
Poseidon: Mitigating Volumetric DDoS Attacks with
Programmable Switches

Menghao Zhang?, Guanyu Li?, Shicheng Wang?, Chang Liu?, Ang Chen†, Hongxin Hu◦, Guofei Gu‡,
Qi Li?, Mingwei Xu?, Jianping Wu?

?Institute for Network Sciences and Cyberspace & Department of Computer Science and Technology, Tsinghua University
?Beijing National Research Center for Information Science and Technology (BNRist)

†Rice University ◦School of Computing, Clemson University ‡SUCCESS Lab, Texas A&M University

Abstract—Distributed Denial-of-Service (DDoS) attacks have
become a critical threat to the Internet. Due to the increasing
number of vulnerable Internet of Things (IoT) devices, attackers
can easily compromise a large set of nodes and launch high-
volume DDoS attacks from the botnets. State-of-the-art DDoS
defenses, however, have not caught up with the fast develop-
ment of the attacks. Middlebox-based defenses can achieve high
performance with specialized hardware; however, these defenses
incur a high cost, and deploying new defenses typically requires a
device upgrade. On the other hand, software-based defenses are
highly flexible, but software-based packet processing leads to high
performance overheads. In this paper, we propose POSEIDON, a
system that addresses these limitations in today’s DDoS defenses.
It leverages emerging programmable switches, which can be
reconfigured in the field without additional hardware upgrade.
Users of POSEIDON can specify their defense strategies in a
modular fashion in the form of a set of defense primitives; this can
be further customized easily for each network and extended to in-
clude new defenses. POSEIDON then maps the defense primitives
to run on programmable switches—and when necessary, on server
software—for effective defense. When attacks change, POSEIDON
can reconfigure the underlying defense primitives to respond
to the new attack patterns. Evaluations using our prototype
demonstrate that POSEIDON can effectively defend against high-
volume attacks, easily support customization of defense strategies,
and adapt to dynamic attacks with low overheads.

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks have been
a longstanding threat. They have become even more so as
an increasing number of vulnerable Internet of Things (IoT)
devices are connected online. Over the past a few years,
there has been a dramatic increase in the scale and diversity
of DDoS attacks, many of which have frequently made the
headlines [80], [59], [54], [66]. Recent surveys report 400,000
DDoS attacks every month [67], with peak volume reaching
Tbps [5]. These attacks are also evolving quickly, leveraging
new or mixed attack vectors [40], [62], [68], [20].

Today’s defenses against large-scale DDoS attacks, how-
ever, have not caught up. One of the most widely adopted
DDoS defenses is using a traffic scrubbing center, where a

range of defense mechanisms are deployed near the destina-
tions to mitigate DDoS “as-a-service” [17]. However, most
of the devices deployed in the traffic scrubbing centers are
expensive and proprietary hardware appliances, i.e., middle-
boxes [50], [57], [14]. Although these middleboxes deliver
high performance, they tend to be inflexible in terms of
functionality, capacity, and placement locations. As a result,
whenever a new attack vector emerges, its corresponding
defense would require an upgrade of the middleboxes, which
in turn requires rounds of negotiations between customers and
vendors. In addition to this lack of agility, hardware upgrades
also incur significant economic costs.

Recent trends in networking—Software Defined Network-
ing (SDN) and Network Function Virtualization (NFV)—can
mitigate some concerns above by employing software-based
network programmability. For instance, Bohatei [22] lever-
ages NFV to elastically scale the number of defense virtual
machines (VMs) based on attack composition, and it adopts
SDN to steer the suspicious traffic to proper VMs. It also
designs several efficient resource management mechanisms for
scalability, responsiveness, and attack resilience. Despite these
benefits, server-based packet processing incurs additional la-
tency overheads and defense costs. These problems are deeply
rooted in the nature of software-based platforms, where packets
are processed on general-purpose CPUs rather than specialized
network hardware customized to sustain Tbps traffic.

An ideal DDoS traffic scrubbing service should have low
operational and capital cost; and at the same time, it should
have high performance in packet processing and enable agile
deployment of new defenses. These requirements are becoming
more and more urgent with the increasing number of IoT
botnets [3], [83], new variants of DDoS attacks [63], [76],
and the stringent latency demands in today’s network ser-
vices [28], [92]. We observe that the emerging programmable
switches [10] developed in the latest networking technology
can provide an exciting opportunity to bridge this gap. First
off, since programmable switches provide several orders of
magnitude higher throughput than highly-optimized packet
processing software [51], [35], a single switch could poten-
tially replace hundreds of servers, significantly reducing per-
capacity capital cost and operational expense. Moreover, such
switches support stateful packet processing using domain-
specific languages (e.g., P4 [9]), which can process packets
with user-defined logic at terabit line rate in the switch
pipeline. These potential benefits are particularly valuable for
DDoS defense.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24007
www.ndss-symposium.org

While programmable switches are a promising candidate
for DDoS defense, there are three challenges that we must
address. First, we desire a high-level abstraction that can
capture a wide range of DDoS defense policies. However,
different DDoS attacks exploit a variety of protocol- and
system-vulnerabilities. The corresponding DDoS defenses also
need to be rather heterogeneous in order to handle different
types of attacks. Such requirements make it challenging to
describe the defense policies uniformly. Second, although
programmable switches provide several orders of magnitude
higher throughput and lower latency than commodity servers,
they only have restrictive computational models and limited
on-chip resources; this makes it challenging to implement
sophisticated DDoS defenses (e.g., puzzle for HTTP Flood),
and we also need to work within the switch resource limi-
tations. Third, DDoS attacks are dynamic in terms of attack
types and composition. This raises another requirement that the
defense should be adaptive to attack dynamics. It is challenging
to achieve this with high efficiency (i.e., switch resource
utilization) and strong correctness guarantees (i.e., without
interrupting legitimate flows).

To address the challenges above, in this paper, we propose
POSEIDON, a performant, cost-efficient and agile DDoS de-
fense system with programmable switches. First, we provide
a modular policy abstraction for expressing defense policies,
which can capture a wide range of DDoS defenses con-
cisely. Second, we partition the defense primitives to run on
programmable switches—and when necessary, on commodity
servers—according to their properties, and map the high-level
policies to the defense resources with an optimized orchestra-
tion mechanism. Third, we develop an effective runtime man-
agement mechanism to reconfigure POSEIDON for dynamic
defense without interrupting legitimate flows. We stress that
POSEIDON is not intended to provide a new algorithmic or
theoretical contribution to DDoS defense, but rather to provide
a practical and system-level solution leveraging the emerging
programmable switches, which could potentially become a new
platform for future DDoS defenses. Our implementation and
evaluation demonstrate that POSEIDON is able to potentially
defend against ∼Tbps attack traffic, capture a range of defense
policies within tens of lines of code, adapt to policy changes
in seconds, and handle dynamic attacks with negligible over-
heads.

In summary, we make the following contributions:

• We analyze the challenges of the current DDoS de-
fense practices, identify new opportunities provided by
programmable switches (§II), and discuss the design
challenges in integrating programmable switches into
the existing DDoS defense framework (§III).

• We provide a simple and modular abstraction to ex-
press DDoS defense policies, shielding the underlying
hardware complexities from programmers (§IV).

• We develop an optimized resource orchestration mech-
anism to map the high-level policy primitives to the
underlying hardware resources (§V).

• We develop a runtime management mechanism that
can adapt to dynamic attacks with high resource
utilization efficiency and strong correctness guarantees
for legitimate flows (§VI).

• We implement a prototype of POSEIDON, and conduct
extensive experiments to demonstrate the advantages
of POSEIDON (§VII, §VIII).

Finally, we discuss several practical issues (§IX), summarize
related work (§X), and then conclude the paper (§XI).

II. MOTIVATION AND OBSERVATION

In this section, we further motivate the need for advanced
DDoS defenses, and describe why the emergence of pro-
grammable switches is a promising enabler of new DDoS
defense systems.

A. Challenges in DDoS defense

DDoS attacks have become a critical threat to the Internet
services. To defend against DDoS attacks, one of the most
deployed defenses is using a traffic scrubbing center, where a
large cluster of commodity servers or proprietary middleboxes
are organized to filter the malicious traffic. Two essential re-
quirements are defense cost and agility. Unfortunately, today’s
defense systems are lacking in both regards.

First, DDoS defense should be cost-efficient. As DDoS at-
tacks are challenging to eliminate without making fundamental
changes to the Internet architecture, there will always be a “cat-
and-mouse” game between attackers and victims. If one side
could obtain more resources (attack traffic vs. defense devices)
with lower cost, that side will win out. As a well-known fact
in the operational security community, the costs for DDoS
attackers and victims are determined by two separate markets,
namely, botnet markets and defense markets [39]. As a result,
it is important to increase the difficulty to obtain botnets and
to reduce the costs to deploy defense countermeasures. Un-
fortunately, with the massive usage of vulnerable IoT devices
and the emergence of various powerful botnets (e.g., Mirai [3],
[13]), this balance is shifted towards attackers quickly and the
Internet is stricken by storms of larger and larger DDoS attacks
more and more frequently [63], [76], [83]. Although we can
scale up the scrubbing capacity by adding more servers or
proprietary middleboxes, doing so raises the capital cost and
operational complexity, which is not symmetric to the rapid
growth of attack traffic nowadays.

Second, DDoS defense should be agile in terms of new
defense deployment and traffic scrubbing procedure. As dis-
cussed above, DDoS attacks are still evolving rapidly, and
new attack vectors are emerging constantly [40], [62], [68],
[20]. To address a new attack vector, hardware upgrades are
necessary. However, proprietary middleboxes are extremely
hard to upgrade, and even adding simple functionality such
as modifying the statistic granularity is difficult to achieve
without vendor support [57], [14]. Such inflexibility to deploy
new defense mechanisms hinders our ability to quickly respond
to new variants of DDoS attacks. To make matters worse,
today’s vendors usually deploy all known defense counter-
measures into middleboxes to cope with attack dynamics [57],
[14], which results in substantial processing resource waste
and further raises the capital cost. Since it is unlikely to see
all attacks simultaneously, most of the hardware resources
are left unused during DDoS defense. Server-based solutions
provide high programmability to solve the problem above, but
this comes with high latency, high jitter and poor isolation

2

Ingress
Pipeline

Egress
Pipeline

Queueing
&

Buffer

pkt

(a) Switch data plane architecture

Packet Header & Metadata

ACL
M.A.
Table

Conn.
M.A.
Table

Proxy
M.A.
Table

Count
M.A.
Table

IP
Forward

M.A.
Table

(b) Ingress/Egress pipeline architecture

(c) Match-action table architecture

Match Action Action Data

src_ip:10.0.1.0/24 set_next_hop() eport=4

src_ip:192.0.0.0/8, tcp_flag:0x10 validate_cookie() cookie_seed=531

… … …

default drop() -

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 1: Switch data plane architecture.

in packet processing. Software processing adds a latency of
50us to 1ms when handling as little as 100K packets per
second [26], which is unacceptable for many latency-sensitive
services [28], [92] common in today’s data centers. When
software experiences a flash crowd, legitimate traffic served by
the server also experiences increased delays, even unexpected
packet drops [26], [51], which makes scrubbing procedure
challenging even for latency-insensitive services.

B. Opportunities of Programmable Switches

Current trends in SDN have extended the network pro-
grammability to the data plane through programmable switch-
ing ASICs (Application-Specific Integrated Circuits) and
domain-specific languages (e.g., P4 [9]). In programmable
switching ASICs, there are multiple ingress and egress
pipelines, each with multiple ingress and egress ports
(Fig. 1(a)). Packets are processed sequentially by each stage
in a pipeline (Fig. 1(b)). Each stage has its own dedicated
resources, such as registers (for storage and stateful packet
processing), match-action units (for data plane customization),
and stateful ALUs (for computation). Match-action tables
match certain packet fields or metadata and apply actions on
the packet (Fig. 1(c)). Each table modifies packet fields and
generates metadata through which tables can share informa-
tion. Using programmable switching ASICs, programmers can
customize data plane logics with domain-specific languages
like P4. In a P4 program, developers customize packet headers,
build packet processing graphs, and specify entries in match-
action tables. The compiler provided by switch vendors can
compile the programs into binaries and generate interactive
APIs. The binaries specify data plane contexts and are loaded
into switches, while the APIs are used by control plane
applications to interact with the data plane.

The programmable switching ASICs and P4 language make
it possible to implement custom terabit packet processing
devices, as long as the defined logics can be fitted into the
match+action model of switching ASICs. Given the perfor-
mance and flexibility, we briefly highlight some new opportu-
nities that programmable switches bring for DDoS defenses:

TABLE I: Capital cost for different defense hardware.

Device Capability Equipment Cost Power Cost

NSFOCUS
ADS

48Gbps $102,550
($2,136/Gbps)

600Wtts
(12.5Wtts/Gbps)

Commodity
Server

40Gbps $4,400
($110/Gbps)

600Wtts
(15Wtts/Gbps)

Programmable
Switch

3.3Tbps $10,500
($3/Gbps)

450Wtts
(0.1Wtts/Gbps)

Lower unit capital cost. The cost benefit when introduc-
ing programmable switches into DDoS defense framework
includes two parts: equipment cost (in dollars) and power
consumption (in Watts). As shown in TABLE I, according to
our investigation, a typical 48Gbps DDoS defense middlebox
costs about $102,550 and uses 600 Watts [57], a common
server equipped with a 40Gbps NIC costs about $4,400 in
2018 and uses 600 Watts under full load, and a 3.3Tbps
Barefoot Tofino switch costs about $10,500 and has a power
consumption of around 450 Watts [74]. From this table, we
can see that compared with the other two hardware devices,
packet processing with programmable switches saves dollars
by tens of to hundreds of times, which shows their potentials
to reduce the cost for attack traffic scrubbing.

Flexibility to support future attacks. As newer and larger
DDoS attacks emerge, enterprises today have to frequently
purchase more capable hardware appliances and integrate
them into the defense infrastructure. Proprietary middleboxes
cannot easily support new attacks because of their limited
programmability. Software-based defenses (e.g., Bohatei) are
much more programmable, but they can only handle lower-
speed traffic. In contrast, a single programmable switch could
replace the deployment of numerous servers, and it can be
programmed with, domain-specific languages like P4 to enable
new defenses. These features provide higher performance and
flexibility to defend against advanced DDoS attacks.

High packet processing performance. Switching ASICs are
specifically designed and optimized for packet processing
at line rate. They can achieve several orders of magnitude
higher throughput and lower latency compared with highly-
optimized software solutions [34]. Also, switching ASICs can
provide strong performance isolation [51], which is essential
for avoiding increased delays or packet drops for legitimate
traffic during DDoS attacks. Other alternatives, such as Smart
Network Interface Cards (NICs), Field Programmable Gate
Arrays (FPGA) and Network Processing Units (NPUs) cannot
match the performance of switching ASICs [34], [35], [78].
Such performance characteristics make switching ASICs a
desirable platform for high-throughput and low-latency DDoS
defenses, as the resulting defenses are a good match for
the requirements of latency-sensitive services in today’s data
centers.

III. SYSTEM OVERVIEW

In this section, we describe our defense scenario, workflow,
and design challenges in more detail.

A. Problem Scope

Deployment Scenario: Our scenario focuses on the DDoS
defense in traffic scrubbing centers, where an ISP or cloud net-

3

work provides DDoS defenses “as-a-service” for its customers,
or builds its own traffic scrubbing center to mitigate DDoS
attacks. As real-world examples, today’s ISPs have already
started to provide such value-added commercial services (e.g.,
AT&T [11]) to customers, and numerous cloud networks
also have such scrubbing centers (e.g., Google, Alibaba, and
Tencent [15], [16]). Of course, a customer network could also
build a scrubbing center of its own. If desired, the ISP or cloud
network could also allow its customers to deploy POSEIDON
DDoS defense polices for their own traffic (e.g., the customer
would monitor and scrub potential attack traffic to itself [61]).
The scenario we focus on is complementary to CDN-based
DDoS defenses, where users can offload their content to CDNs
(Content Delivery Networks), and it can indeed co-exist with
other defenses. For instances, before the attack traffic arrives
at CDNs, it may be filtered out by some scrubbing center that
sits in front of them.

Threat Model: We focus on volumetric DDoS attacks against
victim destinations. We assume that attackers have a fixed
budget to buy or rent a large number of bots in a botnet
(e.g., a collection of compromised IoT devices), and aim
to exhaust the bandwidth or computation resources of the
victims [77], [79]. Attackers can choose a composition from
a set of candidate DDoS attacks (e.g., Smurf attacks, SYN
flood attacks, ICMP/UDP flood attacks, Elephant flow attacks,
DNS reflection attacks, NTP amplification attacks, HTTP flood
attacks, Slowloris attacks, and etc.) and launch multiple DDoS
attacks simultaneously. During the attack, attackers can change
the types and the mix of attacks dynamically.

B. POSEIDON Workflow and Challenges

We illustrate the general workflow of a classic DDoS de-
fense, i.e., attack detection, traffic steering, policy declaration,
and attack mitigation. First, the ISP or cloud network uses
some in-band or out-of-band anomaly detection techniques
to determine whether a customer is under attacks [7], [52].
The detection algorithms are out-of-scope for this paper. We
assume that the detection procedure will produce some coarse-
grained characterizations of the suspicious traffic, i.e., the
attack types, the estimated volume of each type of suspicious
traffic, and the suspicious IP prefixes. Alternatively, such
information could also be obtained from the victim customers.
Note that this is a common practice for many ISPs today [22].
In our scenarios, the estimation for attack traffic does not
need to be very precise, and it is only used to help steer
the suspicious traffic, to use the right defense polices, and
to allocate the switch resources. The monitor primitives in
the POSEIDON system will further obtain more fine-grained
detection results for concrete attack responses. Second, the
suspicious traffic is steered to the traffic scrubbing center, and
operators specify the needed POSEIDON policies containing the
estimated information to mitigate the attack. Third, POSEIDON
orchestrates and manages the resource of the scrubbing center,
including programmable switches and commodity servers, to
coordinate them together for attack mitigation.

Fig. 2 shows this workflow. POSEIDON takes the DDoS
defense policies as input, and maps the policies to the available
pool of resources (i.e., switches and servers). Users of POSEI-
DON do not need to understand the details of the underlying
resources; instead, they only need to focus on choosing the set

Resource
Orchestration

Runtime
Management

Attack traffic

Legitimate traffic Legitimate
traffic

Control Plane
Infrastructure

Defense Policies

ServerServerServer

Fig. 2: The overall architecture of POSEIDON.

of primitives for attack mitigation. In order to achieve this goal,
POSEIDON needs to address the following three challenges.

Simple, modular policy representation (§IV): Of course,
one could always directly write the defense programs in P4 or
C/C++, but this would be rather low-level and error-prone [4],
[72]. As a result, we desire a simple and modular way to
specify the defense policies. However, different DDoS attacks
target different protocol- and system-vulnerabilities, so the de-
fenses should necessarily differ in their working mechanisms.
For example, a SYN flooding attack exploits the TCP three-
way handshake to consume resources on the targeted server
and render it unresponsive, a DNS reflection attack exploits
vulnerabilities in DNS servers to turn initially small queries
into much larger payloads to overwhelm victims, and some
new IoT-based DDoS attacks exploit the vulnerabilities of IoT
protocols to conduct attacks [64]. The heterogeneity in DDoS
attacks requires heterogeneous DDoS defense mechanisms,
which make it challenging to design a simple and modular
representation to capture the defense policies.

Optimized, efficient defense orchestration (§V): Although
programmable switches could achieve several orders of mag-
nitude higher throughput and lower latency than commodity
servers, they only have limited on-chip resources and re-
strictive computational models [10], [72], [74], [75], [44].
Therefore, it is necessary for us to utilize the resources on
the switching ASICs as efficiently as possible. Moreover,
some defenses may even go beyond the computational model
of the switching ASICs, which is impossible to be fully
implemented on the switches. The aforementioned points make
it challenging to fully explore the potential of switching ASICs
to mitigate multi-vectored DDoS attacks.

Handling dynamic attacks at runtime (§VI): Advanced
DDoS attacks are usually dynamic, where attackers change its
attack composition and the volume of each attack type over
time. This requires that POSEIDON should be adaptive to the
attack dynamics, i.e., POSEIDON should change the deployed
defenses based on the attacks. However, some DDoS defense
mechanisms (e.g., SYN proxy) are stateful, and naı̈vely recom-
piling the P4 programs for deployment would lead to state loss
and flow interruption. A strawman solution is to update the
defenses when all flow states are no longer needed. However,
since some flows could be long-lived, it may be difficult
to identify a single point in time for this update. During
this unbound period, the precious resources on programmable
switches cannot be used to scrub the attack traffic, which is a
waste of precious and high-density defense resources. Achiev-

4

Expression
E ::= v | h | M (~v) | E � E
Predicate
P ::= E ◦ E | P&P | P |P | ¬P
Monitor
M ::= count(P ,~h, every) | aggr(P ,~h, every)
Action
A ::= drop | pass | log | rlimit | sproxy | puzzle
Policy
C ::= A | if P : C else : C | (C |C)

Fig. 3: The syntax for expressing POSEIDON defense
policies. � describes calculative operators and ◦ describes

logical operators.

ing an efficient (i.e., switch ASICs utilization) and correct
(i.e., without legitimate flow interruption) DDoS defense with
programmable switching ASICs is another challenge.

IV. EXPRESSING DEFENSE POLICIES

POSEIDON presents a high-level interface to programmers
for developing DDoS defense policies. Instead of exposing
low-level interfaces in P4 or C/C++, POSEIDON modularizes
a set of defense primitives that can be shared across and
composed by different policies. Users can also extend this set
of primitives easily.

A. The POSEIDON Policy Language

At first glance, DDoS attacks may seem very different
in nature, as they exploit different attack vectors and require
different defense strategies. However, we observe that there
are key components common to many volumetric attacks—
detecting an attack typically requires a set of tests on packet
headers or statistics, and responding to a detected attack
eventually boils down to specific actions taken on network
packets. Therefore, it should be feasible to capture these
common components in a high-level abstraction.

In particular, we believe that the Frenetic (NetCore) family
of SDN programming languages [53], [2], [4] provides a good
starting point due to their high modularity [53]. A policy in
these languages consists of a series of match/action statements
over a selected set of packet headers. Since these languages are
primarily targeted at specifying packet forwarding behaviors,
we introduce several customizations for DDoS defense based
on a prototype language named NetCore [53]. A summary of
POSEIDON’s syntax is shown in Fig. 3.

Similar as NetCore, expressions could be formed over value
(v), header fields (h) or monitor instances (M (~v)). Multiple
expressions can also be composed with different calculative
operators together (E � E). predicates are constructed over
expressions with diverse logical operators (E ◦ E), which
are used by policies to perform tests and decide on actions.
There are also differences from NetCore, however. We allow
the definition of attack detection logic using monitors, which
collect aggregate statistics over certain header fields and use
them as indicators of specific attacks. The defense actions also
go beyond forwarding packets to switch ports—they might, for
instance, record needed states across packets (e.g., for SYN
flooding defense), invoke more sophisticated actions supported
in software (e.g., client puzzles), or combine multiple actions

together for mixed-vector attacks. In the following discussion,
we mainly illustrate several distinct primitives from NetCore.

First, the detection of DDoS attacks typically relies on
traffic statistics instead of per-packet information. Thus, we
introduce our monitor abstractions. Intuitively, a monitor prim-
itive should aggregate some certain packets during a period
into a block of memory, with a certain statistic granularity. The
statistic granularity is a set of header fields that collectively de-
fines the granularity for monitoring. For instance, some attacks
may be detected using statistics over source IP addresses (e.g.,
UDP flood), whereas others may need a finer granularity (e.g.,
detecting elephant flows). We provide two monitor elements
here, count and aggr. As its name indicates, count(P ,~h, every)
selects the packets that satisfy the predicate P , and counts
the number of the packets with granularity ~h every every
seconds. For example, count(pkt.tcp.flag == SYN, [ip.src], 5)
denotes counting all the TCP SYN packets for each
source IP address every 5 seconds. As another example,
count(pkt.udp.dport == 53, [ip.src], 3600) would monitor the
source addresses that have sent DNS requests. The period every
is set as one hour so that the DNS replies that reply too late is
regarded as invalid. Different from count, which focuses on the
number of elements, aggr(P ,~h, every) increments the counter
with packet sizes. It can be used as a powerful primitive to
collect statistics over the number of bytes for certain packets.
For instance, aggr(True, [ip.src], 5) would count the size of all
the packets for each source IP address every 5 seconds.

Second, primitive actions are central building blocks for
DDoS response: an action receives a set of packets and
conducts the corresponding processing for these packets. We
observe that although DDoS defenses are heterogeneous for
different attacks, the defense actions have many similarities,
and there is only a limited set of basic building blocks.
Once a malicious action is detected, some defense mechanisms
simply drop the packets with a specific predicate (drop). While
for benign identifies (e.g., source IP address), most defense
mechanisms let their packets pass (pass). Rate limiter (rlimit)
rate-limits the packets that satisfy certain conditions. And for
most TCP-related DDoS attacks, SYN proxy (sproxy) is a
powerful defense element, and puzzle is effective for HTTP-
based flood attacks. Meanwhile, for many attacks, operators
may have the need to log certain packets for forensic use,
so we also introduce a log primitive. Importantly, the set of
building blocks presented here is not meant to be an exhaustive
list—programmers can easily add new ones to the library of
defense primitives using our policy language (more discussion
in §IX).

Finally, for policy declaration, POSEIDON is very similar to
NetCore/NetKAT family of languages, which allows branches
(if . . . else . . .) and policy composition (|). Users can include
conditional branches that invoke different defense primitives
based on certain conditions. They can also compose multiple
policies together using the composition operator |. We will
illustrate these primitives with concrete examples in the next
subsection.

B. Policies by Examples

Now, we describe DDoS defense policies for six typ-
ical DDoS attacks, where the first two are adapted from

5

1 syn_count = count(pkt.tcp.flag == SYN, [ip.src], 5)
2 ack_count = count(pkt.tcp.flag == ACK, [ip.src], 5)
3
4 if syn_count([pkt.ip.src]) - ack_count([pkt.ip.src]) > T:
5 drop
6 else if syn_count([pkt.ip.src]) == ack_count([pkt.ip.src]):
7 pass
8 else:
9 sproxy

Fig. 4: SYN flood defense.

1 dns_query = count(pkt.tcp.dport == 53, [ip.src], 3600)
2
3 if pkt.tcp.sport == 53:
4 if dns_query([pkt.ip.dst]) > 0:
5 pass
6 else:
7 drop

Fig. 5: DNS amplification defense.

Bohatei [22], and the third is a new policy supported by
POSEIDON. Please refer to Appendix A for the other three
defense examples. Our goal here is not to develop new defense
mechanisms, but to illustrate the flexibility and simplicity
of POSEIDON policy language in dealing with a diverse set
of DDoS attacks. Once the characteristics of one attack are
identified, operators can easily and simply express the defense
policy for the attack. It is worth mentioning that our primitives
do not have to be purely implemented in the programmable
switches, while some sophisticated primitives may need the
assistance of the servers.

SYN flood attack. As shown in Fig. 4, we first track the
number of open TCP sessions for each source IP every 5
seconds, which is implemented by counting SYNs and ACKs
with the count primitive (first 2 lines). Based on the statistics
of the previous period, if a source IP has much more SYNs
than ACKs, we mark its future packets as attacks and drop
them (line 4, line 5). If a source IP has no asymmetry between
SYNs and ACKs, we mark it as benign and let its packets pass
(line 6, line 7). Otherwise, we mark this as a gray area and
send packets from these source IPs to a sproxy defense module
(line 8 and line 9).

DNS amplification. In DNS amplification attacks, attackers
use numerous spoofed protected servers’ IPs to request many
DNS queries that result in a large number of answers to
overwhelm the protected servers’ bandwidth. To defend against
this kind of attacks, as shown in Fig. 5, we first track all the
protected servers’ DNS queries (line 1). Only the incoming
DNS replies which have been queried by protected servers
within an hour are allowed to enter the network (lines 3–7).

HTTP flood attack. In HTTP flood attacks, each attacker
generates a large number of legitimate HTTP requests and
sends them to victim servers, which can easily overload the
web servers and make the service unavailable. To mitigate this
kind of attack, as illustrated in Fig. 6, a simple approach is to
track the number of HTTP requests for each source IP (line
1). If the number of client sessions exceeds a threshold (T)
during the previous period, adopt the puzzle mechanism for
this source IP (lines 3–4). Otherwise, forward the packets from
this source IP as normal (lines 5–6). Note that the puzzle
defense cannot be implemented within the programmable
switch. Rather, the switch redirects the flow to an HTTP server
that implements the defense (e.g., a CAPTCHA). We discuss
puzzle defense further in §V-A.

1 http_get_counter = count(pkt.http == GET, [ip.src], 5)
2
3 if http_get_counter([pkt.ip.src]) >= T:
4 puzzle
5 else:
6 pass

Fig. 6: HTTP flood defense.

From these examples and programs, we can see that PO-
SEIDON policy language is easy to understand and expressive
enough to convey operators’ defense intents.

V. ORCHESTRATING THE DEFENSE

POSEIDON has a resource orchestration component that
analyzes each primitive in a given policy, and partitions the
needed functions across the switches and the servers for
effective defense. At a high level, POSEIDON first constructs a
directed graph of defense primitives, and computes an optimal
placement of the graph by solving several sets of constraints.

A. Analysis of Defense Primitives

As described before, POSEIDON has three classes of de-
fense primitives: a) monitors collect statistics over the network
traffic (e.g., lines 1–2 in Fig. 4), b) actions specify the defense
decisions taken on a particular kind of packets (e.g., lines 5, 7,
and 9 in Fig. 4), and c) branches express the control flow of
the defense (e.g., lines 4, 6, and 8 in Fig. 4). Before delving
into the details about primitive placement, we describe how
POSEIDON supports each kind of primitives, and how much
resource each primitive requires on the switch and/or server.
TABLE II contains a summary.

Monitors. The detection of DDoS attacks relies on collecting
traffic statistics over packet headers. The monitors in PO-
SEIDON can be fully implemented in the switches for these
purposes. Under the hood, POSEIDON implements the monitors
using sketches [88], which are resource-efficient data structures
that can approximate the needed statistics with well-known
error bounds. Instead of storing precise per-flow information,
a sketch uses hash functions to compute several indexes of a
flow ID, and then accesses the corresponding values in register
arrays. All these operations can be performed at line rate. A
sketch requires two match-action tables, one for hashing a key
(e.g., a flow ID) to compute the indexes to the register arrays,
and another for updating the values in the arrays using stateful
ALUs. Since the index is computed by hashing the packet
header fields, it is unavoidable that different packet headers
may be mapped to the same index, resulting in collisions.
Nevertheless, it has been shown that the resulting error bound
is small enough to be practical for DDoS defense [27], [43].

Specifically, our count(P ,~h, every) and aggr(P ,~h, every)
primitives are implemented using a) count-min sketches [18] as
the primary data structure, and b) a match-action table to select
packets based on the given predicate P . To maintain timing-
related information for count and aggr, similar as NetHCF [6],
we use two register arrays in the switch SRAM. One array C
records information about the current time period, and another
P stores information about the most recent period in the past.
When packets come in, the first array is updated to collect the
statistics; at the end of a period, we copy the content of C to
P using the switch control plane.

6

TABLE II: Implementation details and resource utilization of POSEIDON primitives.

Primitives Switch Component Switch Resource Usage Server Component
monitors
count(P ,~h, every) match-action entry +

count-min sketch
stages: 2, hash functions: dlog1/2 δe, stateful ALUs: 6, SRAM: for the φ biggest
elements in a set, in order to achieve a relative error bound of ε with probability δ,
usage =

64dlog1/2 δe
εφ

N/A

aggr(P ,~h, every) match-action entry +
count-min sketch

stages: 2, hash functions: dlog1/2 δe, stateful ALUs: 6, SRAM: for the φ biggest
elements in a set, in order to achieve a relative error bound of ε with probability δ,
usage =

64dlog1/2 δe
εφ

N/A

actions
drop flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
pass flow entry stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A
rlimit meter + flow entry stages: 3, hash functions: 1, stateful ALUs: 0, SRAM: in order to achieve a false

positive rate of ε, usage = 8n
ln(1/(1−ε))

N/A

sproxy handshake proxy +
session relay

stages: 3, hash functions: 2, stateful ALUs: 4, SRAM: in order to achieve a false
positive rate of ε, usage = 32n

ln(1/(1−ε))

N/A

puzzle - - CAPTCHA
log selecting, grouping stages: 3, hash functions: 2, stateful ALUs: 2, SRAM: in order to achieve a false

positive rate of ε, usage = 32n
ln(1/(1−ε))

aggregation

branches
if . . . else . . . tag-based match action stages: 1, hash functions: 0, stateful ALUs: 0, SRAM: negligible N/A

Actions. POSEIDON has a set of defense primitives that take
actions on network traffic based on the statistical results.
POSEIDON’s framework is general enough to capture a range
of defense actions, including a) the class of defenses that can
be supported entirely in the switch (“switch only”), b) the
class of defenses that require some level of server involvement
(“switch assisted”), and c) the class of defenses that needs to
run entirely on the servers (“server only”). Defenses in switch-
only class can fit into the programming model of the switching
ASIC. The current version of POSEIDON supports drop, pass—
which can be mapped to the corresponding match-action table
entries easily, as well as rlimit and sproxy—which are more
complex and require more resources in the switch pipeline;
this set can be easily extended to include more defenses.

Switch-assisted defenses need to be carefully partitioned
into two separate components: a switch component that is
offloaded to hardware, and a server component that runs in
software. POSEIDON aims to carve out as much as logic
possible for hardware offloading, since this would translate to
higher performance. For instance, consider the log primitive
with three steps. It first selects the kind of traffic to be logged,
then groups the packets of interest based on certain keys
(e.g., flow IDs), and finally aggregates the results for logging.
Similar as Marple [55] and *Flow [75], POSEIDON uses match-
action tables to implement the select step, uses stateful registers
to group the results, and performs the aggregation step on
servers since it involves more complex logic. In this example,
the servers only need to do minimal amount of work, since the
switch component has filtered out most of the irrelevant data.

Server-only defenses require sophisticated actions that go
beyond the capability of the switching ASIC, such as those that
require complex arithmetic operations, loops, or application-
layer processing. Offloading these operations to the switch
is not possible at least with today’s switching hardware. A
representative case is puzzle [37], [82], [38], which is often
used to defend against HTTP-based flood. Puzzle forces each
client to solve a cryptographic puzzle (e.g., graphical puzzles)
for each request before the server provides its resources,
thereby imposing a large computational task on attackers bent

on generating legitimate service requests to consume server
resources. We use CAPTCHA as an implementation of puzzle.

Policy declaration. First, DDoS defense usually takes different
actions for different types of traffic, and this can be supported
using branches to specify the control flow. An if . . . else . . .
branch could be implemented as a tag-based match-action
table, which classifies incoming packets that match different
predicates using different tags. For example, in Fig. 4, we
generate different tags for packets that satisfy different pred-
icates, e.g., tags 1, 2, and 3 for the predicates in lines 4, 6,
and 8, respectively. Each branch is then mapped into a tag-
based match-action entry, and the following code block would
identify the packets based on their tags. Second, composition
operator | are very useful when operators want to compose
multiple policies, which allows operators to apply different
polices to different packet group together. Currently, if two
policies have different actions for the same packet, we simply
adopt the stricter one. For example, if policy 1 would like to
drop the incoming packet while policy 2 lets it pass, we will
drop it finally.

Flow affinity. In addition, some defenses need to be state-
ful and have bidirectional semantics. For example, sproxy
requires that the inbound and outbound traffic of the same
flow are always steered to the same instance; similarly, DNS
requests and responses should also be processed by the same
instance. To achieve this, we design our hash function as
hash1(pkt.src) + hash2(pkt.dst), in which way exchanging
source and destination fields does not affect the final hash
value.

B. Placing Defense Primitives

Next, we describe the algorithm that POSEIDON uses to
place the various defense primitives to the network.

Similar as [36], [72], POSEIDON extracts a graph structure
from the defense policy, where the nodes are the defense
primitives and the edges represent the traffic flow. Note,
however, each defense primitive has self-contained state, and
for modularity, it does not expose internal states to other

7

syn_count ack_count

sproxy

drop

pass

unknown

attack

benign

① ②

③

④

⑤
Fig. 7: SYN flood defense graph.

primitives explicitly. Therefore, POSEIDON uses a topological
sort to transform the graph into an ordered list of primitives.
For instance, as shown in Fig. 7, the graph for syn flood
defense could be transformed into a list of nodes 1© 2© 3© 4© 5©.
When there are multiple defenses that need to be deployed in
conjunction, POSEIDON would obtain a list of primitives for
each. It then computes the resource usage of the primitives
based on the analysis in §V-A, and uses the information for
placement.

POSEIDON then places the lists of nodes into the network,
including programmable switches and commodity servers.
Since programmable switches can achieve orders of magnitude
higher performance, our goal for our placement is to maximize
the amount of processing offloaded to the switches. Of course,
the resource limitations of the switches pose constraints to
our problem, most prominently in terms of the number of
stages in a switch, and the amount of SRAM (for registers)
and stateful ALUs per stage. Our placement algorithm takes
these constraints into account while optimizing for maximal
offloading.

To reduce the switch-server traffic transfer, the placement
algorithm partitions each list once and only once—the first
part is offloaded to the switch and the second to the servers. To
mitigate the resource limitations of a single switch, POSEIDON
can also leverage resources from multiple switches for process-
ing. Concretely, several switches can be organized together
sequentially, which can provide more processing stages and
memory resources as traffic flows through. This effectively
abstracts a path that consists of multiple switches into a much
larger switch—for instance, the number of usable stages has
increased to S =

∑
switch Numstage. As future work, we are

also planning to support parallelism across multiple paths. The
sequential and parallel placement can also be used together to
achieve even higher performance. POSEIDON then formulates
the placement problem as an Integer Linear Program (ILP).

Input. Assume that POSEIDON needs to place P defense
programs, and that each program has Np nodes. We further
assume that the estimated volume of each type of attacks is
available to POSEIDON with a certain expected error probabil-
ity. Using the above information, we can compute the switch
resources each defense primitive would require. We use the
following notations for the various types of resources: for the
n-th node of program p, it uses a stage count of STAGEp,n,
SRAM in the tth stage SRAMp,n,t, and the stateful ALUs
in the tth stage ACTIONp,n,t (1 ≤ t ≤ STAGEp,n).
Furthermore, the amount of traffic after passing through this
node is Tp,n. Every node in the processing would reduce the
traffic volume, so that the amount of traffic received by the
servers would be minimized.

Output. We define Xj
p,n = 1 if and only if the n-th node of the

p-th program starts at the j-th stage of the “abstracted” switch
(i.e., a path of switches), otherwise Xj

p,n = 0. So for each
program P, the last node on the switch would be LastNp =∑

J

∑
N Xj

p,n. As a result, our objective can be written as

max
∑
P

n=LastNp∑
n=1

Tp,n (1)

Constraints. There are several types of constraints that we
need to consider.

Register memory per stage. For each stage, the amount of
SRAM allocated for packet processing cannot exceed SRAM .
Thus we have

∀j, t,
∑
P

∑
Np

SRAMp,n,t ·Xj
p,n ≤ SRAM (2)

Number of stateful ALUs per stage. Similarly, for each
stage, the total number of stateful ALUs allocated for packet
processing cannot exceed ACTION . Thus we have

∀j, t,
∑
P

∑
Np

ACTIONp,n,t ·Xj
p,n ≤ ACTION (3)

Number of stages. The total number of stages for all
defense programs cannot exceed the upper limit of stage count
S. Here, we use Zp,n to denote the start stage of node n
for program p. Zp,n and Xj

p,n are related: if Xj
p,n = 1, then

Zp,n = j. Then we have

∀p, n, Zp,n + STAGEp,n ≤ S (4)

Node ordering. The placement should respect the ordering
of the nodes, i.e., for each program P , if the node n1 precedes
node n2, then the start stage of node n1 should appear earlier
than the start stage of node n2 subtracting STAGEp,n1. Then
we have

∀p, if n1 < n2, Zp,n1 + STAGEp,n1 < Zp,n2 (5)

Using the above constraints, we can solve the 0-1 Integer
Linear Programming (ILP) problem and obtain the optimal
placement using existing optimization toolboxes [31]. The
result would specify which primitives should be placed in the
switch, as well as the amount of allocated resources to each
primitive.

VI. HANDLING DYNAMIC ATTACKS

Next, we discuss how POSEIDON handles dynamic attacks
at runtime. To ensure defense correctness, we need to replicate
state in the programmable switches and use server memory
as a temporary store. When a switch is being reconfigured
with a new P4 program, traffic is steered to the relevant
servers that contain defense state for processing. To achieve
this, POSEIDON uses a central controller to coordinate the
switches and the servers (see Fig. 9). During a policy update,
the controller generates a new defense strategy, i.e., deploying
a new P4 program to the switches and a new configuration
for the servers. The new P4 program would be loaded to
the switches directly, replacing the previous defense strategy.

8

ETH IP TCP OP SEQ KEY VALUE

Existing Protocols State Replication Protocols

L2/L3 Routing Reserved
port #

put, delete,
etc

Fig. 8: Format of the state replication packets.

During this update, flows are sent to the relevant servers for
processing. The servers always implement logic for all types
of defenses, but the switch-only defenses are never activated
unless in this transition state. In order to replicate state at
runtime, there are several issues that need to be solved for
efficient and consistent replication.

States requiring replication. An intuitive approach is to
identify all states using program analysis techniques [41], [45]
(e.g., the registers in P4), and replicate these states to servers
when they are modified. However, on one hand, some states
can be automatically recovered after the traffic is steered to the
servers, which means replicating these states is not necessary.
On the other hand, some states are no longer useful when an
attack finishes, such as monitor statistics, so they do not need to
be replicated. Our principle here is to identify the states which
will still take effect for legitimate traffic even when attacks
finish, with the goal of ensuring correctness for legitimate
flows. In the current version of our primitives, sproxy is a
good example. It maintains the difference between sequence
numbers for the synproxy-source connection (generated as
SYN cookies by the synproxy) and the destination-synproxy
connection (chosen by the destination when a connection is
established by the synproxy on behalf of a verified source).
This state is needed for sequence number translation for each
packet after the connection is established. Therefore, it must
be replicated to the servers for flows from legitimate hosts.

Approach to replication. The networking community has
developed several approaches [29], [41], [84] to migrating
state across virtual machines, which we can leverage for our
problem. However, these approaches are not directly applica-
ble. First, packet processing at switches is at line rate, and
its performance is several orders of magnitude higher than
that of commodity servers / virtual machines. As a result, we
cannot apply a one-time cost operation (e.g., move states from
switches to servers via expert/import APIs when scaling) when
we want to recompile the switch with new P4 programs, since
it is almost impossible to infer all the exact state locations
immediately. Moreover, different from the scenario where
the source and destination for state migration have similar
processing power, state on the switches comes in much higher
volume. Simply replicating the states from the switch to the
server would easily overwhelm the server.

To address these problems, our first step is to amortize
the traffic overhead across a period: when state is created or
modified in switches, we replicate it to the servers. Some states
may be out-of-date in the switch if a flow is terminated. This
signal is also transferred to the servers so that the relevant
states can be removed. We provide a unified interface between
the switch and server to keep the states consistent and up-
to-date, using a state replication protocol as shown in Fig. 8.
OP stands for operator, which can be a Put (state creation

DDoS Defense
Modules

State
Replication

Module

State
Packet
Parser

Servers

Runtime Reconfiguration

ILP Solver

Poseidon
Program 1

· · · · · ·

Result

Routing Policy

P4 Code

Configuration File

Poseidon
Program Segment

Defense Policy

Control Plane

Infrastructure

control flow
legitimate traffic
attacking traffic
state replication traffic
stateful Legitimate traffic
in last attacking period

Poseidon
Program 2

Poseidon
Program n

Enforcement
Engine

P4 Analyzer &
Modifier

Fig. 9: POSEIDON Implementation.

or update), Delete (state deletion), or other types of state
synchronization operations. SEQ is used as a sequence number
for reliable transmissions. KEY records the packet headers to
index the state, and VALUE records the value of the state. For
example, in a typical sproxy, the KEY should be the five-tuples
and the VALUE should be the sequence number difference.

Second, to avoid overwhelming the servers, we spread the
traffic from a switch across a set of servers. During runtime, the
state replication traffic is distributed across these servers, which
is achieved by embedding the server’s IP address into the IP
field of the state replication packets. The mapping between the
destination server’s IP address and the KEY is stored in our
controller. When the reloading starts, the controller updates
the upstream routing table with this mapping to guarantee the
corresponding traffic is steered to the correct server instances.
Note that there is a small time gap (hundreds of milliseconds)
for the P4 program to be successfully loaded. During this time
period, the suspicious traffic is steered to the server clusters
for traffic scrubbing, and these servers also constantly report
the established legitimate flow information to the controller.
After the new P4 program takes effect, the controller updates
the routing tables again to steer the traffic to the switches.

Summary. To summarize, the runtime state replication follows
the following steps: (1) When operators specify a policy,
POSEIDON identifies the states that need replication. (2) At
runtime, if states are created/updated/deleted, POSEIDON gen-
erates state replication packets and steers such traffic across a
set of servers. It also records the mapping between the server’s
IP address and the KEY in the controller. (3) When operators
changes the defense policy to handle new attacks, POSEIDON
updates the upstream routing according to the mapping, so as
to ensure that the legitimate traffic is steered to the correct
servers. It also recompiles and reloads the new P4 programs.
Note that the entire procedure runs automatically when the PO-
SEIDON system starts, and operators only need make changes
to the high-level policies when there are dynamic attacks.

VII. IMPLEMENTATION

We have developed a prototype implementation of POSEI-
DON, including all the primitives in §IV, a policy enforcement

9

engine in §V, and the switch/server interface and the state
replication mechanisms in §VI, as shown in Fig. 9. The
primitives that can be offloaded to switches in POSEIDON are
implemented in P4 on Barefoot Tofino [56] switches, using
∼1800 lines of code. The corresponding parts that run on
servers are implemented in DPDK [19], with ∼3600 lines of
code in C/C++. For the primitives that cannot be offloaded into
switches (e.g., puzzle), we reuse the state-of-the-art defenses
adapted from open source systems, such as CAPTCHAs.

The policy enforcement engine is implemented in Python
with ∼600 lines of code. To translate a POSEIDON policy into
a P4 program, the engine first partitions the POSEIDON policy
into the stateful monitors (e.g., count, aggr) and the packet
processing logic. Then these two components are translated
into different P4 program segments (e.g., registers, match-
action tables, control flow) separately. Finally, the two program
segments are spliced into a complete P4 program. The library
of defense primitives (e.g., sproxy, rlimit, pass) can be directly
accessed by the policy enforcement engine when translating
the code. To support future extensions, we have also imple-
mented a script that can transform new defense actions into
the format of the library of POSEIDON actions. New actions
can therefore be added easily. The script also avoids name
conflicts by adding a prefix to variable names in the original
action code.

The switch/server interface is implemented in P4 for the
switch component and in C/C++ (using DPDK) for the server
component. On the switch side, we have a P4 analyzer module
and a P4 modifier module, with ∼400 lines of Python code.
The P4 analyzer module first extracts the states that need to be
replicated, then the P4 modifier module augments the original
P4 program to support state replication. On the server side,
we implement a state parser module and a state replication
module in a separated thread using DPDK in ∼500 lines of
code. The state parser module first parses the keys and values
from the packets, then the state replication module updates the
corresponding states in the servers.

VIII. EVALUATION

In this section, we evaluate POSEIDON with respect to the
following key questions:

• How expressive is the POSEIDON language in support-
ing different defense policies (§VIII-B)?

• How efficient is the POSEIDON policy placement
mechanism in terms of resource utilization (§VIII-C)?

• How effective is the POSEIDON runtime manage-
ment mechanism for adapting to dynamic attacks
(§VIII-D)?

• How well can POSEIDON mitigate attacks, in
terms of defense effectiveness, performance and cost
(§VIII-E)?

A. Experimental Setup

1http://mawi.wide.ad.jp/mawi/samplepoint-G/2019/201908281400.html
2http://mawi.wide.ad.jp/mawi/samplepoint-F/2019/201909011400.html

TABLE III: Replayed workload traffic.

Traffic Trace Average Flow Length Average Packet Size

T1 ToIXP Traffic1 165.7 packets/flow 1253B/packet
T2 ToISP Traffic2 75.1 packets/flow 564B/packet
T3 Enterprise Traffic 9.5 packets/flow 622B/packet

We use a combination of a real-world testbed and trace-
driven evaluations to demonstrate the aforementioned advan-
tages. Our testbed has 10 Dell R730 servers, a Barefoot Tofino
switch (33 x 100 GbE) and an H3C switch. Each server is
equipped with Intel(R) Xeon(R) E5-2600 v4 CPUs (2.4 GHz,
2 NUMAs, each with 6 physical cores and 12 logic cores),
15360K L3 cache, 64G RAM and two Intel XL710 40GbE
NICs. Fig. 9 shows the setup of the eight servers, the Tofino
switch, and the H3C switch, which compromise the defense
infrastructure; in addition, one server acts as the controller
that translates defense policies for deployment; and another
server hosts the traffic generator, which can generate normal
workloads and different types of attack traffic.

The normal workload traffic is collected from an online
trace dataset [60] and an enterprise, including three types
of traffic traces to cover different scenarios, as shown in
TABLE III. These traces have different flow length and packet
sizes. We also use two public real-world attack traces, a SYN
flood attack trace [81] and a UDP flood attack trace [23]. For
the other four types of attack traffic, i.e., DNS amplification,
HTTP flood, Slowloris and Elephant flow, we use a specialized
DDoS traffic generating tool, UFONet [21], to generate the
corresponding attack traffic traces. In our experiments, we
replay these traces with DPDK Pktgen to generate high-
volume workload traffic and attack traffic. On our testbed, we
can ramp up the attack volume up to 40 Gbps. For larger
attacks, we use simulations.

B. Policy Expressiveness

To demonstrate the expressiveness of the POSEIDON prim-
itives, we have summarized state-of-the-art DDoS attacks
and their defense mechanisms, and presented the results in
TABLE IV. We further categorize them by different protocols.
For each protocol, there are a variety of DDoS attacks, each
targeting some specific vulnerabilities. Next, we present a
typical defense solution using POSEIDON primitives for each
DDoS attack.

ICMP Protocol. ICMP-based DDoS attacks include ICMP
flood attacks and Smurf attacks. To defend against ICMP
flood attacks, we can first use the count primitive to identify
suspicious IPs that send too many ICMP echo-request packets,
and then use the rlimit primitive to rate-limit the packets from
these IPs. For other IPs, we can simply let their packets pass.
For Smurf attacks, we can use the count primitive to track
all the protected servers’ ICMP echo-request packets within a
period, and only allow ICMP echo-reply packets that have been
queried by protected servers to enter the protected network.

TCP Protocol. For TCP-based DDoS attacks, we have already
discussed typical defenses with POSEIDON primitives for SYN
flood attacks and Elephant Flow attacks in §IV-B. For SYN-
ACK flood attacks and ACK flood attacks, we can use the

10

TABLE IV: State-of-the-art DDoS attacks and their corresponding defense mechanisms.

Protocol DDoS attack Description Typical defense solution Poseidon defense

ICMP
ICMP Flood The victim servers are flooded with fabricated ICMP echo-

request packets from a wide range of IP addresses
Rate-limit received ICMP packets from
the same address or subnet

count +
rlimit/pass

Smurf Attack A large number of fake ICMP echo-request packets with the
victim severs’ IP address are broadcast to a large network
using an IP broadcast address

Filter ICMP echo-reply packets that are
not queried by the victim servers

count +
drop/pass

TCP

SYN Flood The victim servers are bombarded with fabricated SYN
requests containing fake source IP addresses

SYN Cookie/Proxy count +
sproxy/pass/drop

SYN-ACK
Flood

The victim servers are flooded with a large number of fake
SYN-ACK packets

Filter SYN-ACK packets that are not
queried by the victim servers

count +
pass/drop

ACK Flood The victim servers are flooded with fabricated ACK packets
from a wide range of IP addresses

Filter ACK packets that have not been
responded by the victim servers with
SYN-ACK packets

count +
pass/drop

FIN/RST
Flood

The victim servers are bombarded with fake RST or FIN
packets that do not belong to any of active connections

Filter FIN/ACK packets that do not be-
long to any action connections, then
rate-limit received FIN/RST packets
from the same connection

count +
rlimit/pass/drop

Elephant
Flow

The attacker generates elephant flows to overwhelm the
bandwidth of the victim servers

Rate-limit flows that send too many
bytes

aggr +
rlimit/pass

UDP UDP Flood The victim servers receive a large rate of fake UDP packets
from a wide range of IP addresses

Rate-limit received UDP packets from
the same address or subnet

count +
rlimit/pass

DNS Flood The victim DNS servers are bombarded with a flood of
requests from a wide range of IP addresses

Rate-limit received DNS requests from
the same address or subnet

count +
rlimit/pass

DNS
Amplification
Attack

The attacker requests data about a domain from public DNS
servers, and directs the reply to the victim servers

Filter DNS replies that are not queried
by the victim servers

count +
pass/drop

SSDP DDoS
Attack

The attacker spoofs discovery packets with the victim
servers’ IP address to each plug-and-play device, to request
for as much data as possible by setting certain flags

Filter SSDP replies that are not queried
by the victim servers

count +
pass/drop

QUIC Reflec-
tion Attack

By spoofing the victims’ IP address and sending a ”hello”
message to QUIC servers, the attacker tricks the servers into
sending large amounts of unwanted data to the victim servers

Filter QUIC replies that are not queried
by the victim servers

count +
pass/drop

NTP Amplifi-
cation Attack

The attacker sends numerous NTP requests providing the
victim servers’ IP address

Filter NTP replies that are not queried
by the victim servers

count +
pass/drop

Memcached
DDoS Attack

The attacker spoofs requests to a vulnerable UDP mem-
cached server, which then floods a targeted victims with
large amount of traffic

Filter Memcached replies that are not
queried by the victim servers

count +
pass/drop

HTTP HTTP Flood The attacker generates large numbers of HTTP requests and
sends them to the victim servers

Set limits for client sessions,
CAPTCHA

count +
pass/puzzle

SlowLoris
Attack

The victim servers are bombarded with too many open
connections

Rate limit IP sources that establish nu-
merous connections but send a few bytes

count/aggr +
rlimit/pass

TABLE V: Lines of code to implement different defense
intents in POSEIDON, P4, and C/C++ (using DPDK).

Policy Attack POSEIDON P4 DPDK
1 SYN flood 9 939 1070
2 DNS amplification 7 255 898
3 HTTP flood 6 354 1184
4 Slowloris 8 513 995
5 UDP flood 6 376 911
6 Elephant flow 6 373 903

count primitive to track whether the SYN-ACK packets or
ACK packets have been generated by protected servers within
a period, and only allow legitimate packets to enter the
protected network. For FIN/RST flood attacks, we can first
use the count primitive to track the connections between the
protected servers and the external network, and only allow
FIN or RST packets in the active connections. Furthermore,
for these remaining FIN or ACK packets, we use the count
primitive again to count the number of FIN/RST packets in
each connection and use the rlimit primitive for rate limiting.

UDP Protocol. UDP-based DDoS attacks (especially UDP-
based amplification attacks) are one of the most popular
DDoS attacks today [64]. We have already discussed the
corresponding defenses with POSEIDON primitives for UDP

flood attacks and DNS amplification attacks in §IV-B. For DNS
flood attacks, we can use a similar approach as UDP flood
attacks, rate-limiting the DNS request packets from the same
address or subnet. For the other four UDP-based amplification
attacks (SSDP DDoS attacks, QUIC Reflection attacks, NTP
amplification attacks, and Memcached DDoS attacks), we can
use a similar defense as in DNS amplification attacks, filtering
replies that are not triggered by the victim servers.

HTTP Protocol. We have already discussed the corresponding
defense solutions in POSEIDON for HTTP flood attacks and
SlowLoris attacks in detail in §IV-B.

From the discussions on each categorization above, we can
see that although the attacks require different defense solutions,
almost all these DDoS defenses require monitoring primitives
to identify the malicious packet groups, as well as a reusable
set of defense actions for packet processing. Regarding this
point, our monitor primitives provide a useful abstraction to
aggregate certain packets and collect statistics, and our action
primitives offer a powerful packet processing abstraction for
DDoS defenses. From TABLE IV, we can also see the current
set of primitives are expressive enough to cover a wide range
of state-of-the-art DDoS defense mechanisms.

We have provided six policy examples in §IV-B to demon-

11

0 1 2 3 4
Number of Switches

6

12

18

24

30

36
Pa

ck
et

 R
at

e
(M

pp
s)

Poseidon
ID first

Fig. 10: Traffic arriving at servers.

strate the the expressiveness of our POSEIDON policy lan-
guage. We further summarize the number of lines of code in
POSEIDON, in P4, and in C/C++ when implementing these six
policy examples, as shown in TABLE V. From this table, we
can see that POSEIDON allows concise specifications of the
defense policies, without having to burden network operators
with the task of writing low-level code. Moreover, POSEIDON
also shields the complexities of the underlying hardware.
Policies #1, #2, #4, #5, and #6 can be fully implemented in the
switches, whereas #3 requires the assistance of the servers. But
a programmer does not have to be aware of the implementation
details. In particular, programming in P4 is akin to “assembly-
level” programming and usually requires hand optimizations.
We have also included sample code in P4 for implementing
policy #1 in Appendix B as a concrete example.

C. Policy Placement Mechanism

To demonstrate the efficiency of POSEIDON policy place-
ment mechanism, we compare it with a strawman solution,
which simply places the programs using their policy IDs,
the smallest ID first. We assume that attackers launch three
attacks simultaneously, 10 Mpps SYN flood, 20 Mpps DNS
amplification and 15Mpps HTTP flood. The corresponding
resource utilization for each primitive could be obtained from
TABLE II. We assume that a switch has 12 stages, each with
5Mb register array and 4 stateful actions; these constraints are
much more strict than most Barefoot Tofino switches. We use
the rate of packets arriving at servers as the metric to evaluate
the effectiveness of our policy placement mechanism.

As we can see from Fig. 10, the more switches there are,
the more traffic is filtered at the switch and the fewer packets
are sent to the servers. Comparing with the strawman place-
ment mechanism, the placement of POSEIDON can mitigate
larger attacks with the same number of switches. Note that the
curves for both approaches would finally converge to the same
points. This is because when there are enough programmable
switches, all primitives that can run on the switches have been
offloaded; the rest of the primitives need to run on the servers,
and this leads to a constant number of packets to be sent to
the servers for processing. In our scenario, it is impossible for
attackers to launch tens of DDoS attacks simultaneously. As a
result, our ILP problem has a relatively small size, and it can
be solved within seconds. This also indicates that our system
is able to orchestrate the defense resources in a pretty fast
manner, which can accommodate to policy changes quickly.

D. Dynamic DDoS Attacks

To evaluate the effectiveness of runtime state replication
against attack dynamics, we mix normal workload traces with
attack traces and replay them from the packet generator. At
runtime, we change the attack from #1 to #2, and adapt the
defense policy accordingly. As we can see in Fig. 11 and
Fig. 12, POSEIDON ensures that legitimate traffic goes through
the scrubbing center normally without broken connections,
even without packet loss. In contrast, without runtime state
replication, connections will be broken and packets will be
dropped, since no state can be found on the servers. This
would interrupt the legitimate flows and lead to significant
performance degradation. In addition, from the trends of the
three traces, we can conclude that the more elephant flows the
trace contains, the worse the flow interruption and packet loss
will be.

To evaluate the overhead of runtime state replication, we
replay three attack traffic traces at an increased rate. As shown
in Fig. 13, the ratio between control message traffic and
workload traffic is constant even when the attack traffic is
multiplied. This is because POSEIDON only replicates runtime
states for legitimate traffic. In this figure, the control message
ratio for Enterprise traffic is a bit higher than other two
traces. This is because the Enterprise trace contains a large
number of mouse flows (about 9 packets per flow), and for
each flow, we have to generate a state replication packet. Even
in this case, the overhead is still very low (less than 4%),
which indicates that our runtime management scheme incurs
negligible overheads.

E. Overall Effectiveness

To demonstrate the effectiveness of POSEIDON during
attacks, we measure the bandwidth of legitimate TCP flows
under the six types of DDoS attacks, and count the number of
sent/received packets at the traffic generator. We use a simple
time series anomaly detection tool nfdump for the coarse-
grained detection; the detection results would further trigger
the loading of different defense policies, and the allocation
of switch resources. Fig. 14 shows the defense effect for
legitimate TCP flows during the UDP flood attack. The defense
effect for the other types of DDoS attacks is similar, since most
attack traffic is filtered by POSEIDON before it reaches the
traffic generator3. As we can see from the figure, POSEIDON
can respond to the attack rapidly and restore the throughput
of legitimate flows quickly, which indicates the effectiveness
of POSEIDON in coping with DDoS attacks. Note that there
is a small time gap between the attack onset and the defense
taking effect (in seconds), which mainly results from the DDoS
detection time, the execution time of our resource orchestration
module and the program loading time of the Tofino switch.

To demonstrate the performance of POSEIDON, we measure
the end-to-end latency for workload traffic at the traffic gen-
erator, based on these six typical DDoS attacks, and compare
it with an NSFOCUS ADS 4020 middlebox [57] and an NFV
system similar to Bohatei [22]. As we can see from Fig. 15, for

3A closer look into our experiments also shows that the IP addresses of
these real-world traces are not very dispersed; the switching ASICs has enough
memory to support the monitor modules. We discuss further on this issue in
Discussion(§IX).

12

0 1 2 3 4 5 6
Time (s)

0

20

40

60

80

100

Re
ce

iv
ed

 P
ac

ke
ts

 R
at

io
 (%

)

T1 Poseidon
T2 Poseidon
T3 Poseidon
T1 w/o Poseidon
T2 w/o Poseidon
T3 w/o Poseidon

Fig. 11: Received packets before/after
policy transition.

0 1 2 3 4 5 6
Time (s)

0

20

40

60

80

Br
ok

en
 C

on
ne

ct
io

n
Ra

tio
 (%

) T1 Poseidon
T2 Poseidon
T3 Poseidon
T1 w/o Poseidon
T2 w/o Poseidon
T3 w/o Poseidon

Fig. 12: Broken connections before/after
policy transition.

0 10 20 30 40 50 60 70 80 90
Attack Packets / Normal Packets (%)

0

1

2

3

4

Co
nt

ro
l M

es
sa

ge
 R

at
io

 (%
)

T1
T2
T3

Fig. 13: Control traffic/workload traffic
ratio.

 0

 10

 20

 30

Sp
ee

d
(G

bp
s)

Attack Starts Attack StopsSender Side

Attack UDP Packets Legitimate TCP Flows

0 10 20 30 40
Time (s)

 0

 10

 20

 30

Sp
ee

d
(G

bp
s) Defense Takes Effect

Receiver Side

Fig. 14: Throughput restoration for legitimate flows.

SYN
Flood

DNS
Amplication

HTTP
Flood

Slowloris UDP
Flood

Elephant
Flow

100

101

102

103

104

105

106

La
te

nc
y(

ns
)

Middlebox Bohatei Poseidon

Fig. 15: Latency in traffic scrubbing center.

most types of attacks, POSEIDON reduces packet processing
latency in scrubbing centers by two orders of magnitude com-
pared with the middlebox and the NFV system. In particular,
POSEIDON processes packets within hundreds of nanoseconds
while the middlebox or the NFV system requires tens of
microseconds. This demonstrates a significant performance
improvement, which is crucial for the requirements of latency-
sensitive services in today’s datacenters. For HTTP flood, we
use puzzle, which can only be implemented on the servers;
so the latency benefit of POSEIDON is not as obvious and
latency results are comparable. Since we do not have access
to terabit-level traffic generators at this moment, we are not
able to evaluate the throughput of our prototype using extreme
pressure tests. However, in principle, POSEIDON can defend
against ∼Tbps attack traffic with a small number of devices
(including programmable switches and commodity servers).
This is because a compiled P4 program on a programmable

switch is guaranteed to run at terabit line rate; otherwise it
would already be rejected by the compiler at the compilation
stage [10], [78]. For terabit DDoS attacks, the other two ap-
proaches would require an extremely large number of devices.
In contrast, POSEIDON can achieve this with much lower
device count and much lower cost.

To show the cost reduction of POSEIDON compared with
the other two solutions, TABLE I serves as a good starting
point. As we can see, programmable switches can reduce the
equipment cost by nearly two orders of magnitude, and reduce
the power consumption by nearly three orders of magnitude.
Although POSEIDON requires a small number of servers to
assist programmable switches, the order of magnitude will
not change drastically. Similar results also been obtained by
a recent project that evaluates the power consumption of in-
network computing [78], which shows that switching ASICs
can reduce power consumption by 1000x compared with
commodity CPU.

IX. DISCUSSION

Security of POSEIDON. POSEIDON shares a similar two-
layer architecture as classic SDN, a control layer and an
infrastructure layer. However, it is resilient to attack vectors
in classic SDNs that target the control channel [71], [33],
[91], [12], because it does not adopt the reactive event pro-
cessing paradigm in OpenFlow-based SDN. However, there
are still several potential vulnerabilities. First, attackers may
use spoofed traffic to mislead monitor modules to invoke the
wrong action modules, or overwhelm the stateful memory
in switching ASICs (e.g., hash table in count and aggr
primitives). This may further lead to statistical inaccuracy and
unexpected hash collisions. Actually, spoofed IP traffic is a
challenge that is not specific to POSEIDON; it also affects a
number of other switch-based systems as listed in §X. We
observe that a recent research effort, NetHCF [6], [44], tries
to filter spoofed IP traffic with programmable switches, which
can be a good starting point to prevent statistic pollution
and reduce unnecessary false positive. It should be easy to
integrate such mechanisms into POSEIDON. Without spoofed
traffic, the monitor modules in POSEIDON (5∼10 MB SRAM
per stage in the latest programmable switch) can guarantee a
very low false positive (e.g., less than 1%) for a few million
buckets. This could potentially accommodate millions of IPs
and billions of packets per second. This has also been validated
by several other recent research projects [49], [86], which have
developed various sketches with programmable switches to

13

conduct network monitoring under terabit traffic. In addition,
we can also leverage external DRAM in servers to alleviate the
memory pressure [42] in programmable switches. This would
make much more memory available for sketches and achieve
much lower hash collision rates (or false positives).

Second, attackers may change the attack composition dy-
namically within seconds so that POSEIDON cannot respond
in a timely manner. A potential solution is to further optimize
the performance of our orchestration component using more
powerful servers, and to leverage more advanced heuristics
to solve the ILP problem. In addition, we can also use the
switch-only primitives for long-lived attacks, and only involve
the servers for short-lived attacks. In this way, defenses against
short-lived attacks will not need to recompile the switch
programs, avoiding the need to trigger frequent policy changes.
We leave the detailed exploration of these security problems
to our future work.

Extensibility of POSEIDON. POSEIDON has a set of mod-
ular primitives for monitoring, analysis, and attack response.
Operators could easily develop more defense primitives in this
framework. To integrate a new defense primitive into the exist-
ing defense library, operators should define the new primitive,
analyze its implementation with respect to switching ASICs
constraints, calculate its resource usage, and extend the defense
library with this new primitive. Then, the new primitive could
be loaded into our POSEIDON framework and used with other
primitives. Note that although POSEIDON cannot handle zero-
day DDoS attacks directly, the programmability and modular-
ity properties of POSEIDON would accelerate the deployment
of new defense mechanisms significantly. This benefit cannot
be achieved with traditional proprietary middleboxes, even
NFV-based defense systems.

Automation of POSEIDON. Current POSEIDON requires some
human intervention for writing the defense policies. This can
be further automated if there are no zero-day DDoS attacks.
Operators can set a defense policy for each DDoS attack
beforehand, and POSEIDON would load the corresponding
policies when DDoS attacks are detected. Nevertheless, for
zero-day DDoS attacks, human intervention is unavoidable.
Operators need to analyze the characteristics of the new DDoS
attacks, and may potentially need to extend the POSEIDON
primitives with more defense strategies.

X. RELATED WORK

There is a long body of works on DDoS attacks and
defenses, for which comprehensive surveys exist [90], [52].
Here, we briefly discuss the other most related topics.

SDN/NFV-based DDoS Defense. Some works have been de-
voted to defending against DDoS attacks with SDN/NFV from
various perspectives. Bohatei [22] leverages NFV and SDN
to achieve flexible and elastic DDoS defense. Xu et al. [85]
propose an adaptive approach using limited switch TCAM to
balance the coverage and granularity of DDoS detection. Afek
et al. [1] propose to filter the spoofing traffic with OpenFlow
switches. By contrast, POSEIDON proposes a cost-efficient
and agile DDoS defense framework that leverages the new
opportunities provided by programmable switches.

Programmable Switches. Researchers have looked at accel-
erating various applications in networking and distributed sys-

tems using programmable switches. Examples include layer-4
load balancing [51], [58], network resource allocation mech-
anisms [69], key-value stores [35], [48], coordination ser-
vices [34], [46], [47], fair queueing [70], fast connectivity re-
covery [32], network monitoring and measurement tasks [73],
[55], [74], [75], [30], [87]. These applications achieve far better
performance with lower costs than their software counterparts
that run on commodity servers. POSEIDON is inspired by these
works, but focuses on a different problem, DDoS defense, and
provides a systematic approach to integrating programmable
switches into the current DDoS defense framework.

Policy Languages. There are many domain-specific languages
in networking and security communities which aim to simplify
policy expression, such as Chimera [8], NetCore/NetKAT [2],
[65], [4], [25], [24], PSI [89]. Although our key idea of
software-defined programmable security is not tied to any
specific language, to hide underlying hardware complexity
and reduce operator burden, we extend POSEIDON policy
language based on Pyretic NetCore [53], and provide a high-
level abstraction tailored for DDoS defenses.

XI. CONCLUSION

In this paper, we highlight the challenges for today’s DDoS
defense and identify new opportunities that programmable
switches bring for mitigating volumetric DDoS attacks. We
introduce POSEIDON, a performant, cost-efficient and agile
DDoS defense system, which addresses the key limitations
in today’s DDoS defense. The POSEIDON language provides
a simple, modular DDoS policy abstraction that can sup-
port a range of policies, shielding the low-level hardware
complexity. The POSEIDON orchestration component provides
an optimized, efficient resource orchestration mechanism to
map the high-level policy primitives to the underlying hard-
ware resources. The POSEIDON runtime manager provides a
transparent, effective scheme to adapt to the attack dynamics
while achieving resource utilization efficiency and guaran-
teeing correctness for legitimate flows. Our implementation
and evaluation demonstrate that POSEIDON is highly effective
in attack mitigation, and only incurs negligible overheads.
These results show that POSEIDON is an effective system for
mitigating modern advanced DDoS attacks.

ACKNOWLEDGMENT

We thank our shepherd, William Enck, and the anonymous
NDSS reviewers for their valuable comments. We would also
like to thank Ennan Zhai and Yifei Yuan for their feedback
on the policy language, and Douglas Everson from Clemson
University for proofreading this paper. We also thank Xiao
Kong, Yi Qiao, Jiasong Bai, Zili Meng and Haixin Duan from
Tsinghua University, Lei Xu from Texas A&M University
and Palo Alto Networks, Kai Gao from Sichuan University,
Zhaogeng Li for Baidu Inc. for joining some discussions
on this paper. Menghao, Guanyu, Shicheng and Chang are
also sincerely grateful for their former Ph.D. advisor, Jun Bi
from Tsinghua University, for his strong support. This work
is supported in part by the National Key R&D Program of
China (2017YFB0801701), the National Science Foundation
of China (No. 61625203, No.61872426, No. 61832013, No.
61572278, U1736209), the BNRist Network and Software Se-
curity Research Program (No. BNR2019TD01004), ONR grant

14

N00014-20-1-2734, and the US National Science Foundation
(No. 1617985, No. 1642129, No. 1700544, No. 1740791, No.
1846291, No. 1700499, No. 1642143). Mingwei Xu and Qi Li
are the corresponding authors.

REFERENCES

[1] Y. Afek, A. Bremler-Barr, and L. Shafir, “Network anti-spoofing with
SDN data plane,” in INFOCOM 2017-IEEE Conference on Computer
Communications, IEEE. IEEE, 2017, pp. 1–9.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” in ACM SIGPLAN Notices, vol. 49, no. 1. ACM, 2014,
pp. 113–126.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in USENIX Security Sympo-
sium, 2017, pp. 1092–1110.

[4] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“Snap: Stateful network-wide abstractions for packet processing,” in
Proceedings of the 2016 ACM SIGCOMM Conference. ACM, 2016,
pp. 29–43.

[5] A. T. ARTICLES, “5 most famous DDoS attacks,” https://
www.a10networks.com/resources/articles/5-most-famous-ddos-attacks,
2018, [Online; accessed Aug. 19, 2019].

[6] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic
using switching asics,” in Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos. ACM, 2018, pp. 51–53.

[7] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment. ACM, 2002, pp. 71–82.

[8] K. Borders, J. Springer, and M. Burnside, “Chimera: A declarative
language for streaming network traffic analysis.” in USENIX Security
Symposium, 2012, pp. 365–379.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for SDN,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 99–110.

[11] A. Business, “Distributed denial of service (ddos) defense,” https:
//www.business.att.com/products/ddos-protection.html, 2018, [Online;
accessed Aug. 13, 2019].

[12] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The
crosspath attack: Disrupting the {SDN} control channel via shared
links,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 19–36.

[13] O. Cetin, C. Ganán, L. Altena, T. Kasama, D. Inoue, K. Tamiya, Y. Tie,
K. Yoshioka, and M. van Eeten, “Cleaning up the internet of evil things:
Real-world evidence on isp and consumer efforts to remove mirai,”
2019.

[14] Cisco, “Cisco guard xt 5650,” https://www.cisco.com/c/en/
us/products/collateral/security/guard-xt-5650a/product data
sheet0900aecd800fa55e.html, 2018, [Online; accessed Jul. 8, 2019].

[15] A. Cloud, “Anti-ddos basic,” https://www.alibabacloud.com/products/
ddosdip, 2018, [Online; accessed Jul. 19, 2019].

[16] T. Cloud, “Dayu anti-ddos,” https://intl.cloud.tencent.com/product/bad,
2018, [Online; accessed Aug. 19, 2019].

[17] Corero, “The evolution of ddos protection,” http://info.corero.com/the-
evolution-of-ddos-protection.html, 2018, [Online; accessed Jun. 19,
2018].

[18] G. Cormode and S. Muthukrishnan, “An improved data stream sum-
mary: the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, pp. 58–75, 2005.

[19] I. DPDK, “Learn how to get involved with dpdk,” https://
www.dpdk.org/, 2017, [Online; accessed Jun. 13, 2019].

[20] Engadget, “New dos attack exploits algorithms to knock sites offline,”
https://www.engadget.com/2019/08/09/new-ddos-attack-algorithms/,
2019, [Online; accessed Aug. 19, 2019].

[21] Epsylon, “Ufonet - denial of service toolkit,” https://ufonet.03c8.net,
2019, [Online; accessed Aug. 19, 2019].

[22] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense.” in USENIX Security Symposium, 2015, pp.
817–832.

[23] C. I. for Cybersecurity, “A realistic cyber defense dataset,” https:
//www.unb.ca/cic/datasets/ids-2018.html, 2019, [Online; accessed Aug.
19, 2019].

[24] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
ACM Sigplan Notices, vol. 46, no. 9, pp. 279–291, 2011.

[25] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva, “Prob-
abilistic netkat,” in European Symposium on Programming Languages
and Systems. Springer, 2016, pp. 282–309.

[26] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2015.

[27] S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani, “Streaming
algorithms for robust, real-time detection of ddos attacks,” in 27th In-
ternational Conference on Distributed Computing Systems (ICDCS’07).
IEEE, 2007, pp. 4–4.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation.” in OSDI, vol. 16, 2016, pp. 249–264.

[29] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4. ACM, 2014, pp. 163–174.

[30] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 2018, pp. 357–371.

[31] Gurobi, “The fastest mathematical programming solver,” http://
www.gurobi.com/, 2019, [Online; accessed Jun. 19, 2019].

[32] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), 2019, pp. 161–176.

[33] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-defined
networks,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 415–432.

[34] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “Netchain: Scale-free sub-rtt coordination,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, 2018.

[35] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and
I. Stoica, “Netcache: Balancing key-value stores with fast in-network
caching,” in Proceedings of the 26th Symposium on Operating Systems
Principles. ACM, 2017, pp. 121–136.

[36] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches.” in NSDI, 2015, pp. 103–115.

[37] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic counter-
measure against connection depletion attacks.” in NDSS, vol. 99, 1999,
pp. 151–165.

[38] S. Kandula, D. Katabi, M. Jacob, and A. Berger, “Botz-4-sale: Surviving
organized DDoS attacks that mimic flash crowds,” in Proceedings of
the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association, 2005, pp. 287–300.

[39] M. S. Kang, V. D. Gligor, and V. Sekar, “SPIFFY: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks.” in NDSS,
2016.

[40] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in
Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013,
pp. 127–141.

15

[41] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for nfv: Simplifying middlebox modifi-
cations using statealyzr.” in NSDI, 2016, pp. 239–253.

[42] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks. ACM, 2018, pp. 1–7.

[43] R. R. Kompella, S. Singh, and G. Varghese, “On scalable attack
detection in the network,” in Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement. ACM, 2004, pp. 187–200.

[44] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan,
“Nethcf: Enabling line-rate and adaptive spoofed ip traffic filtering,” in
ICNP. IEEE, 2019.

[45] H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang, “vNIDS: Towards elastic
security with safe and efficient virtualization of network intrusion de-
tection systems,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2018, pp. 17–34.

[46] J. Li, E. Michael, and D. R. Ports, “Eris: Coordination-free consistent
transactions using in-network concurrency control,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 104–120.

[47] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. Ports, “Just say
no to paxos overhead: Replacing consensus with network ordering.” in
OSDI, 2016, pp. 467–483.

[48] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
“Incbricks: Toward in-network computation with an in-network cache,”
ACM SIGOPS Operating Systems Review, vol. 51, no. 2, pp. 795–809,
2017.

[49] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the 2016 ACM SIGCOMM Conference.
ACM, 2016, pp. 101–114.

[50] A. Mahimkar, J. Dange, V. Shmatikov, H. M. Vin, and Y. Zhang,
“dfence: Transparent network-based denial of service mitigation.” in
NSDI, vol. 7, 2007, pp. 327–340.

[51] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 15–28.

[52] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[53] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker et al.,
“Composing software defined networks.” in NSDI, vol. 13, 2013, pp.
1–13.

[54] S. Moss, “Major DDoS attack on dyn disrupts aws, twitter, spotify and
more,” http://www.datacenterdynamics.com/content-tracks/security-
risk/major-ddos-attack-on-dyn-disrupts-aws-twitter-spotify-and-more/
97176.fullarticle, 2016, [Online; accessed Jul. 15, 2018].

[55] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 85–98.

[56] B. Networks, “Tofino: World’s fastest p4-programmable ethernet switch
asics,” https://barefootnetworks.com/products/brief-tofino/, 2017, [On-
line; accessed Jun. 13, 2019].

[57] NSFOCUS, “Nsfocus anti ddos solution,” https://nsfocusglobal.com/
wp-content/uploads/2018/05/Anti-DDoS-Solution.pdf, 2018, [Online;
accessed Jul. 8, 2019].

[58] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless data-
center load-balancing with beamer,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), vol. 18, 2018,
pp. 125–139.

[59] D. Pauli, “Chinese gambling site served near record-breaking complex
DDoS,” https://www.dailydot.com/debug/lizard-squad-hackers/, 2016,
[Online; accessed Jul. 15, 2019].

[60] W. Project, “Mawi working group traffic archive,” http:
//mawi.wide.ad.jp/mawi/, 2019, [Online; accessed Aug. 19, 2019].

[61] S. Ramanathan, J. Mirkovic, M. Yu, and Y. Zhang, “SENSS against

volumetric DDoS attacks,” in Proceedings of the 34th Annual Computer
Security Applications Conference. ACM, 2018, pp. 266–277.

[62] R. Rasti, M. Murthy, N. Weaver, and V. Paxson, “Temporal lensing
and its application in pulsing denial-of-service attacks,” in Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 187–198.

[63] A. D. Rayome, “Ddos attacks increased 91% in 2017 thanks
to iot,” https://www.techrepublic.com/article/ddos-attacks-increased-
91-in-2017-thanks-to-iot/, 2018, [Online; accessed Jul. 23, 2019].

[64] C. Rossow, “Amplification hell: Revisiting network protocols for DDoS
abuse,” in NDSS, 2014.

[65] C. Schlesinger, M. Greenberg, and D. Walker, “Concurrent NetCore:
From policies to pipelines,” in ACM SIGPLAN Notices, vol. 49, no. 9.
ACM, 2014, pp. 11–24.

[66] A. Scroxton, “Dyn reveals details of complex and sophisticated iot bot-
net attack,” https://www.computerweekly.com/news/450401857/Dyn-
reveals-details-of-complex-and-sophisticated-IoT-botnet-attack, 2016,
[Online; accessed Jul. 15, 2018].

[67] C. Security, “Ddos attacks 2018: New records and trends,”
https://www.calyptix.com/top-threats/ddos-attacks-2018-new-records-
and-trends/, 2019, [Online; accessed Mar. 19, 2019].

[68] H. Shan, Q. Wang, and C. Pu, “Tail attacks on web applications,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1725–1739.

[69] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy,
J. Nelson, and S. Peter, “Evaluating the power of flexible packet
processing for network resource allocation.” in NSDI, 2017, pp. 67–
82.

[70] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[71] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant-guard: Scalable
and vigilant switch flow management in software-defined networks,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 413–424.

[72] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 ACM SIGCOMM Conference. ACM, 2016, pp. 15–28.

[73] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research. ACM, 2017, pp.
164–176.

[74] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
information rich flow record generation on commodity switches,” in
Proceedings of the Thirteenth EuroSys Conference. ACM, 2018, p. 11.

[75] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with* flow,” in 2018 USENIX Annual Technical Conference
USENIX ATC 18). USENIX Association, 2018.

[76] T. Spring, “Mirai variant targets financial sector with iot ddos attacks,”
https://threatpost.com/mirai-variant-targets-financial-sector-with-iot-
ddos-attacks/131056/, 2018, [Online; accessed Jul. 29, 2019].

[77] StressThem, “The next generation ip stresser,” https:
//www.stressthem.to/, 2019, [Online; accessed Aug. 19, 2019].

[78] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,
“The case for in-network computing on demand,” in Proceedings of the
Fourteenth EuroSys Conference 2019. ACM, 2019, p. 21.

[79] TS3Booter, “ts3booter.net,” https://ts3booter.net/, 2019, [Online; ac-
cessed Aug. 19, 2019].

[80] W. Turton, “An interview with lizard squad, the hackers who
took down xbox live,” https://www.dailydot.com/debug/lizard-squad-
hackers/, 2017, [Online; accessed Jul. 15, 2019].

[81] C. S. University, “Darpa 2009 intrusion detection dataset,” http://
www.darpa2009.netsec.colostate.edu/, 2019, [Online; accessed Aug.
19, 2019].

[82] X. Wang and M. K. Reiter, “Defending against denial-of-service attacks
with puzzle auctions,” in Security and Privacy, 2003. Proceedings. 2003
Symposium on. IEEE, 2003, pp. 78–92.

16

[83] S. Weagle, “The rise of iot botnet threats and ddos attacks,”
https://www.corero.com/blog/870-the-rise-of-iot-botnet-threats-and-
ddos-attacks.html, 2018, [Online; accessed Jul. 30, 2019].

[84] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, 2018.

[85] Y. Xu and Y. Liu, “DDoS attack detection under SDN context,” in
INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications, IEEE. IEEE, 2016, pp. 1–9.

[86] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 2018, pp.
561–575.

[87] N. Yaseen, J. Sonchack, and V. Liu, “Synchronized network snapshots,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. ACM, 2018, pp. 402–416.

[88] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with opensketch.” in NSDI, vol. 13, 2013, pp. 29–42.

[89] T. Yu, S. K. Fayaz, M. P. Collins, V. Sekar, and S. Seshan, “PSI: Precise
security instrumentation for enterprise networks.” in NDSS, 2017.

[90] S. T. Zargar, J. Joshi, and D. Tipper, “A survey of defense mechanisms
against distributed denial of service (DDoS) flooding attacks,” IEEE
communications surveys & tutorials, vol. 15, no. 4, pp. 2046–2069,
2013.

[91] M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control plane
reflection attacks in SDNs: new attacks and countermeasures,” in Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2018, pp. 161–183.

[92] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron,
J. Padhye, S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control
for large-scale RDMA deployments,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 523–536.

APPENDIX

A. Defense Examples by POSEIDON language

Here are several extra defense examples in POSEIDON
language.

SlowLoris attack. In SlowLoris attacks, TCP sessions are
established between the bots and the victim server. After a
session has been established, the bot does not respond with
ACK packets, so this keeps the session open until timeout.
Empty sessions occupy CPU and RAM resources, so the victim
servers do not have enough resources to accept new requests.
To mitigate this attack, a potential defense the operators could
use is to count the number of bytes sent by each source IP
and the number of TCP sessions established by each source
IP (line 1, line 2). During the previous period, if the average
number of bytes per connection is smaller than a threshold
(T), then we can rate-limit the session establishment rate for
this source IP (line 4, line 5, line 6). Otherwise, we allow its
packets to pass (line 7, line 8).

1 packet_byte = aggr(True, [ip.src], 5)
2 connection_number = count(pkt.tcp.flag == SYN, [ip.src], 5)
3
4 if packet_byte([pkt.ip.src]) /
5 connection_number([pkt.ip.src]) <= T:
6 rlimit
7 else:
8 pass

UDP flood attack. For UDP flood attacks, we track the
number of UDP packets for each source IP every 5 seconds
(line 1). During the previous period, if a source IP sends an
anomalously high number of UDP packets, we mark it as

attacks and rate-limit this source IP (line 3, line 4). Otherwise,
we allow its packets to pass (line 5, line 6).

1 udp_counter = count(pkt.ip.protocol == UDP, [ip.src], 5)
2
3 if udp_counter([pkt.ip.src]) >= T:
4 rlimit
5 else:
6 pass

Elephant flow. To detect very large flows from some source
IP addresses, we can first count the number of bytes each flow
sends every 5 seconds (line 1, line 2). During the previous
period, if the total bytes for a flow exceeds a threshold, we
rate-limit this flow (line 4—6). Otherwise, we allow its packet
to pass (line 7, line 8).

1 packet_byte_counter = aggr(True, [ip.src, ip.dst,
2 ip.protocol, tcp.sport, tcp.dport], 5)
3
4 if packet_byte_count([ip.src, ip.dst, ip.protocol,
5 tcp.sport, tcp.dport]) >= T:
6 rlimit
7 else:
8 pass

B. The P4 implementation of a sample POSEIDON policy

Here we include the P4 implementation for one sample
POSEIDON policy, SYN flood defense, as shown in Fig. 4.
The P4 snippet is simplified for clarity of presentation.

1 /* Header declaration */
2 struct headers {
3 ether_t ether;
4 ipv4_t ipv4;
5 tcp_t tcp;
6 }
7 // Definitions of ether_t, ipv4_t and tcp_t are omitted
8
9 /* Metadata declaration */

10 header_type syn_proxy_meta_t {
11 fields { ... }
12 }
13 metadata syn_proxy_meta_t meta;
14 // We remove the specific fields of metadata
15
16 /* Parser declaration */
17 parser parse_ether {
18 extract(ether);
19 return select(latest.etherType) {
20 ETHERTYPE_IPV4: parse_ipv4;
21 default: ingresss;
22 }
23 }
24 parser parse_ipv4 {
25 extract(ipv4);
26 return select(latest.protocol) {
27 IP_PROTOCOLS_TCP : parse_tcp;
28 default: ingress;
29 }
30 }
31 parser parse_tcp {
32 extract(tcp);
33 return ingress;
34 }
35 // Calculation of checksum is ignored
36
37 /* Monitor (counter) declaration */
38 register syn_count_cm_sketch_row1 {
39 width : WIDTH;
40 instance_count : COLUMN;
41 }
42 register syn_count_cm_sketch_row1_last_period {
43 width : WIDTH;
44 instance_count : COLUMN;
45 }
46 register ack_count_cm_sketch_row1 {
47 width : WIDTH;
48 instance_count : COLUMN;
49 }
50 register ack_count_cm_sketch_row1_last_period {
51 width : WIDTH;
52 instance_count : COLUMN;
53 }
54 // We omit the other rows of two count-min sketches
55
56 /* Match-Action Table declaration */
57 table syn_count_update_table {
58 read {
59 tcp.syn : exact;
60 }

17

61 actions {
62 update_syn_count;
63 _nop;
64 }
65 }
66 action update_syn_count() {
67 index_calculate(meta.syn_count_index, ipv4.srcAddr);
68 syn_count_cm_sketch_add(meta.syn_count_index, 1);
69 }
70 // Definitions of other tables and actions are skipped
71
72 /* Control flow declaration */
73 control ingress {
74 // Monitoring period
75 apply(syn_count_update_table);
76 apply(ack_count_update_table);
77 apply(syn_count_read_table);
78 apply(ack_count_read_table);
79 // Packet processing period
80 if (meta.ack_count_value == 0) {
81 apply(drop_table);
82 }
83 else if (meta.syn_count_value == meta.ack_count_value){
84 apply(forward_table);
85 }
86 else {
87 apply(syn_proxy_table);
88 }
89 }
90 // We ignore some details in the ingress control
91 // and the definition of egress control

18

