
NETHCF: Enabling Line-rate and Adaptive
Spoofed IP Traffic Filtering

Guanyu Li?, Menghao Zhang?, Chang Liu?, Xiao Kong?, Ang Chen†, Guofei Gu‡, Haixin Duan?
?Institute for Network Sciences and Cyberspace, Tsinghua University

?Department of Computer Science and Technology, Tsinghua University
?Beijing National Research Center for Information Science and Technology (BNRist)

†Department of Computer Science, Rice University
‡Department of Computer Science and Engineering, Texas A&M University

Abstract—In this paper, we design NETHCF, a line-rate in-
network system for filtering spoofed traffic. NETHCF leverages
the opportunity provided by programmable switches to design a
novel defense against spoofed IP traffic, and it is highly efficient
and adaptive. One key challenge stems from the restrictions of the
computational model and memory resources of programmable
switches. We address this by decomposing the HCF system into
two complementary components—one component for the data
plane and another for the control plane. We also aggregate the IP-
to-Hop-Count (IP2HC) mapping table for efficient memory usage,
and design adaptive mechanisms to handle end-to-end routing
changes, IP popularity changes, and network activity dynamics.
We have built a prototype on a hardware Tofino switch, and our
evaluation demonstrates that NETHCF can achieve line-rate and
adaptive traffic filtering with low overheads.

I. INTRODUCTION

Spoofed IP traffic remains a significant threat to the Internet,
and such traffic typically originates from malicious network
activities, especially Distributed Denial of Service (DDoS)
attacks [1]. Although existing work has studied traffic spoofing
extensively, spoofing attacks are still prevalent and frequently
reported in the news [2]. According to the Spoofer Project of
CAIDA [3], 24.4% of the Autonomous Systems (ASes) have
not deployed any countermeasure to disable spoofed IP traffic,
and around 16.1% IP addresses in the Internet can be spoofed.
Furthermore, these addresses can be found world-wide.

Although attackers can forge any field in the IP header, they
cannot easily control the number of hops an IP packet takes to
reach its destination. This is because the number of traversed
hops depends on the underlying network paths and routing
mechanisms. Driven by this observation, previous works [4],
[5] propose hop-count based defense mechanisms called Hop-
Count Filtering (HCF). An HCF defense can filter spoofed IP
traffic (e.g., TCP, UDP, ICMP, etc.) with an IP-to-Hop-Count
(IP2HC) mapping table. To guarantee correctness and prevent
pollution by attackers, the mapping table is only updated
by legitimate packets—for instance, we would monitor the
establishment procedures of TCP connections, and update the
table only using the connections that have been successfully
established. This table can then be used to filter spoofed
packets with inconsistent hop counts.

End-hostEnd-hostEnd-host

SwitchSwitch

End-host

HCF

NetHCF

End-host

HCF
End-host

HCF

Normal
Traffic

Spoofed
Traffic

Normal
Traffic

Spoofed
Traffic

CPU
NetHCF

(a) Existing HCF Scheme

End-hostEnd-hostEnd-host

SwitchSwitch

End-host

HCF

NetHCF

End-host

HCF
End-host

HCF

Normal
Traffic

Spoofed
Traffic

Normal
Traffic

Spoofed
Traffic

CPU
NetHCF

(b) NETHCF

Figure 1: NETHCF is a novel re-design of the HCF defense.

State-of-the-art HCF filtering mechanisms [4], [5] are all
located at the end hosts. Indeed, until recently, the conventional
wisdom has been that switch hardware must be simple, fixed,
and stateless. This necessarily means that the monitoring of
TCP establishment procedures has to be performed at the end
hosts. The key downside of these systems is that spoofed
packets cannot be filtered until they arrive at the destination
servers, which already incurs bandwidth waste, deployment
redundancy, and delayed setup of the full mapping table
(§II-B). Even if the packet filtering part of these systems can be
separated and installed in edge switches, interactions between
the switch and servers are unavoidable, bringing considerable
table updating delay and bandwidth resource consumption.

The emergence of programmable switches [6], [7] provides
an exciting opportunity to re-think this design. Programmable
switches can run attack detection and mitigation algorithms
inside the network, which we can leverage to design an in-
network defense that runs at line rate. Since the programmable
switching ASICs (Application-Specific Integrated Circuits)
can easily process a few billion packets per second (⇠Tbps
throughput) [8], [9], one switch could match the packet pro-
cessing power of tens to hundreds of servers. This would also
free up the available computation and memory resources on
end servers for application-level tasks. Besides, an in-network
system can filter spoofed traffic early, avoiding unnecessary
bandwidth waste. A switch-based design also has a network-
wide view of the traffic space, so it could set up the full
mapping table much faster than host-based designs. Note978-1-7281-2700-2/19/$31.00 2019 c� IEEE

that even by implementing the HCF scheme in server-based
middleboxes, some advantages such as low latency and jitter
that are crucial to latency-sensitive applications [10], [11] in
today’s data centers are hard to achieve; the key reason lies
in the notable performance gap between switching ASICs and
general computation resources (e.g., CPU).

However, applying traditional HCF techniques to a switch-
based design is non-trivial. In order to design a correct and
efficient in-network line-rate HCF, we must carefully address
several design challenges. For a HCF defense to take effect,
the switch must maintain a correct and up-to-date IP2HC
mapping table for to be looked up. Besides, it should also
adapt to network activity dynamics (e.g., attacks) quickly.
However, switching ASICs have limited on-chip memory and
a restrictive computational model, which makes it challenging
to store the full IP2HC mapping table, update the table in a
timely manner, and adapt to network dynamics quickly.

To address the challenges above, we present NETHCF, an
in-network spoofed traffic filtering system. As shown in Fig-
ure 1, different from traditional HCF designs, we decouple the
HCF defense into two complementary components. The data
plane cache runs on on switching ASICs, and the control plane
mirror has access to general-purpose computing resources.
The cache serves the “hot keys” (i.e., the legitimate packets),
at line rate in the data plane. The mirror processes the packets
that miss the cache, maintains the IP2HC mapping table, and
adjusts the state of NETHCF to adapt to network dynamics.
These two components work with each other to overcome their
limitations, achieving both correctness and efficiency. We have
implemented a prototype of NETHCF on a Barefoot Tofino
switch [6]. Our prototype and evaluation demonstrate that
NETHCF can achieve line-rate and adaptive spoofed traffic
filtering with only minimal overheads.

In summary, our contributions in this paper include:
• We analyze the limitations of the traditional HCF designs,

and identify new opportunities for a novel re-design on
programmable switching ASICs (§II).

• We propose NETHCF, a line-rate in-network spoofed
traffic filtering system. We decouple the traditional HCF
system into two complementary components, the data
plane cache and the control plane mirror. NETHCF
also aggregates the IP2HC mapping table to cache more
entries in the data plane, and designs several mechanisms
to adapt to end-to-end routing changes, IP popularity
changes, and network activity dynamics (§III).

• We have implemented a prototype of NETHCF, and
conducted extensive evaluations to show that NETHCF
is highly effective with negligible overheads (§V, §VI).

We then discuss several issues in §IV, describe related works
in §VII and conclude this paper in §VIII.

II. BACKGROUND AND MOTIVATION

In this section, we present more background on spoofed
packet filtering techniques and the HCF scheme, describe the
disadvantages of the existing HCF designs, and discuss why
programmable switches provide new opportunities.

Figure 2: End host-based HCF leads to bandwidth waste.

A. Background on HCF
Source address spoofing is among one of the most serious

problems that plague the Internet. Existing defenses can be
categorized into router-based and host-based defenses. Router-
based approaches install defense mechanisms inside routers
to trace the sources of attacks [12], [13], [14], [15], [16],
or detect and block the attack traffic in a coordinated man-
ner [17], [18], [19], [20], [21], [22], [23]. However, these
solutions require not only modifications to the routers, but
also coordination across routers or even networks. In contrast,
host-based approaches can be deployed much easier. End
systems, such as edge networks, small ISPs, data centers, or
enterprises, also have a natural incentive to deploy defense
mechanisms against spoofed traffic. Host-based approaches
use sophisticated source-discrimination schemes [24], [25],
[26], or reduce the resource consumption of each request [27],
[28], [29] to mitigate attacks.

HCF [4], [5] is a simple but effective host-based solu-
tion to this problem. It can validate incoming IP packets at
an Internet server without any cryptographic operations or
router modifications, making it lightweight and practical. HCF
also effectively breaks the cost asymmetry between attackers
and victims—victims can easily build up legitimate IP2HC
mappings for the defense, whereas attackers cannot easily
obtain the mapping between arbitrary IP address and its hop
count to the victims. Specifically, from the points of view
of victims, they can easily infer the hop-count information
by subtracting the final TTL from the initial TTL at the
destinations. Since these hop counts are determined by the
Internet routing infrastructure, this also makes it difficult for
attackers to use correct hop-count values in their attack traffic.

B. Problem Statement
Existing HCF designs are all located at the end hosts. For

instance, the original HCF proposal runs the defense inside
the Linux kernel and integrates it with the network stack.
However, there are several practical problems that hinder the
effectiveness of this design point.

First, existing HCF suffers from bandwidth waste. Spoofed
IP traffic cannot be filtered until it arrives at the end hosts. This
still consumes bandwidth resource of the victim networks and
cause performance drops. Such drops are not only to Internet
traffic but also west-east traffic across different servers (e.g.,
inter-service or control traffic) [30], [31], [32], [33], [34].

Table I: Resource consumptions of the original HCF scheme.

Traffic Load 25% 50% 75% 100%

CPU 46.31% 69.75% 99.64% 139.51%

SRAM 1.98GB 1.98GB 1.98GB 1.98GB

Figure 3: Slow setup of the original HCF design.

To validate this claim, we select three systems—Tripod [34],
StatelessNF [32] and FTMB [33]—for an experiment. In these
systems, each server runs some network functions (NFs), and
NF states are replicated among different servers to maintain
high availability. The HCF kernel module is deployed on each
server for defense. Figure 2 shows that, when spoofed traffic
arrives, although each server can filter most spoofed packets,
these packets have already consumed the network bandwidths.
This leads to network congestion and packet loss, which has
a detrimental effect on the deployed systems.

Second, existing HCF needs to be deployed on each end
host to conduct spoofed IP packet filtering, which not only
leads to deployment redundancy but also consumes general-
purpose computing resources (e.g., CPU, memory) at the end
hosts. This takes away valuable resources from application-
level tasks. We measure the resource consumption of the HCF
kernel module on the server, and show the results in Table I.
The server is equipped with a 40Gbps NIC and several CPU
cores, each with a minimum frequency of 1.2 GHz and a
maximum of 3.2 GHz. When the NIC load is 50%, the CPU
frequency has already reached its maximum. When the NIC
load is 75%, the HCF kernel module (excluding the normal
protocol stack) uses up an entire CPU core. In addition, the
HCF kernel module also requires 1.98 GB memory to store
the IP2HC table. Moreover, each server has to be equipped
with the full HCF kernel with the same CPU and memory
consumption redundantly.

Third, with the rapid growth of network traffic, modern data
centers often use load balancing to distribute large volumes of
traffic to clusters of servers [30], [31], [8]. Therefore, each
end host can only see a portion of incoming traffic, which
makes setting up a full IP2HC mapping table extremely slow.
This in turn would delay the effect of the HCF protection. In
Figure 3, the blue dotted line shows the ideal IP2HC setup time
if a defense sees the full traffic trace of the entire network;
the solid lines show the IP2HC setup time on each end host,
when the traffic is load-balanced to different numbers of hosts.

Switch
Fabric

Ingress
Pipelines

Egress
Pipelines

Ports

Packet Packet Header / Metadata,
Registers

IP2HC
MAT

Statistic
Mat

Routing
MATTCP

Monitor
MAT

Stage 1 Stage 2 Stage N

Match Action
src IP = 10.0.0.0 / 24 read_hc_with_index (0)

src IP = 192.168.0.5 / 32 read_hc_with_index (1)
… …

src IP = 192.56.1.0 / 24 read_hc_with_index (N - 1)

(a) Switch data plane architecture (b) Pipeline architecture

(c) Match-Action Table architecture

Figure 4: Programmable switch data plane.

As we can see, as the number of hosts increases, the speed
of setting up a IP2HC table on the host becomes slower, and
this will greatly delay the time for HCF to take effect.

An intuitive solution to address the problems above is
to implement HCF in in-network, server-based middleboxes.
However, software-based HCF has two fundamental limita-
tions. First, software-based packet processing has limited ca-
pacity, usually processing ⇠10 Gbps traffic or ⇠M packets per
second [35]. We can scale out the packet processing capacity
by adding more servers, but doing so also increases costs and
operational complexity. For example, handling a typical attack
traffic volume (⇠Tbps) [36] would require hundreds of servers.
Second, processing packets in software incurs high latency and
jitter, and it provides poor performance isolation. Software
processing adds a latency of 50us–1ms when handling as few
as 100K packets per second [37], [8]. This is problematic for
latency-sensitive applications [10], [11] in data centers today.
When software experiences a flash crowd, legitimate traffic
served by the software would also experience increased delays,
or unexpected packet drops, which makes things even worse.

C. Programmable Switches

Recent developments in Software-Defined Networking
(SDN) have resulted in programmable switching ASICs [38],
[6], [39] and domain-specific languages (e.g., P4 [40]) to
extend network programmability from the control plane to the
data plane. Compared to traditional fixed-function switches,
emerging programmable switches offer hardware programma-
bility without sacrificing performance. They also have sim-
ilar levels of power consumption and price with regular
switches [6]. The new hardware provides unique opportunities
to overcome the shortcomings of the traditional HCF design.

There are multiple ingress and egress pipelines in pro-
grammable switches, and each has multiple ingress and egress
ports (Figure 4(a)). When packet reaches one of the ingress
ports, it is first processed by the ingress pipeline, then switched

to one of the egress pipelines to be processed, and finally
sent to the specified egress port. Inside a pipeline, packets are
processed sequentially in each stage (Figure 4(b)), which has
its own dedicated resources such as match-action tables and
registers. Match-action tables match on certain header fields
or metadata of the packets, and perform programmable actions
(e.g., modifying header fields/metadata, read/write registers
or drop packets) based on the match results (Figure 4(c)).
Registers are used to store necessary data or intermediate states
to realize stateful packet processing.

With programmable switches and domain-specific lan-
guages like P4 [40], developers can customize the data plane
logic. To do this, programmers can write P4 programs to define
packet headers, build packet processing graphs, and specify the
match fields and actions of each table. The compiler provided
by switch vendors can compile the programs to binaries and
generate interactive APIs. The binaries are loaded into the data
plane, and the APIs are used by control plane applications to
interact with the data plane.

The programmable switching ASICs and P4 language make
it easy to implement customized packet processing logic at
Tbps. One constraint here is that the logic needs to fit into the
match+action model of switching ASICs. Developers need to
carefully design the processing pipelines of their programs
to meet the resource and timing requirements of switching
ASICs. The major constraints of the current switching ASICs
include [41], [9], [42], [43]: 1) the number of pipelines, and
the number of stages and ports in each pipeline; 2) the amount
of TCAMs (for wildcard and prefix matching of match-action
tables) and SRAMs (for prefix matching and registers) that
each stage can access; 3) reading and writing to registers
must satisfy some constraints as well, i.e., a program can
only access a register array from tables and actions in the
same stage; all registers in a stage must be accessed in
parallel; each register array can only be accessed once per
packet, with a stateful ALU to perform a simple function,
such as simultaneous read/write, conditional updates, and basic
arithmetic operations.

To summarize, programmable switching ASICs can process
packets with high throughput, low latency and jitter, and high
performance isolation, which provide unprecedented opportu-
nities for a better HCF design. But on the other hand, they
have their own limitations in the computational model and
on-chip resources. We must get around these limitations and
come up with careful designs to achieve our goal: serving the
legitimate traffic with low latency and filter the spoofed traffic
effectively.

III. OUR APPROACH: NETHCF
A. NETHCF Overview

While the on-chip memory size (TCAM and SRAM) in
the switching ASICs (50-100MB [8]) has grown rapidly in
recent years, it is still challenging to store the whole IP2HC
mapping table directly in the switching ASICs. A typical
IP2HC mapping entry should store the mapping from IP (32
bit) to hop-count (5 bit), thus simply storing the entire IP2HC

IP2HC
Inspecting

TCP Session
Monitoring

Data Plane

Cache

Mirror
Data Plane Handler Control Plane

Cache
Statistics

L2/L3
Routing

IP2HC
Organization

IP2HC
Statistics

Cache
Updating

Figure 5: The NETHCF architecture.

mapping table requires at least 232 ⇥ (32 + 5) bits (⇠10 GB)
in the switching ASICs. An intuitive approach would be to
store a small hash of the match field (IP) and handle hash
collisions using special processing. Although techniques for
resolving hash collisions exist (e.g., as in SilkRoad [8]), it is
still impossible to eliminate all hash collisions, which would
result in disruption of legitimate flows. As most malicious
flows do not have to follow normal TCP state transitions,
collisions will become a much worse problem. Moreover, even
after hashing, storing all the IP2HC mapping items would still
be difficult1. As a result, only a small portion of the IP2HC
mapping table can be stored, and dynamic updates have to be
taken to adapt to the traffic dynamics [44]. But if an incoming
packet cannot find its IP in the IP2HC mapping table on the
switch, then handling this packet would become a problem.

Our approach is to decouple the existing HCF design into
two parts, an HCF cache in the data plane (programmable
switching ASICs), and an HCF mirror in the control plane
(general-purpose computing resources, e.g., in server clusters).
Figure 5 shows this architecture. The data plane cache serves
most active and legitimate IPs at line rate. The control plane
mirror handles the remaining IPs with slower and more com-
plex logic, maintains the IP2HC mapping table, and updates
the state of NETHCF to adapt to network dynamics. These
two parts interact with each other through a set of coordination
mechanisms to achieve both the advantages of programmable
switching ASICs (high performance) and those of the general
computation resources (high flexibility).

The data plane cache handles the most frequent IPs in
the data plane and reports the packets whose IPs are not in
the switching ASICs to the control plane mirror. It mainly
consists of three new modules2, an IP2HC Inspecting module
which stores the hottest IPs of the whole IP2HC mapping
table and inspects these IPs at line rate, a TCP Session
Monitoring module which captures the legitimate hop-count
values and updates these IP2HC items if necessary, and a
Cache Statistics module which maintains real-time statistics
to maintain counters for each cached IP2HC mapping item,
and reports hot items to the control plane for cache updates.

1Silkroad [8] compresses both match field and action data of each entry,
and it can only store ⇠10M entries. This number is still far smaller than the
entire IP space (232), even with IP address aggregation.

2In NETHCF, L2/L3 Routing module is directly inherited from the tradi-
tional switch, and we omit its detail here.

As a complementary component, the control plane mirror
maintains a full view of IP2HC mapping and IP2HC statistics.
It also plays an important role in aggregating IP2HC entries
and handling the packets whose IPs miss the cache. More
critically, it is responsible for updating the state of NETHCF to
adapt to network dynamics, i.e., routing changes, IP popularity
changes, and network activity dynamics.

When NETHCF runs for the first time, the network operator
should collect traces of its clients to obtain both IP addresses
and the corresponding hop-count values. This initial collection
procedure should be long enough to achieve a high coverage
of the entire IP space. The duration for this would depend
on the amount and diversity of traffic the victim may receive.
For example, for popular sites, a few days could be sufficient,
while for lightly loaded sites, a few weeks might be needed.
After the initial collection procedure, the control plane mirror
organizes the IP2HC mapping table in a binary tree, and
aggregates the entries with an efficient aggregation algorithm
(§III-B). Meanwhile, the control plane mirror would constantly
insert new legitimate IP2HC items into the data plane cache
until the number of items in the data plane cache becomes
relatively stable.

After this initialization, NETHCF would continue adding
new entries to the IP2HC mapping table when previously
unseen IP addresses arrive (by sending packet digests to
the control plane). More importantly, at this relatively stable
running state, NETHCF needs to adapt to end-to-end routing
changes, IP popularity changes, and network activity dynamics
(§III-C). First, NETHCF should capture legitimate hop-count
changes and update the corresponding IP2HC mapping items
resulting from end-to-end routing changes in the Internet.
Second, NETHCF should accommodate the dynamic incoming
traffic and ensure that the hottest IPs are always stored in
the cache. Third, to minimize collateral damage and adapt
to attacks, NETHCF has two running states, a learning state
when packets with wrong hop-count are forwarded and a
filtering state when these packets are discarded. These two
states are switched according to the number of spoofed packets
which fail at IP2HC checking in a period of time.

B. IP2HC Mapping Table Organization
Although we can store one IP2HC mapping entry for each

IP address in the switch ASICs, this would consume a large
amount of memory and further stress the memory bottleneck.
We observe that many IP addresses with the same prefix
share the same hop-count values, e.g., addresses in the same
subnet. Therefore, we can aggregate the IP2HC mapping table
to utilize the limited on-chip memory more efficiently. More
importantly, this will help quickly build a complete IP2HC
mapping table with the hop-count value of one IP address
from each subnet.

To achieve an efficient and correct aggregation, we represent
the IP2HC mapping table in a binary tree, as shown in
Figure 6. Each leaf in the tree represents a valid IP address,
while the other nodes represent specific IP address prefixes.
Each node in the tree has three attributes, indicating whether it

is a representative node, its “hotness”, and its hop-count value.
We define the representative node as a basic item/entry for the
IP2HC mapping table, and only the representative nodes will
be stored in the data plane cache. Since it is common that a
24-bit address prefix is allocated to the same physical network,
we terminate the IP2HC mapping table aggregation at the 24-
bit address prefix, i.e., the depth of the binary tree is limited to
8, and the leaves of the tree represent the 256 valid IP address
inside a 24-bit address prefix. Our algorithm runs iteratively
on the tree. In each iteration, if two sibling nodes share the
common hop-count value, we aggregate them into their parent
node with the same hop-count value. To accelerate the building
of the IP2HC mapping table, we also aggregate the node whose
sibling node is empty. Then the parent node will be selected
as the representative node for its children node(s), assigned
with the same hop-count value. The hotness of a parent node
is the sum of all its children nodes’ hotness. In this way, we
can find the largest possible aggregation for a given set of IP
addresses. For example, the IP address range 166.111.8.128 to
166.111.8.255 can be aggregated into 166.111.8.128/25 prefix
if all these IP addresses share the same hop-count value. Note
that there is no dependency between different representative
nodes, so we can store some of them in the data plane cache
independently.

C. Adapting To Network Dynamics
NETHCF should accommodate end-to-end routing changes,

which would affect legitimate hop-count values. And it should
also adapt to traffic dynamics, since the popularity of IPs may
change over time. Besides, NETHCF should also minimize
potential collateral damage, so legitimate packets do not go
through control plane processing unnecessarily. To achieve
the first goal, NETHCF should capture the up-to-date IP2HC
varieties timely and update the items at both the data plane
cache and the control plane mirror immediately. To achieve the
second, NETHCF should capture the IP access statistics and
change the IP2HC mapping items in the data plane cache to
ensure cache hotness. For the third goal, we use two running
states to make NETHCF adapt to the attacks.

1) Capturing legitimate hop-count changes: Although hop-
counts have been shown to be relatively stable [45], [46], [5],
there are still cases when hop-counts may change, such as due
to routing instability and network address reallocation. These
changes should be captured as soon as possible to update
the IP2HC mapping in both the cache and the mirror. First,
the new IP2HC mapping information should be reported to
update the IP2HC mapping table in the control plane mirror
immediately. As shown in Algorithm 1, if the new IP2HC
mapping corresponds to a representative node (32 bit prefix),
we update it directly and aggregate it with its sibling node
iteratively when possible (Function aggregation()). Oth-
erwise, we split the tree and re-select the new representative
nodes (Function split()).

Second, it is also essential to update the hop-count of the
IP2HC mapping items in the data plane cache in a timely
manner. A strawman solution is to report the TCP handshake

0/24

0/25 128/25

0/26 64/26 128/26 192/26

0/32 1/32 2/32 3/32 5/324/32 255/32 256/32

Figure 6: The IP2HC table organization.

Cache
Statistics

IP2Index
Lookup HC

Inspect
Packets

Hit

Right

Wrong

Miss

Match Action

HCF
State

Check

Register

Forward
packets

Generate
digests

Learning

Filtering

Routing
Decision

Pass
Pass
Drop

Pass

Control Plane Mirror
Cache Updating State Switching

IP
Cache
Index

Learning

Filtering

TCP
Session
Monitor

Cache Updating Statistics

Figure 7: The workflow of the data plane cache.

Algorithm 1: IP2HC Partial Update Algorithm
1 Function aggregate(ip2hc, startNode)
2 curNode = startNode
3 while True do
4 sibNode = getSiblingNode(ip2hc, curNode)
5 if sibNode == Null or sibNode.hc == curNode.hc then
6 parNode = getParentNode(ip2hc, curNode)
7 if parNode == Null then
8 break
9 parNode.hotness = curNode.hotness +

sibNode.hotness
10 parNode.hc = curNode.hc, parNode.repF lag =

True
11 curNode.repF lag = False, sibNode.repF lag =

False
12 curNode = parNode

13 else
14 break

15 return
16 Function split(ip2hc, startNode, ipSrc, newHC)
17 curNode = startNode
18 while curNode.prefixLen < 32 do
19 nextBit = getBitOfIP (ipSrc, curNode.prefixLen + 1)
20 nextNode = getChildNode(ip2hc, curNode, nextBit)
21 otherNode = getChildNode(ip2hc, curNode,

nextBit�1)
22 otherNode.hc = curNode.hc, otherNode.repF lag =

True
23 nextNode.hc = newHC, nextNode.repF lag = True
24 curNode.repF lag = False, curNode = nextNode

25 return
26 Function partialUpdate(ip2hc, ipSrc, newHC)
27 currentNode = indexWithIP (ip2hc, ipSrc)
28 if currentNode.prefixLen == 32 then
29 currentNode.hc = newHC
30 aggregate(ip2hc, currentNode)

31 else
32 split(ip2hc, currentNode, ipSrc, newHC)

33 return

packets to the mirror and to update the hop-count of the IP2HC
mapping item with issued control messages. However, entry
insertions at the control plane are not atomic, and they take
several milliseconds [8]. This means that an IP address may
have many packets arrived before the control plane completes
entry insertion into the cache, and these packets may be
classified as spoofed packets. If NETHCF simply discards
these packets, this would cause a significant performance

penalty. To solve this problem, we introduce a valid flag
and a temporary bitmap in the IP2HC inspection module
(Figure 8). The TCP Session Monitoring module upstream first
monitors the TCP handshake packets using expected TCP state
transitions. To prevent pollution from attacks, only packets that
follow correct Seq/Ack number transitions are accepted as a
legitimate TCP connection3. After the handshake completes
and the connection establishes, the updated legitimate hop-
counts would be encapsulated into metadata and be delivered
to the subsequent stage. The subsequent stage at the switch
pipeline would update the corresponding hop-count register’s
valid flag as invalid, and record the new hop-count value in the
temporary bitmap immediately. For a packet whose matching
entry is invalid, if its hop-count value matches the temporary
bitmap, we regard it as valid; and vice versa. In this way,
we achieve the line-rate hop-count update in the switching
ASICs, avoiding potential race conditions and ensuring the
per-IP packet-processing consistency. Note that the hop-count
is generally stable, so these cases would be rare and the
temporary bitmap could be very small. And all the invalid
IP2HC entries in the data plane would be updated in the
upcoming update period.

2) Handling IP popularity changes: To cope with traffic
dynamics where IP popularity may change, the mirror of
NETHCF should frequently update the cache with the hottest
IP2HC mapping items. NetCache [9] provides an useful ap-
proach to realizing a similar goal. The data plane selects and
reports the hot keys from the uncached items with a heavy-
hitter detector, and the control plane compares the hits of the
heavy-hitter detectors with the counters of the cached items to
evict less popular keys and insert more popular keys. However,
this methodology does not apply to NETHCF, since NETHCF
is facing a more adversarial scenario. Simply adopting this
approach would lead to an attack, where legitimate hot IPs in
the data plane may be replaced by the fake IPs accessed delib-
erately by the attackers; this would degrade the performance
of the legitimate IPs and packets.

We observe that the main reason that makes this attack
possible is that the cache does not have a full view for

3One potential disadvantage is that the TCP Session Monitor module may
be vulnerable to TCP SYN flooding attacks, but actually spoofed SYN packets
replacing the cached legitimate SYN packets is a rare event, since the period
for the TCP handshake is very short.

the uncached IP2HC mapping and cannot determine whether
uncached IP access is legitimate or not with its hop-count.
To handle this, rather than providing a heavy-hitter detector
for uncached IPs/IP prefixes in the data plane cache, we
deliver the packets whose IPs/IP prefixes are uncached to
the control plane mirror for processing. Since the control
plane has the full views for the whole IP2HC mapping, it
can easily distinguish the fake ones from uncached legitimate
IP accesses. In particular, in the mirror, we maintain a hit
counter (i.e., hotness) for each legitimate IP and another
counter for packets that fail at IP2HC checking. To reduce
the communication cost between the data plane and the control
plane, only digests (IP address, IP TTL, and TCP flag) instead
of the whole packet are delivered to the control plane at the
learning state. At the filtering state, this cost is unavoidable.
For the control plane to identify the hottest IPs and update
the cache accordingly, it must obtain the statistics of the
cache. A straightforward approach is to adopt the classic
poll mode of SDN to fetch all these data plane counters. As
there are hundreds of thousands of items in the cache, it is
too expensive. To reduce this overhead, we handle this by
sharing the overhead across a period: when the counter of
an item is larger than a pre-determined threshold, the cache
reports the IP/IP prefix of the item to the mirror. A bitmap
is attached to remove duplicate hot item reports. The control
plane screens out the unreported items of the cache, and update
these unreported items in the data plane with the hottest items
from uncached IPs/IP prefixes.

3) Running States of NETHCF: Even though we have
already offloaded several IP2HC mapping components into
the switching ASICs, it is still impossible to offload all
of them. As a result, packets that miss the cache must be
directed to the mirror for decision (pass/drop), which would
cause additional delays for these packets. We observe that the
attack scenarios only occupy a small portion of all network
activities, thus NETHCF should not be active at all times.
Therefore, we introduce two running states for NETHCF to
make it adapt to network activity dynamics: the learning state
which captures the legitimate changes in hop-count and detects
the number of spoofed packets, and the filtering state which
actively discards the spoofed packets with wrong hop-counts.
By default, NETHCF stays in the learning state and monitors
the changes of hop-count without dropping packets. Upon
detecting a large number of spoofed packets in a specific
period (larger than threshold T1), NETHCF switches to the
filtering state and discards the spoofed packets. NETHCF stays
at the filtering state as long as a certain number of spoofed
packets are detected. When the number of spoofed packets
decreases and is less than another threshold T2, NETHCF
switches back to the learning state. Note that T2 should be
much smaller than T1 for better stability, which can avoid the
frequent transitions between two states. The filtering accuracy
of NETHCF depends on the setting of T1 and T2.

In the filtering state, we assume NETHCF has the whole
IP2HC mapping table for the complete IP addresses in the
mirror. However, this assumption may not always hold. There

HC Inspect
Cache
Index

TTL
Compute

HC

Saved
HC

HC
Result

HC Valid

HC Valid Bit

Temporary
Bitmap

HC Bit

A
N

D

O
R

C
M

P

Registers

TCP Session Monitor

0

1 2

State
Transition

SYN

SYN ACK

Ack=Seq+1

Mismatch

Mismatch Mismatch

Update HC
Write back

Figure 8: The HC inspect
table.

HC Inspect
Cache
Index

TTL
Compute

HC

Saved
HC

HC
Result

HC Valid

HC Valid Bit

Temporary
Bitmap

HC Bit

A
N

D

O
R

C
M

P

Registers

TCP Session Monitor

0

1 2

State
Transition

SYN

SYN ACK

Ack=Seq+1

Mismatch

Mismatch Mismatch

Update HC

Figure 9: The TCP session
monitor module.

are always new requests from unseen IP addresses, regardless
of how well the IP2HC mapping table is initialized or kept
up-to-date. To defend against malicious traffic using unseen
IP addresses in the filtering state, we must discard these
requests that have no corresponding entries in the IP2HC
mapping table under attacks. While undesirable, only in this
way could NETHCF ensure that legitimate packets from
known IP addresses are still served properly during an attack.
Certainly, such collateral damage could be extremely low if
the IP2HC mapping table becomes more and more complete
(i.e., if NETHCF spends more time in the learning state).

D. Putting It All Together
Data plane cache pipeline. The data plane cache is the
core component of NETHCF. It mainly hosts (1) an IP2HC
Inspecting module to inspect the validity of packets, (2) a
TCP Session Monitoring module to capture the changes of
legitimate hop-counts and update the hop-count values at
line rate, (3) a Cache Statistic module to provide essential
legitimate IP hit and spoofed IP hit statistics for cache update
and running state switching. The overall structure of the cache
is shown in Figure 7. The IP2HC inspecting module is located
at two separated stages of the pipeline. An IP2Index lookup
table first matches on the IP address and gives a cache index
as the action data. Then the cache index would be used as
the index to extract the hop-count value from the hop-count
register array for packet hop-count checking (Figure 8). A
valid bit is attached to each entry of hop-count register array
to indicate whether this entry is still valid. Along with the
hop-count register array, there is a temporary bitmap, which
is used to record the valid hop-count values for invalid IPs/IP
prefixes. The TCP Session Monitoring module consists of two
register arrays, one for TCP seq/ack number and the other
for TCP state flags. Only flows which strictly conform to
legitimate TCP state transitions are allowed to update the hop-
count register array (Figure 9). The Cache Statistics module
is composed of a counter array, a bitmap and a spoofed-
packet counter. When a packet hits the cache and passes the
hop-count checking, the counter array increases the value in
the corresponding cache index location by one. If this value
is above the threshold configured by the control plane, this
index will keep being marked as hot before the counters are
refreshed by the control plane. The bitmap is used to remove
the duplicate reports. If the hop-count checking fails, the

spoofed-packet counter increases by one. The spoofed-packet
counter is reported to the control plane periodically.
Control plane mirror. The control plane mirror serves as a
complementary part for the data plane cache, thus it realizes all
the packet processing logic as the cache does, except that this
view is global. More importantly, it maintains the binary tree
based data structure to record the aggregated IP2HC mapping
table. Besides, it maintains a unique mapping from IP/IP prefix
to hop-count index, which coordinates with the hop-count
array to issue the mapped entries for the IP2Index lookup
table and the hop-count register array in the data plane cache.
It also maintains an IP2HC mapping items management table,
which records whether each representative node is in the data
plane, its counter, and a heap pointer. We maintain a heap to
quickly find the hottest entries in the uncached representative
nodes. There is also a spoofed-packet counter in the control
plane mirror, which records the number of packets failing at
the hop-count checking to adjust the state (learning/filtering)
of NETHCF.

IV. DISCUSSION

NETHCF filters spoofed IP packets with inconsistent hop
counts, and it shares a similar threat model as the origin HCF
scheme [5]. From the algorithm level, it also shares similar
limitations as the original HCF scheme, e.g., it is difficult to
handle Network Address Translator (NAT) scenarios, where
multiple hop-count values correspond to the same IP address.
We also refer interested readers to the original paper on the
robustness of NETHCF against various evasion techniques.
NETHCF mainly improves the performance of the original
end host based HCF scheme with new system-level designs,
so we mainly discuss these aspects.
Deployment. In real-world deployment scenarios, the spoofed
traffic is usually dispersed and high-volume, which may ex-
ceed the capability of one server. To handle this, the control
plane mirror can be deployed in a cluster of servers [47], which
communicates with the switch control plane agent to update
the entries in the data plane cache. Each server in the cluster
would host a portion of uncached spoofed IP traffic, which
would achieve high scalability. In this way, NETHCF achieves
the goals that serving the legitimate traffic with low latency
and filtering the spoofed traffic effectively.
Resource constraints. In the testing of our prototype, we find
that the main bottleneck does not come from the throughput of
the cache/mirror channel. Instead, NETHCF mainly stresses
the memory resources. This may become a potential attack
vector to our NETHCF system. Fortunately, recent designs
have proposed to couple programmable switches with external
DRAM in servers to alleviate the resource pressure [48]. This
would help NETHCF cache more (even complete) IP2HC
mapping entries in the data plane, and mitigate this potential
attack.

V. IMPLEMENTATION

We have implemented an open source prototype of
NETHCF, including all components of the cache and the

Table II: Replayed traffic workloads.

Traffic Avg. Flow Length Avg. Packet Size Size

1 BigFlow 19.0 packets/flow 451B/packet 1.50GB
2 SmallFlow 3.3 packets/flow 291B/packet 1.60GB
3 Enterprise 9.5 packets/flow 622B/packet 1.74GB

mirror described in §III4.
The cache is implemented with ⇠1K lines of P4 [40] code

for the Barefoot Tofino ASIC [6]. The IP2Index Lookup Table
has 256K entries in total, with a sub-table to store aggregated
entries and another sub-table for 32-bit un-aggregated IP
address. Correspondingly, the size of the hop-count register (5-
bit for hop-count value, 1-bit for valid flag) array is also 256K.
Since legitimate hop-count changes happen rarely, we set the
temporary bitmap with a size of 1024. For the Cache Statistic
module, the hits counter (8-bit) array and the filtering bitmap
is also 256K. The TCP Session Monitoring Table contains two
register arrays, one for TCP flags (2-bit) and another for TCP
seq/ack number (4-byte), each with 1M slots. Note that the
size of TCP Monitoring Table should be larger than that of
IP2HC Table, because each IP may have multiple connections.
All of these above result in only a small portion of TCAM
and SRAM occupation (§VI-D), leaving enough space for
traditional network processing. For TCP Session Monitoring
Table, we use built-in hash functions in P4 on both 5-tuple and
reverse 5-tuple5, and perform XORing on two hash values to
represent a bidirectional connection. Furthermore, we reuse
the L2/L3 Routing module from traditional switches and just
add pass/drop decision function for it.

The control plane mirror is written in ⇠3K lines of Python
code. Currently it runs on the switch control plane directly
leveraging the general computation resources on the Tofino
switch, because we find that our Tofino switch has 8 Intel(R)
Pentium(R) CPU D1517 @1.60GHz cores and 8 GB memory,
which are sufficient to accommodate the requirements of the
basic experiments. As we discussed, one could also implement
the control plane mirror in a cluster of servers to achieve high
scalability even under high-volume spoofed traffic. We leave
this as future work.

VI. EVALUATION

Our evaluation seeks to answer the following key questions:
• How does NETHCF perform compared with the original

HCF [5]?
• How effective are the techniques and optimization we

have designed in NETHCF?
• What are the resource utilization and overhead of

NETHCF?

A. Experimental Setup
Our testbed is composed of one 3.3Tb/s Barefoot Tofino

switch and two servers, each of which is equipped with 12

4Due to the non-disclosure agreement with Barefoot, we only open the
source code of our BMv2 version [49]: https://github.com/NetHCF/NetHCF.

5The 5-tuple means (ipSrc, ipDst, protocol, portSrc, portDst), and we denote
(ipDst, ipSrc, protocol, portDst, portSrc) as the reverse 5-tuple.

Figure 10: Bandwidth savings with
NETHCF.

Figure 11: Setup speed for the IP2HC
mapping table.

Figure 12: Effectiveness of the IP2HC
aggregation mechanism.

Figure 13: Effectiveness of the line-rate
hop-count updating.

Figure 14: Effectiveness of the
NETHCF cache update mechanism.

Figure 15: Communication overhead
between cache and mirror.

Intel(R) Xeon(R) E5-2698 v4 CPUs and 128GB memory. The
two servers are connected to the switch via 40Gbps Intel
XL710 NICs. In particular, one server runs an Apache HTTP
server with default settings, and the other one is used as
the normal client or traffic generator, running wget, iperf
or tcpreplay tools. In our experiments, we reset bitmap
and all counters in the cache statistics module every three
seconds. Our workload traffic is collected from CAIDA [50],
including an Enterprise traffic trace, a BigFlow traffic trace,
and a SmallFlow traffic trace, for an extensive evaluation on
traces with different characteristics (Table II). To simulate an
advanced attacker, we generate spoofed traffic whose hop-
count distribution follows a Gaussian distribution (µ = 16.5,
� = 4) given in [5], so that more attack packets may happen
to have correct hop-counts.

B. Performance Improvement

First, we run wget to generate normal TCP traffic and
replay spoofed traffic on the client machine simultaneously
to show the effectiveness of NETHCF. Figure 10 shows that
the server only receives few spoofed packets. This is because
NETHCF detects the attack and switches to filtering state to
adapt to network activity dynamics immediately. Compared
with HCF, by pushing intelligence into the network, NETHCF
is able to prevent attack traffic from entering the host network
and preserve bandwidth for legitimate packets.

Then, we add three more servers with HCF and replay
the workload traffic traces from the client, using ECMP to
distribute the traffic to the four servers. The results for the
three traces are very similar, so we only show the result for
the Enterprise traffic trace. As shown in Figure 11, the IP2HC
mapping table of NETHCF is set up faster than that of HCF,
since NETHCF can view the full traffic space. The total size
of IP2HC on four hosts is much larger than that of NETHCF,
which means there are plenty of identical entries for IP2HC
mapping table on end hosts. In other words, NETHCF can
avoid performing duplicate work.

C. Optimization Effectiveness
IP2HC mapping table aggregation. We demonstrate the
effectiveness of the IP2HC aggregation technique in Figure 12.
For the control plane, aggregation significantly reduces the
number of IP2HC entries that need to be maintained, saving
considerable memory resources. More importantly, for the data
plane, aggregation allows the cache to store hop-count values
for more IP addresses and improves the cache hit rate, leading
to fewer packets transferred to the mirror. Especially for the
BigFlow traffic, with aggregation, the size of IP2HC table
becomes smaller than the capacity of the cache, so the entire
IP2HC table can be put into the cache.
Adapting to legitimate hop-count changes. To show the
effectiveness of NETHCF in handling hop-count changes,
we analyze and compute the ratio of dropped packets at the

Table III: Resource utilization.

IP2HC
Inspecting

TCP Session
Monitoring

Cache
Statistic Total

Computing
Tables 6.77% 9.38% 2.08% 18.23%
sALUs 6.25% 4.16% 10.42% 20.83%

HashBits 5.35% 1.62% 0.96% 7.93%
VLIWs 4.95% 1.69% 1.30% 7.94%

Memory
SRAM 20.42% 28.65% 2.81% 51.88%
TCAM 33.68% 0.00% 0.00% 33.68%

server side. As shown in Figure 13, those solid lines represent
the control plane hop-count update mechanism with different
traffic traces, and the dotted line represents NETHCF which
updates the hop-count values at line rate. As we can see from
this figure, when the attack starts (filtering state), the control
plane update strategy would cause 0.2% packet losses because
of temporary inconsistent hop-counts (§III-C1), while line-
rate hop-count update of NETHCF avoids this and keeps no
packets dropped.
Adapting to IP popularity changes. To evaluate the effec-
tiveness of the NETHCF cache update mechanism, we replay
the spoofed traffic and the Enterprise workload traffic simulta-
neously under the three different cache updating mechanisms,
and select the percentage of both legitimate and hot entries
in the cache as the metric. Figure 14 demonstrates that the
update mechanism of NETHCF performs well all the time,
while that of NetCache [9] falls short as a result of attacks
(§III-C2). This indicates that NETHCF can adapt well to IP
popularity changes even in adversarial scenarios. If we do not
update the cache, just few entries for long connections are
continuously hot while most entries may not produce a match
any more.

D. Micro Benchmarks

Resource utilization. Table III shows the resource usage of
NETHCF in our Tofino switch. As we can see, NETHCF
occupies less than 20% of computational resources, and uses
about one-third of the TCAM and half of the SRAM. This
is because the Barefoot Capilano software suite compiles the
sub-table (§V) storing aggregated IP2Index entries into TCAM
and the sub-table storing un-aggregated entries whose match
field is exactly IP address into SRAM. Even with all the data
plane components, NETHCF still leaves enough space for
traditional network processing, and this can even be further
optimized with more tuning.
Communication between mirror and cache. To measure the
communication overhead between the two parts of NETHCF,
we replay the Enterprise traffic as workload and initiate the
attack at 10s. We use the bytes of traffic transferred from the
cache to the mirror as the metric. As shown in Figure 15, in
the learning state (0⇠10s), only a small portion of traffic is
steered from the cache to the mirror. When the attack starts
and NETHCF switches to the filtering state (after 10s), a large
portion of spoofed traffic needs to be processed in the mirror.

Table IV: Latency results.

Processing Path Processing Latency

L2/L3 Routing 0.256 µs
L2/L3 Routing + NETHCF cache 0.347 µs
L2/L3 Routing + NETHCF mirror 27.983 µs
NETHCF with IP2HC Aggregation 30.106 µs

Original HCF 27.579 µs

This is because the IPs for most spoofed traffic are not stored
in the cache, so the spoofed traffic requires the involvement
of the mirror to conduct the filtering.
Processing latency. Table IV shows that NETHCF adds negli-
gible latency for most legitimate packets under both states. In
particular, the extra delay of NETHCF for processing packets
in the cache is just tens of nanoseconds, while for the mirror
it needs tens of microseconds. Actually, in a typical gateway
(or ToR switch), 256K items are sufficient to serve for almost
all the concurrent legitimate IPs [8], and the IPs forwarded
to the mirror would most be unfamiliar or malicious. Besides,
this overhead only happens when NETHCF is in the filtering
state, i.e., under attacks, which only occurs infrequently. In
conclusion, the average latency for legitimate traffic is far
smaller than that of the existing HCF scheme, which benefit
latency-sensitive applications in today’s data centers.

VII. RELATED WORK

Besides the most relevant anti-spoofing works discussed
in Section §II-A, our work is also inspired by the current
trends in networking and distributed systems, which leverage
programmable switching ASICs to accelerate various appli-
cations: layer-4 load balancing [8], [51], key-value store [9],
coordination services [52], [53], congestion control and load
balancing protocols [54], fast connectivity recovery [55],
network monitoring and measurement tasks [43], [42], [56],
[57]. These applications achieve much better performance
with lower costs than counterparts implemented on commodity
servers. Different from these works, NETHCF uses switching
ASICs to achieve a different goal, spoofed IP traffic filtering,
and adopts new techniques and optimization to achieve our
goal.

VIII. CONCLUSION

In this paper, we identify the new opportunity to improve the
current spoofed packet filtering practice using programmable
switching ASICs, and propose NETHCF, a line-rate in-
network spoofed packet filtering system. We decouple the HCF
system into two components, aggregate the IP2HC mapping
table to cache more entries in the data plane cache, and
design several effective mechanisms to make NETHCF adapt
to end-to-end routing changes, IP popularity changes, and
network activity dynamics. We have implemented a prototype
of NETHCF in a Barefoot Tofino switch and conducted
extensive experiments. Evaluations demonstrate that NETHCF
can achieve line-rate and adaptive spoofed IP packet filtering
with only minimal overheads.

IX. ACKNOWLEDGEMENT

We thank anonymous ICNP reviewers for their valuable
comments. We also thank Jiasong Bai and Mingwei Xu from
Tsinghua University, Bingyang Liu from Huawei Technologies
Co. Ltd. for joining some discussions of this paper. Guanyu,
Menghao, Chang and Xiao are also sincerely graceful for their
former Ph.D. advisor, Jun Bi from Tsinghua University, for
his strong support. This work is supported by the National
Key R&D Program of China (2017YFB0801701), the National
Science Foundation of China (No.61872426) and Tsinghua
Scholarship for Overseas Graduate Studies. It is also based
upon work supported in part by the National Science Founda-
tion (NSF) under Grant No. 1617985, 1642129, 1700544, and
1740791. Menghao Zhang is the corresponding author.

REFERENCES

[1] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[2] Cloudflare, “The real cause of large ddos - ip spoofing,” https://blog.
cloudflare.com/the-root-cause-of-large-ddos-ip-spoofing/, 2018, [On-
line; accessed Oct. 11, 2018].

[3] CAIDA, “State of ip spoofing,” https://spoofer.caida.org/summary.php,
2018, [Online; accessed Oct. 16, 2018].

[4] C. Jin, H. Wang, and K. G. Shin, “Hop-count filtering: an effective
defense against spoofed ddos traffic,” in Proceedings of the 10th ACM
conference on Computer and communications security. ACM, 2003,
pp. 30–41.

[5] H. Wang, C. Jin, and K. G. Shin, “Defense against spoofed ip traffic us-
ing hop-count filtering,” IEEE/ACM Transactions on Networking (ToN),
vol. 15, no. 1, pp. 40–53, 2007.

[6] B. Networks, “Tofino: World’s fastest p4-programmable ethernet switch
asics,” https://barefootnetworks.com/products/brief-tofino/, 2018, [On-
line; accessed Oct. 13, 2018].

[7] XPliant, “Xpliant ethernet switch product family,” https://www.cavium.
com/xpliant-ethernet-switch-product-family.html, 2018, [Online; ac-
cessed Oct. 19, 2018].

[8] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. ACM, 2017, pp. 15–28.

[9] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 121–136.

[10] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation.” in OSDI, vol. 16, 2016, pp. 249–264.

[11] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn, Y. Liron, J. Padhye,
S. Raindel, M. H. Yahia, and M. Zhang, “Congestion control for large-
scale rdma deployments,” in ACM SIGCOMM Computer Communica-
tion Review, vol. 45, no. 4. ACM, 2015, pp. 523–536.

[12] J. Li, M. Sung, J. Xu, and L. Li, “Large-scale ip traceback in high-speed
internet: Practical techniques and theoretical foundation,” in Security and
privacy, 2004. Proceedings. 2004 IEEE symposium on. IEEE, 2004,
pp. 115–129.

[13] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for ip traceback,” in ACM SIGCOMM Computer Communication
Review, vol. 30, no. 4. ACM, 2000, pp. 295–306.

[14] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer, “Hash-based ip traceback,” in ACM
SIGCOMM Computer Communication Review, vol. 31, no. 4. ACM,
2001, pp. 3–14.

[15] D. X. Song and A. Perrig, “Advanced and authenticated marking
schemes for ip traceback,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 2. IEEE, 2001, pp. 878–886.

[16] R. Stone et al., “Centertrack: An ip overlay network for tracking dos
floods.” in USENIX Security Symposium, vol. 21, 2000, p. 114.

[17] J. Ioannidis and S. M. Bellovin, “Implementing pushback: Router-based
defense against ddos attacks.” in NDSS, vol. 2, 2002.

[18] A. D. Keromytis, V. Misra, and D. Rubenstein, “Sos: Secure overlay ser-
vices,” in ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4. ACM, 2002, pp. 61–72.

[19] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang, “Save: Source ad-
dress validity enforcement protocol,” in INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 3. IEEE, 2002, pp. 1557–1566.

[20] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
ACM SIGCOMM Computer Communication Review, vol. 32, no. 3, pp.
62–73, 2002.

[21] K. Park and H. Lee, “On the effectiveness of route-based packet filtering
for distributed dos attack prevention in power-law internets,” in ACM
SIGCOMM computer communication review, vol. 31, no. 4. ACM,
2001, pp. 15–26.

[22] D. K. Yau, J. Lui, F. Liang, and Y. Yam, “Defending against distributed
denial-of-service attacks with max-min fair server-centric router throt-
tles,” IEEE/ACM Transactions on Networking (TON), vol. 13, no. 1, pp.
29–42, 2005.

[23] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: secure and adopt-
able source authentication,” in Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation. USENIX
Association, 2008, pp. 365–378.

[24] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A new
facility for resource management in server systems,” in OSDI, vol. 99,
1999, pp. 45–58.

[25] X. Qie, R. Pang, and L. Peterson, “Defensive programming: Using
an annotation toolkit to build dos-resistant software,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 45–60, 2002.

[26] O. Spatscheck and L. L. Peterson, “Defending against denial of service
attacks in scout,” in OSDI, vol. 99, 1999, pp. 59–72.

[27] D. J. Bernstein, “Syn cookies,” https://cr.yp.to/syncookies.html, 2018,
[Online; accessed Oct. 23, 2018].

[28] A. Juels and J. G. Brainard, “Client puzzles: A cryptographic counter-
measure against connection depletion attacks.” in NDSS, vol. 99, 1999,
pp. 151–165.

[29] X. Wang and M. K. Reiter, “Defending against denial-of-service attacks
with puzzle auctions,” in Security and Privacy, 2003. Proceedings. 2003
Symposium on. IEEE, 2003, pp. 78–92.

[30] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale
load balancing,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 207–218.

[31] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer,” in 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16), 2016, pp. 523–535.

[32] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), 2017, pp. 97–112.

[33] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo et al., “Rollback-
recovery for middleboxes,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 45, no. 4. ACM, 2015, pp. 227–240.

[34] M. Zhang, J. Bi, K. Gao, Y. Qiao, G. Li, X. Kong, Z. Li, and H. Hu,
“Tripod: Towards a scalable, efficient and resilient cloud gateway,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 570–
585, 2019.

[35] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016, pp.
203–216.

[36] A. T. ARTICLES, “5 most famous ddos attacks,” https://www.
a10networks.com/resources/articles/5-most-famous-ddos-attacks, 2018,
[Online; accessed Jan. 19, 2019].

[37] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2015.

[38] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, pp. 99–
110, 2013.

[39] B. Networks, “Second-generation of worlds fastest p4-programmable
ethernet switch asics,” https://barefootnetworks.com/products/
brief-tofino-2/, 2019, [Online; accessed Mar. 13, 2019].

[40] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[41] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakr-
ishnan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proceedings of the
2016 ACM SIGCOMM Conference. ACM, 2016, pp. 15–28.

[42] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith, “Scaling
hardware accelerated network monitoring to concurrent and dynamic
queries with* flow,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, 2018.

[43] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Turboflow:
information rich flow record generation on commodity switches,” in
Proceedings of the Thirteenth EuroSys Conference. ACM, 2018, p. 11.

[44] J. Bai, J. Bi, M. Zhang, and G. Li, “Filtering spoofed ip traffic
using switching asics,” in Proceedings of the ACM SIGCOMM 2018
Conference on Posters and Demos. ACM, 2018, pp. 51–53.

[45] V. Paxson, “End-to-end routing behavior in the internet,” IEEE/ACM
Transactions on Networking (ToN), vol. 5, no. 5, pp. 601–615, 1997.

[46] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “Bgp routing stability
of popular destinations,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment. ACM, 2002, pp. 197–202.

[47] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A distributed
control platform for large-scale production networks.” in OSDI, vol. 10,
2010, pp. 1–6.

[48] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external
memory for switch data planes,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks. ACM, 2018, pp. 1–7.

[49] P. L. Consortium et al., “Behavioral model (bmv2),” 2014, [Online;
accessed Oct. 10, 2018].

[50] CAIDA, “The caida anonymized internet traces 2016 dataset,” https:
//www.caida.org/data/passive/passive\ 2016\ dataset.xml, 2018, [On-
line; accessed Oct. 19, 2018].

[51] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless datacenter
load-balancing with beamer,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), vol. 18, 2018, pp. 125–139.

[52] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and I. Stoica,
“Netchain: Scale-free sub-rtt coordination,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, 2018.

[53] J. Li, E. Michael, and D. R. Ports, “Eris: Coordination-free consistent
transactions using in-network concurrency control,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 104–120.

[54] N. K. Sharma, A. Kaufmann, T. E. Anderson, A. Krishnamurthy, J. Nel-
son, and S. Peter, “Evaluating the power of flexible packet processing
for network resource allocation.” in NSDI, 2017, pp. 67–82.

[55] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti, S. Vissicchio,
and L. Vanbever, “Blink: Fast connectivity recovery entirely in the data
plane,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), 2019, pp. 161–176.

[56] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh,
V. Jeyakumar, and C. Kim, “Language-directed hardware design for
network performance monitoring,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 85–98.

[57] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford, and
W. Willinger, “Sonata: query-driven streaming network telemetry,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 2018, pp. 357–371.

