 new flows per

second) reported by Facebook for popular services [60]. As

mentioned, existing work [43] has shown that using an RDMA

connection could achieve much higher bandwidth between

the P4 switch and the server (34Gbps over 40Gbps NIC). This

is an interesting optimization that we leave to future work.

Slowpath overheads. We then measured the compute and

memory overheads of the slowpath due to covert channel

defense. Figure 4 shows the amount of CPU overheads at dif-

ferent volumes of covert traffic. As we can see, even with the

maximum volume, NetWarden only uses roughly 3.5 out of

24 available CPU cores. This is good news, because it shows

that the slowpath logic itself is not compute intensive. There-

fore, if we adopt a higher-performance RDMA connection,

NetWarden still has enough CPU resources to scale the slow-

path throughput much further. Similarly, Figure 5 shows how

the size of the packet cache used by NetWarden grows with
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Figure 6: NetWarden can detect and mitigate covert timing

channels effectively. Its detection performance is similar as

the KS test. When there is no defense, the channel decod-

ing rate can achieve almost 100% when the IPD modulation

is heavy (>400µs). When either the baseline defense (KS

test+mitigation) or NetWarden is deployed, the decoding rate

drops to ∼50% (a random guess) for all levels of modulation.

covert traffic volume. In the worst-case scenario, the cache

size is only 2.4MB, which is only a fraction of the available

memory of the slowpath.

5.5 Mitigating covert channels

Next, we evaluate the effectiveness of NetWarden in detect-

ing and mitigating covert channels using the DCTCP trace.

Similar as [22], we assume the external accomplice is very

close to the compromised machine; this gives the attacker

advantage in achieving robust decoding.

Timing channel detection. We measured the effectiveness

of NetWarden’s timing channel detector by launching a set

of flows using the DCTCP workload, where half of the flows

are benign and the other half are modulated by the attacker to

leak data. The amount of modulation ranges from 1µs-100µs.

The baseline detector would send all IPDs to the slowpath,

which then performs the statistical tests. NetWarden, on the

other hand, first performs pre-checks and only invokes the

slowpath for suspicious flows. In both cases, we have adopted

KS test as the statistical detector, as it has been shown to be

effective by existing work [21]. We obtained a ROC (Receiver

Operating Characteristics) curve for each detector by tuning

its detection threshold and measuring its false positive and

true positive rates at different operating points. As we can see

from Figure 6a, NetWarden and the baseline detector have

similar effectiveness in detecting timing channels.

Timing channel mitigation. We then measured the effective-

ness of NetWarden in mitigating timing channels. We have

tested scenarios where the IPD modulation ranges from 5-

800µs. Heavy modulations will make the channel decoding

rate higher, but they are also easier to detect. Light modula-

tions are just the opposite. As shown in Figure 6b, without

any mitigation (“no defense”), the attacker is able to leak data

successfully when the modulated IPDs are larger than 20 µs,

as the remote receiver can decode the covert message with

high success rates (>80%). When the modulation is larger

than 400µs, the decoding rate is almost always 100%. With

either the performance-degrading defense (“Naïve”) or Net-

Warden, we can destroy the channels and render the decoding

close to random guesses (decoding rate: ∼50%).

Covert storage channels. Next, we measured the effective-

ness of NetWarden in defending against storage channels. Our

baseline systems are a) “no defense”, which represents the

scenario where there is no NetWarden defense, and b) naïve

defense, where we set header fields to conservative values.

We found that, without any defense, the attacker can easily

leak secret data via header fields within a few packets. The

channel rates are 16 bits per packet for the IPID channel, 32

bits per flow for the TCP sequence number channel, 11 bits

per packet for the partial ACK channel, and 16 bits per packet

for the receive window size channel. We found that both Net-

Warden and naïve defenses have detected the covert channels,

and that they have eliminated the IPID, TCP sequence num-

ber, and partial ACK channels; for the receive window size

channel, both the naïve defense and NetWarden have reduced

the channel rate to 2 bits per packet.

5.6 Performance preservation

Next, we evaluate NetWarden’s ability to preserve network

performance while mitigating covert channels using the

DCTCP trace. We have used the Linux tc tool to emulate

realistic wide-area network links with jitter and loss rates,

so that we can evaluate the ability of NetWarden to handle

network “noise”. In our experiments, we have tested different

combinations of these parameters. Most of the results pre-

sented below are obtained under an average RTT of 10ms,

path jitter of 1ms, and and loss rate of 0.1%, unless explicitly

stated otherwise. This setup closely mirrors the Service Level

Agreement of a major ISP [8].

Our main metrics are the sending rates and the flow com-

pletion times (FCT) of the TCP flows under a) the “no de-

fense” baseline, b) the performance-degrading countermea-

sures in NetWarden (NetWarden-Naïve), and c) full NetWar-

den with performance boosting (NetWarden-Full). An im-

portant note is that, a truly naïve defense that corresponds

to the state of the art would be to perform the same defense

techniques in software. These defenses would incur very high

overheads just by processing the packets. The defenses la-

beled as “NetWarden-naïve” are already much more powerful

than the actual software solutions—NetWarden enables them

to run in programmable data planes with very low latency.

Covert timing channels. We start by evaluating covert tim-

ing channels. Figure 7a shows the sending rates over time

for a long network transfer; we have enlarged the size of this

flow in order to present the sending rate over a longer period

of time. As we can see, if NetWarden only applies the naïve
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Figure 7: The performance-boosting defenses in NetWarden can preserve the performance of network transfers while mitigating

network covert channels. The naïve defenses in NetWarden—although they are already much more advanced than the state-of-

the-art defenses—still may cause significant performance degradation because they always take conservative countermeasures.

NetWarden enables new defenses against the partial ACK channels due to its precise monitoring capability, and these defenses

can preserve performance. The FCT (flow completion time) results are obtained using the DCTCP workloads; the sending rate

results are obtained by enlarging the size of a representative flow to show the stable sending rate.

defense that simply disrupts timing modulation of covert traf-

fic, this would cause a significant (25%) degradation in the

average sending rate compared to the “no defense” baseline.

In contrast, the performance-boosting techniques in NetWar-

den can achieve a very similar sending rate throughout the

duration of this flow, because it carefully masks the perceived

RTT increase using ACK boosting.

Figure 7b further shows the CDF of the flow completion

times for all tested flows in DCTCP. In aggregate, only apply-

ing the naïve strategies in NetWarden would negatively distort

the performance characteristics of network transfers. The av-

erage FCT across all flows has increased by 9.8% compared

to the “no defense” baseline. In the worse-case scenario, the

FCT increase could be as much as 47.7%. The full version of

NetWarden, on the other hand, causes a 0.06% deviation from

the baseline and a worst-case degradation of 1.8%. These

aggregate FCT results are consistent with what we observed

for individual flows.

Covert storage channels. We then tested the Type-III covert

storage channels.4 Figure 7c shows the sending rate of a long

flow under the defense against the receive window size chan-

nel. Using only the naïve defense, NetWarden always needs

to set the window size to a smaller value, so it incurs a 40%

drop in terms of sending rate as compared to the baseline. The

full NetWarden, on the other hand, can counteract the penalty

4Defenses against Type-I/II storage channels do not affect performance.

by enlarging the window size of certain packets to preserve

performance; its sending rate at stable state is almost always

the same as the baseline. Figure 7e shows the same exper-

iment under the partial ACK channel defense.5 NetWarden

enables the ACK aggregation defense to run at very small

extra latency, so the resulting defenses already achieves a

similar performance as the “no defense” baseline.

Figures 7d and 7f show the CDFs of flow completion times

for all DCTCP flows. The naïve defense in NetWarden against

the receive window size channel increases the average FCT by

28.4%, whereas the full version of NetWarden only increases

the average FCT by 0.4%. For the partial ACK defense, Net-

Warden only increases the FCT by 0.5%.

5.7 TCP variants

The above experiments use the default TCP version in Linux:

CUBIC. Next, we test NetWarden with three more TCP vari-

ants to understand how well NetWarden can support other

variants. We have configured the OS to run TCP Vegas, New

Reno, and Westwood for long transfers, and these variants

mainly differ in their congestion control signals and algo-

rithms. Figures 8a, 8b, and 8c present the sending rates for

each variant under timing channel defense.

TCP Vegas reacts to delay variation, so we have tested

5PA1 and PA2 have similar results, and we show results for the latter.
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Figure 8: NetWarden preserves the sending rates of the native transfers for TCP Vegas, New Reno, and Westwood. We have used

different (RTT, jitter, loss) configurations to test a range of network conditions.

it with high jitter (5ms, 25% of RTT). As we can see from

Figures 8a, the “no defense” baseline fluctuates with time

because of this significant jitter. NetWarden exhibits similar

fluctuations and deviates from the baseline only by 3.3% in

terms of the average sending rate. Note that the fluctuations do

not perfectly align with the baseline—this is expected because

the jitter is random. The naïve defense, on the other hand, has

a very different sending pattern. It has a 31.4% performance

penalty; moreover, interestingly, the extra delay due to the

defense has reduced the relative jitter, so its sending rate is

quite stable and oblivious to the changing network conditions.

New Reno adjusts its sending rate based on packet loss,

and we have tested it with a loss rate of 0.1%. As shown in

Figure 8b, the high-level takeaways are similar as those in

CUBIC. NetWarden experiences a 0.3% performance degra-

dation, but the naïve defense has a penalty of 27.3%.

Westwood, on the other hand, adjusts its congestion win-

dow using the estimated bandwidth (obtained by RTT mea-

surements) upon packet loss, so both delay and loss play a role.

We have tested it using 3ms jitter and 0.1% packet loss rate.

Figure 8c shows that NetWarden performs similarly as the

“no defense” baseline, with 1.8% performance degradation.

The sending rate of naïve defense, on the other hand, fluctu-

ates over time. We found that this is because the extra delay

incurred by the defense has caused occasional full sending

windows, leading to a 31.9% performance degradation.

In summary, NetWarden can consistently preserve the per-

formance of the transfer under each tested TCP variant. In

contrast, the naïve defense cannot adjust to network condi-

tions, and it always leads to performance penalty.

5.8 Complex applications

In the next set of experiments, we evaluate how well NetWar-

den can support complex, real-world applications, including

unmodified versions of Apache HTTP server, Node.js, and

FTP. Our most complex application, the Apache HTTP server,

consists of 1.49 million lines of code. For our experiments,

we have created workloads based on the distributions reported

in Facebook [60] and HP [15]. We have performed uploads

and downloads for more than 1000 times overall, and in all

cases, these applications successfully processed the requests

through NetWarden, showing that NetWarden can support

complex applications smoothly with realistic workloads.

Figure 9 shows the FCT results, as well as the sending rates

for several long transfers (with enlarged file sizes for each

workload to show the stable rates). Different from the DCTCP

trace, these application workloads [15,60] have smaller object

sizes and some file transfers are too short to leak the secret

data (or trigger defenses). For the transfers that did trigger the

covert channel defense, the naïve defense in NetWarden has

caused average FCT degradations of 12.2% (Apache), 12.3%

(Node.js), and 7.8% (FTP); the worst-case degradations are

36.2% (Apache), 16.9% (Node.js), and 30.4% (FTP). In com-

parison, the full version of NetWarden has only caused aver-

age FCT degradations of 0.1% (Apache), 0.1% (Node.js), and

0.3% (FTP), and worst-case degradations of 2.8% (Apache),

2.7% (Node.js), and 3.0% (FTP).

For the partial ACK channel, the new defenses in NetWar-

den can also mitigate the channel while achieving a similar

level of performance (FCT deviation: 0.1%-0.6%). An inter-

esting finding for the receive window size channel is that,

these applications are highly-optimized to process incom-

ing requests as fast as possible; under the request loads our

testbed was able to generate, the receive buffer size did not

become a bottleneck for these applications. Therefore, we can

see that NetWarden-Naïve already achieves a similar level

of performance as the “no defense” baseline (FCT deviation:

0.2%-1.7%). As before, it is worth noting that a truly naïve

defense that reflects the state of the art would need to intercept

and process all packets in software.

For the covert timing channel, we have similarly obtained

ROC curves for NetWarden and the baseline KS test; and

we have measured the decoding success rates under different

levels of timing modulation. Figure 10a shows that NetWar-

den performs similarly as the baseline KS test on the tested

applications. Figures 10b-10d further present, per application,

the effectiveness of the mitigation. In all cases, NetWarden

can disrupt the timing modulation and reduce the channel

decoding nearly to a random guess.
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(h) Timing channel (FCT; Node.js)
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(m) Timing channel (sending rate; FTP)
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(o) Receive window (sending rate; FTP)
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Figure 9: NetWarden can support complex applications and workloads (Apache web server, Node.js server, and FTP) smoothly

with minimal performance disturbance. The high-level takeaways are similar as those in the DCTCP trace.
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Figure 10: NetWarden can detect and mitigate covert timing channels for real-world, complex applications.

5.9 Self defense

Last but not least, we evaluate how well NetWarden can iden-

tify and block malicious traffic that is intended as attacks to

the slowpath.

Bufferbloat attacks. In this attack, the adversary causes a

large amount of buffered packets (e.g., by never acknowledg-

ing their receipt) in the slowpath. In contrast, for normal con-

nections, the buffered packets would be removed by ACKs

roughly one RTT after. Therefore, NetWarden uses a self-

defense technique where it monitors the cache usage for each

connection, and proactively resets connections whose cache

size grows beyond a pre-defined threshold. Figure 11a shows

the slowpath memory usage under such an attack that started

five seconds after the connection was established. As we can

see, without self defense, the adversary can cause the cache

size to grow very quickly. The self defense in NetWarden can

recognize such abnormal patterns and reset this connection.

Excessive IPD attacks. In this attack, the adversary modu-

lates the packet timing to send a large amount of IPD data to

overwhelm the communication channel between the slowpath

and the fastpath. The self defense in NetWarden enforces up-

perbounds on the maximum number and rate of “covert timing

channel” connections; it raises an alarm if too many covert

channels are identified and shuts down the malicious flows.

Figure 11b shows how the attack affects normal user flows at

different attack strengths (as measured by the number of IPDs

per second). Without any defense, the excessive IPDs would

quickly overwhelm the slowpath/fastpath communication; as

a result, normal users cannot establish new connections, be-

cause they need to be sent to the control plane via digests for

entry installation (Section 4.2). A large percentage of them

are dropped when the attack strength is high. Using the self

defense technique, NetWarden can block these excessive IPDs

and protect normal user connection establishments.

Connection table flooding attacks. Here, an adversary can

launch a large number of connections to flood the connection

monitoring table, which can support a maximum of 200 k ac-

tive connections (Section 5.3). The self defense in NetWarden

enforces a rate limit for the maximum number of connections

that an IP address can establish. The NetWarden control plane

also periodically scans this connection table (using a switch

feature that identifies the ages of connection entries) and re-

moves inactive flows. Figure 11c shows that, without defense,

the available space in the connection monitoring table de-

creases quickly; eventually, the connection monitoring table

becomes fully occupied by the attacker’s flows, so that normal

users cannot establish new flows any more. The self defense

can effectively limit the amount of entries that a single user

can occupy.

6 Related Work

Normalizers. Normalizers aim to eliminate ambiguities in

protocol payloads, which can lead to attacks when they

are interpreted inconsistently by intrusion detection systems

and end hosts. Example attacks have been demonstrated

with inconsistent TTL values [35], retransmitted TCP seg-

ments [62, 65, 66], among others. The key approach is to

normalize traffic payload into a deterministic stream of bytes

that is interpreted consistently. However, even deterministic

payload streams can contain covert channels.

Network covert channels. Covert timing [20, 21, 32, 46, 49,

61, 67] and storage [11, 24, 33, 37, 41, 51, 59] channels have

been a longstanding problem in the security community. Ex-

isting work has developed active wardens, which inspect net-

work traffic, identify covert (timing or storage) channels, and

modify the traffic to mitigate them [24,27,47]. However, most

existing wardens are only proof-of-concept systems that are

hard to deploy due to their inefficiency. To the best of our

knowledge, NetWarden is the first practical defense against

network covert channels. A different line of work [44,71] has

discovered the existence of covert channels due to the use of

OpenFlow-based SDN controllers. They have also considered

countermeasures against these covert channels. The scenario

and threat model of NetWarden are closer to those of active

wardens, which aim to detect and mitigate covert channels in

network traffic originating from compromised hosts.

Programmable data planes. Programmable data planes

have been used for a wide variety of networking tasks, such as

network measurement [56,70], monitoring [30,63], and appli-

cation offloading [25]. Only nascent work exists that leverages

programmable data planes for network security [42, 53]. The

closest to our work is a workshop paper [69], but it does not

contain a full system design or evaluation.
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Figure 11: The self defenses in NetWarden can successfully identify malicious traffic patterns and block them.

7 Conclusion

Network covert channels have been a longstanding threat to

systems that host sensitive data. Existing defenses only work

as proof-of-concept solutions, not only because they need to

process every single packet in software, but also because of

the performance drops due to channel mitigation. We have

presented NetWarden, a system that can defend against net-

work covert channels leveraging emerging switch hardware.

It is the first system that can mitigate network covert channels

in high-speed traffic while preserving performance. NetWar-

den achieves this by coupling defenses that degrade perfor-

mance with new defenses that boost performance, neutraliz-

ing its overall performance impact. Our evaluation shows that

NetWarden incurs low overheads, and that it can effectively

mitigate covert timing and storage channels with minimum

performance disturbance.
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