
Clara: Performance Clarity for SmartNIC Offloading

Yiming Qiu
Rice University

Qiao Kang
Rice University

Ming Liu
University of Washington

Ang Chen
Rice University

ABSTRACT

The gap between CPU and networking speeds has motivated the de-
velopment of SmartNICs for near-network processing. Recent work
has shown that many network functions can benefit from Smart-
NIC offloading, but identifying the best porting strategy requires
hand-tuning and workload-specific optimizations. The developer
has no easy way to understand the ported performance beforehand.

We are developing a tool called Clara, whose goal is to provide
performance clarity for SmartNIC offloading. Clara can analyze
an unported NF in its original form, and predict its performance
when ported to a SmartNIC target. This automated workflow en-
ables the developer to easily customize offloading strategies, obtain
performance insights, and identify suitable SmartNIC models for
her workloads. Clara’s key technical roadmap is to emulate a com-

piler, lowering an unported program to a SmartNIC target logically,
without performing code generation. This results in a mapping
from core NF logic to SmartNIC hardware resources, and Clara
then plugs in NIC parameters to predict the performance for spe-
cific workloads. We describe our progress so far, and report initial
validation results with Netronome hardware.

KEYWORDS

SmartNICs; Network functions; Performance prediction

ACM Reference Format:

Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen. 2020. Clara: Performance
Clarity for SmartNICOffloading. In Proceedings of the 19th ACMWorkshop on

Hot Topics in Networks (HotNets ’20), November 4ś6, 2020, Virtual Event, USA.

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425929

1 INTRODUCTION

High-speed networks are the backbone of datacenters, and their
data rates are consistently increasing over the years [9, 19]. As a
result, server CPUs spend more and more cycles on packet pro-
cessing, and the consumed resources are no longer available to
revenue-generating tenant VMs. Worse, the gap between CPU and
networking speeds will further widen in the post-Moore era [18, 22].
This has motivated the development of SmartNICs [1, 4, 5, 8] for
near-network processing.

Unlike traditional NICs with hardwired offloading modules (e.g.,
TSO/LRO/checksum), SmartNICs have programmable hardware

Qiu and Kang contributed to this work equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotNets ’20, November 4ś6, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8145-1/20/11. . . $15.00
https://doi.org/10.1145/3422604.3425929

cores, specialized packet engines, and a wide variety of domain-
specific accelerators. Researchers have leveraged SmartNICs as a
general-purpose offloading platform, and developed key/value store
applications [33, 43], microservices [35], and other types of network
functions [27, 44]. As SmartNICs stay close to the packet datapath,
offloading could bring latency reduction and improve cost efficiency.
Their embedded cores are also more energy-efficient than server
CPUs, driving down the operational cost of cloud datacenters. As
such, we have witnessed a burgeoning SmartNIC ecosystem, with a
range of vendors moving into the market (e.g., Netronome, Marvell,
Nvidia, Intel).

However, as a computing substrate, SmartNICs represent a sig-
nificant departure from the familiar programming model and per-
formance characteristics of x86 servers. First off, SmartNICs have
heterogeneous architectures that integrate general-purpose cores,
accelerators, and a complex memory hierarchy. Program perfor-
mance is predicated upon a developer’s understanding of the ar-
chitectural details. Furthermore, vendors have adopted drastically
different SmartNIC designs (e.g., programmable ASICs vs. SoC vs.
FPGAs) and programming models (e.g., C [1, 4, 8], P4 [8], or Ver-
ilog [5]). As each platform requires a host of new skills, developer
experience does not easily transfer across platforms. The combined
effect is that a developer needs to carefully reason through layers
of complexity to understand SmartNIC performance. This perfor-
mance opacity has led to a manual and cumbersome development
process for NF offloading.

Indeed, existing work [35, 43] resorts to hand optimizations and
workload-specific benchmarking to identify the best offloading
strategy. The developer often does not know beforehand how well
a particular NF would perform if ported to a target hardware. She
needs to first rewrite the host server program against the SmartNIC-
specific toolchain, perform hardware benchmarks on a representa-
tive workload, and re-optimize the ported program when necessary.
If her assumptions about the workloads, architectural details, or
the NFs are amiss, multiple rounds of hand-tuning would be re-
quired. Worse, after considerable investment, she might only find
that the offloading benefits do not justify the rewriting efforts in
the first place. Therefore, researchers and developers would sig-
nificantly benefit from an automated workflow for understanding
ported performance.

In this work, we take a first step toward performance clarity
in SmartNIC offloading. Our goal is to assist developers in under-
standing ported NF performance on a target NIC, without actually
requiring them to port the program first. Our tool, Clara, analyzes
the original unported NF, and predicts its offloading performance. A
developer can target this analysis to different SmartNIC backends
and workloads, even before she has the SmartNIC hardware at hand.
She could rely on Clara’s outputs to determine whether or not to
offload a particular NF, how to perform an effective port, or which
SmartNIC models are best suited for their workloads. We envision

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

16

that such automated support would considerably accelerate the
development cycles when offloading NFs to SmartNICs.

The design of Clara raises a set of technical challenges, including
capturing heterogeneous NIC platforms, handling unported NFs,
and predicting offloading performance. As the highest-level chal-
lenge, Clara must perform predictive analysis before a SmartNIC
program even exists. To address this, our insight is that the tradi-
tional roles of a compiler come close to our needÐwith the caveat
that compilers do not predict performance and that compiling un-
ported programswould inevitably fail. Our technical roadmap there-
fore is to mimic a compiler. Clara attempts to lower the core NF
function to a logical SmartNIC model. But instead of performing
code generation, it only produces a mapping from NF logic to hard-
ware resources. Clara estimates the best mapping by encoding a
set of ILP (integer linear programming) constraints that emulate
hand-tuning and optimizations when porting a program. It then
plugs in performance parameters that it has collected about the
NIC hardware to predict NF performance on a particular workload.

Clara is ongoing work, so we are continuing to develop a full
solution to these challenges. The rest of this paper outlines the
technical roadmap, and presents initial results as validation.

2 MOTIVATION

In this section, we further motivate our problem and outline the
workflow of Clara.

2.1 Understanding performance is hard

Performance is a key goal in SmartNIC offloading, but understand-
ing offloading performance before porting an NF is a daunting task.
A myriad of factors come into play.

SmartNIC backends. SmartNICs come in great diversity [17].
Competing designs have endorsed ARM or MIPS SoC architec-
tures [1, 4], FPGAs [5], and programmable ASICs [8, 28]. Moreover,
their programming models range from P4 [7] to C variants [6] to
Verilog/VHDL [20]. SmartNIC programs are developed and com-
piled using vendor-specific toolchains; and the eventual binary
may run on general-purpose cores, packet processing engines, and
specialized accelerators. Moreover, some SmartNICs directly sit
on the datapath to process every single packet, and other off-path
designs require explicit packet steering by a NIC switch. Program
performance is highly dependent on SmartNIC architectures.

Offloading strategies. When porting a program to a Smart-
NIC, the developer needs to reorganize core NF logic and data
structures, and reason about how NF components might map to the
underlying hardware. Therefore, the best offloading strategy may
not be obvious beforehand. Further, the ported programs would
vary from developer to developer, and their performance depends
on a developer’s knowledge about NIC details. For instance, on
Netronome Agilio, the latency of LPM (longest prefix match) func-
tions could vary by orders of magnitude depending on whether the
program uses the łflow cachežÐa hardware accelerated SRAM table.
Implementations that use the flow cache significantly outperform
those that use software match/action processing in DRAM for cache
hits. As another example, computing TCP header checksum for a
1000-byte packet at the ingress accelerator only takes 300 cycles, as
packet data is immediately available. On the other hand, the same

1

2

4

8

16

NAT DPI FW LPM HH

N
o

rm
a

liz
e

d
 l
a

te
n

c
y

Five NFs; each NF has 2-4 different versions

Figure 1: Performance variability of five network functions

on a Netronome SmartNIC. For each NF, we benchmark two

to four different versions with the same core logic. One net-

work address translation (NAT) variant uses the checksum

accelerator and the other does not. Deep packet inspection

(DPI) variants handle different packet sizes. Firewall (FW)

variants store flow state in different memory locations and

have varying flow distributions. Longest prefixmatch (LPM)

has different numbers of match/action rules and optionally

uses the flow cache. Heavy hitter detection (HH) has vary-

ing packet rates. All NF latencies are normalized against the

fastest version.

functionality at network processor cores would require 1700 extra
cycles for accessing memory.

Traffic workloads. Offloading performance also depends on
the NF workloads, such as the number of concurrent flows, packet
types, sizes, and arrival rates. To start with, an NF may process
packets differently depending on their header types. For instance,
TCP SYN packets may require flow state setup, and TCP packets
may incur extra L4 checksum operations than UDP. Moreover, the
same operation may also take different amounts of time depending
on the packet sizesÐe.g., checksum, DPI. Flow distributions, on the
other hand, could result in different working set sizes, which in
turn cause different memory access patterns and cache behaviors.
Existing work on SmartNIC offloading resorts to workload-specific
benchmarking to identify the best strategies [35, 43].

Interference. Performance reasoning becomes even more chal-
lenging for co-resident NFs. Memory-intensive NFs (e.g., programs
with large flow tables)may pollute the cache for other NFs. Compute-
intensive NFs (e.g., DPI) may cause head-of-line blocking at accel-
erators. Furthermore, the degrees of parallelism, the queueing disci-
plines and capacities of interconnects, and the scheduling policies
all contribute to the overall NF performance.

The combination of these factors often leads to unexpected per-
formance behaviors when an NF is ported to a SmartNIC. As con-
crete evidence, Figure 1 shows a set of benchmarks on a Netronome
SmartNIC for five NFs; we benchmark each NF with 2ś4 different
implementations of the same core logic, or using different work-
loads. Depending on the use of accelerators, memory locations,
flow table sizes, packet sizes, and packet rates, the resulting NF
performance can vary up to 13.8×.

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

17

F0

F1

F2

NPU

Logical NIC Ex: Netronome

(a) SmartNIC graph models

AES-128

bar

foo
xyz

cksum

(b) Capturing NF diversity

eBPF

Clara IR

(c) Mapping CIR to logical NIC

50 50

83 12

12

45

(d) Generating performance profiles

lat= 119lat= 190

lat= 12

lat= 24

lat= 74

lat= 95

lat= 145

avg=154.5

Ingress

Crypto

CTM

EMEM

cksum

foo

bar

xyz

AES-128

flow_tab

payload

pkt_hdr

…

NPUs

…

IMEM

D E

B C

A

F
Click

Figure 2: The technical roadmap of Clara and the key challenges. (a) Clara constructs a logical SmartNIC model that can be

parameterized to capture a range of diverse NIC backends. (b) Clara transforms an input NF into an Intermediate Representa-

tion (CIR). (c) Clara maps the CIR to the logical SmartNIC, while optimizing for an performance objective. (d) Clara outputs

the performance profile for the input NF on a particular workload.

2.2 State of the art & Limitations

To understand offloading performance, today we have no better ap-
proach than first porting the NF to a SmartNIC and then performing
hardware benchmarks [27, 33, 35, 43, 44].

Benchmarking is the de-facto approach to understanding pro-
gram performance, but in the case of NF offloading, the SmartNIC
program does not exist beforehand. The original NF may be written
in general-purpose C, and it might rely on different NF framework
libraries (e.g., Click or eBPF APIs). The developer has to first port
the NF, redesign the logic and data structures, and explore a range
of offloading strategies until the best plan emerges. This is a bur-
densome process, and may be full of surprises if assumptions about
hardware, workloads, or NF programs are slightly off.

We envision a fundamentally different approach to this problem.
If we can develop support for predicting offloading performance,
even if imperfectly, the developer could still gain valuable insights
prior to porting that she otherwise does not have. She could rely on
the performance predictions to decide whether or not to perform
offloading, identify a promising porting strategy, or to choose a
suitable SmartNIC model for her target workloads.

2.3 Clara: Automated performance clarity

The Clara project aims to achieve the above goal and provide au-
tomated performance clarity. The conceptual challenge that Clara
needs to address is to predict the performance of an unported NF
on a hypothetical NIC target. As we discussed, Clara’s technical
roadmap is to mimic a compiler, and Figure 2 shows the workflow.

First, Clara develops a logical NIC model to capture the archi-
tectural diversity of SmartNICs. Next, Clara builds a performance
profile for each SmartNIC using hardware microbenchmarks, in-
cluding memory latency, accelerator throughput, and other perfor-
mance metrics. In order to handle NF diversity, Clara transforms
an unported NF into an Intermediate Representation (IR) using
LLVM [32], and then analyzes the IR to identify code blocks that
may be mapped to the NIC as a whole. Clara estimates the best
mapping by encoding a set of constraints from the logical NIC
model, performance parameters, and the NF code blocks. Solving
these constraints would produce a mapping that maximizes ported
performance. Finally, Clara takes in a workload description (e.g.,

a pcap trace) and analyzes how packets would traverse the NF
mapping. This results in latency predictions for the workload, or
idealized throughput estimations.

3 SOLUTION SKETCH

In this section, we sketch the technical roadmap that we are follow-
ing in developing Clara.

3.1 The logical SmartNIC model

Clara uses a logical SmartNIC model (LNIC) to capture heteroge-
neous SmartNIC architectures in a logically uniform representation.
Clara models an LNIC as a graph ⟨V,E⟩, where V is the set of nodes
and E the set of edges. A node could be a compute unit, a memory

region, or switching hub. Compute units are typedÐsome may be
header processing units, others may be domain-specific accelera-
tors, and yet others may be general-purpose cores. Memory regions
have different sizes and access latencies. Memory regions could be
shared by multiple compute units, and the access latency varies
depending on where the access is issued. Switching hubs include
embedded NIC switches and traffic managers.

Edges represent memory buses and on-chip interconnects. An
edge from a compute unit to a memory region c↔m denotes mem-
ory accesses, and it is weighted to capture NUMA (non-uniform
memory access) effects. An edgem↔M , on the other hand, rep-
resents the memory hierarchy and data eviction/fetch directions.
Compute-to-compute edges c1→c2 are unidirectional: they describe
the staged or pipelined execution for incoming packets. Edges from
and to a switching hub may involve packet queues, which are pa-
rameterized by queueing capacities and disciplines.

This graph-based model captures the majority of existing NIC
architectures, although FPGA-based SmartNICs [5, 20] could in
principle operate at a finer granularity. FPGAs are programmable at
the gate level, and the classic approach is to use high-level synthesis
(HLS) techniques to łplace and routež bitstreams on the hardware.
Existing work has studied FPGA performance prediction and its
respective challenges [49]. That said, when FPGAs are specifically
used for SmartNIC functionalities, the workflow may be different.
Existing projects first develop coarser-grained accelerators on the

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

18

FPGAs (e.g., parsers) [34], and then program against these łcoresž.
Our LNIC model reflects the latter development workflow.

Example: Netronome Agilio, for instance, has network process-
ing units (NPUs), checksum units, and crypto accelerators. NPUs
form islands, and each island has Cluster Target Memory (CTM)
that is shared by all enclosed NPUs. Outside the islands are Internal
and External Memory units (IMEM and EMEM), which have higher
capacities and access latencies. Each NPU also has local register
files and private memory. NPUs, accelerators, and IMEM/EMEM
are interconnected by a distributed switch fabric.

3.2 Parameterizing the LNIC

The LNIC model describes the łskeletonž of the hardware archi-
tecture, and our next step is to annotate it with a set of hardware-
specific parameters. This includes a) architectural parameters, such
as memory sizes, degrees of parallelism, queue capacities, and b)
performance parameters, such as memory access latencies, com-
pute unit speeds (e.g., number of cycles for an instruction), and
accelerator throughput. These annotations are NIC-dependent, so
Clara needs to obtain them from hardware specifications or mi-
crobenchmarking, as a one-time effort for each SmartNIC. These
benchmarking efforts are shielded from Clara users, and the ob-
tained parameters for a NIC are reusable across NFs.

Most (though not all) SmartNIC databooks include architectural
parameters. To obtain missing parameters for a NIC component,
one possible approach is to perform latency/throughput tests [40],
gradually increasing the offered load to locate the łkneež of the la-
tency curve. For instance, we might observe that memory accesses
to <2 kB regions have near constant latency, but it dramatically
increases beyond that as memory is spilled to the next level of
hierarchy. Estimating performance parameters, on the other hand,
would require us to develop a set of łunit-testž benchmark programs
that are NF-independent. These benchmarks should comprehen-
sively cover compute cores, all levels of memory hierarchy, and the
switching hubs of a NIC backend.

Outside the context of SmartNICs, the architecture and HPC
communities have studied instruction or code block benchmarking
extensively [10, 15, 47, 53, 54]. More recently, researchers have
also applied machine learning to extract performance models from
training programs [36]; similar techniques have been demonstrated
to work well for GPU program performance [13]. Clara should be
able to borrow from both lines of work.

Example: For instance, for Netronome Agilio, each NPU has
4 kB local memory, which takes 1-3 cycles to access. The CTM on
each island has 256 kB memory, and takes 50 cycles to access. The
IMEM and EMEM are 4 MB and 8 GB, and their access latencies are
up to 250 and 500 cycles, respectively; the EMEM also has a 3MB
cache. Packets smaller than 1 kB will reside in the CTM entirely,
but the tails of larger packets will spill to the EMEM. In terms
of compute units, each NPU core has 8 threads, and an incoming
packet is always bound to a single thread. Our microbenchmarks
further show that, in terms of compute performance, metadata
modifications typically take 2-5 cycles on the NPU, and parsing
packet headers takes around 150 cycles because header data needs
to be copied from CTM to local memory.

3.3 Transforming NFs to dataflow graphs

So far, we have focused on developing SmartNIC models and iden-
tifying their performance parameters. Next, we describe how Clara
handles NF diversity by generating an abstract representation. Al-
though most network functions are written in general-purpose C,
recent work has also considered alternatives such as eBPF [2] and
P4 [7]; depending on the NF framework, the programs may also
rely on framework-specific APIs, e.g., Click [29] or eBPF [2] calls.
To handle such diversity, Clara abstracts away these details by ana-
lyzing the NFs at a lower level of representation. It transforms the
input NF using LLVM [32] into a Clara Intermediate Representation
(CIR). The CIR contains hardware-independent bytecode instruc-
tions, and framework-specific API calls can be easily recognized
from the bytecode. Clara substitutes these calls with a set of łvirtualž
calls, and binds them to the SmartNIC backend later in the analysis.

Next, Clara converts the CIR into a dataflow graph, where nodes
represent program code blocks, and edges represent the traffic direc-
tion. LLVM can natively identify basic blocks, which is a sequence of
bytecode instructions without branches or jumpsÐthey are always
executed as a whole. However, sometimes semantic information
may be better captured at a coarser granularityÐe.g., header parsing
might require multiple branches. The LLVM infrastructure has sup-
port for various types of bytecode łpattern matchingž [45], which is
originally developed for bytecode rewriting and optimizations. One
possible solution in Clara is to develop specialized pattern match-
ing algorithms for SmartNIC components, e.g., header parsing or
accelerator invocation.

Example: Consider NFs that are written in the Click frame-
work. Clara would rely on API calls to ‘network_header’ to pat-
tern match header parsing code blocks. It will substitute this call
to ‘vcall_get_hdr’ in the CIR, which will later be mapped to the
match/action engine in the SmartNIC.

3.4 Mapping dataflow graphs to LNIC

Next, Clara mimics the role of a compiler and attempts to lower
the CIR dataflow graph to the parameterized LNIC. It estimates
the best mapping by emulating a set of optimizations to capture
different porting strategies and hand-tuning. Specifically, Clara
identifies such a mapping by encoding a set of ILP (integer linear
programming) constraints, and invoking a solver to find an optimal
solution that maximizes performance (e.g., minimizing latency).

Clara first encodes a set of compute constraints to capture the
mapping Π between dataflow nodes and LNIC compute units. For
instance, 0/1 variable xi j encodes whether the i-th dataflow node
is mapped to the j-th compute unit, and the constraint is that ev-
ery dataflow graph must be mapped to exactly one compute unit:
∀i,

∑
xi j = 1. If there exists a directed edge from one dataflow

node t to another node k , the same direction must be preserved in
the pipelined execution: Π[k] ≤ Π[t], assuming pipelined compute
units are numbered in ascending order. The cost of a particular map-
ping depends on the performance of code blocks on their assigned
compute units, e.g., by summing up the cost of every instruction
in a code block based on the NIC performance parameters. Clara
then encodes a set of memory constraints Γ for memory allocation
strategies. This captures the fact that NF state could be placed at

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

19

 0

 200

 400

 600

 800

 1000

 1200

 5000 10000 15000 20000 25000 30000

L
a
te

n
c
y
 (

K
 c

y
c
le

s
)

Number of table entries

Predicted

Actual

(a) LPM

 0

 100

 200

 300

 400

 500

 600

 700

 200 400 600 800 1000 1200 1400

L
a
te

n
c
y
 (

K
 c

y
c
le

s
)

Packet payload size (bytes)

Predicted

Actual

(b) VNF

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 200 400 600 800 1000 1200 1400

L
a
te

n
c
y
 (

c
y
c
le

s
)

Packet payload size (bytes)

Predicted

Actual

(c) NAT

Figure 3: Initial validation on the prediction accuracy of Clara on four NFs.

different levels of memory hierarchy, and a placement strategy will
incur a specific cost in terms of access latencies. For switching hubs,
Clara formulates another set of constraints Θ that encode their
queueing capacities and latencies. Solving Π, Γ, and Θ with a solver
will yield a mapping that emulates a compilation process.

Additional considerations may arise if the SmartNIC datapath
lacks support for certain x86 instructions. For instance, some Smart-
NIC cores do not have floating-point units (FPUs) [35], so such
operations need to be emulated in software. Clara accounts for
such mappings by capturing these instructions and emulation per-
formance as part of the LNIC model.

Example: For instance, the ILP solver may map header process-
ing logic to Netronome’s NPUs, checksum functions to an accelera-
tor, and place the flow table in the IMEM if it is under 3 MB.

3.5 Predicting performance

Now, Clara is almost ready to predict NF performance using the
computed mapping, with another hurdle that different network
packets may exercise different parts of the NF, and their perfor-
mance characteristics will necessarily vary. Moreover, some NFs
may exhibit different processing behaviors based on the packet
historyÐe.g., a stateful firewall. Therefore, the user may provide a
łworkload profilež to describe the target trafficÐe.g., a pcap trace or
a more abstraction profile such as ł80% TCP vs. 20% UDPž or ł10 k
concurrent TCP flows with 300-byte average packet sizež. Clara can
then simulate the execution for the set of packets, and identify how
a packet traverses the parameterized LNIC. Alternatively, Clara
could leverage symbolic execution [14, 26] to comprehensively enu-
merate all NF behaviors, and identify the packet types that would
exercise each behavior. This would enable Clara to generate a set
of performance predictions per packet type.

Developers may be interested in different types of performance
predictions. Our first step for Clara is to analyze NF latency, simi-
lar as existing work [26]. Extending the prediction for throughput
analysis would require additional enhancements [36], e.g., to model
scheduling, parallelism and packet queueing behaviors. Extending
Clara for energy analysis would require modeling energy consump-
tion [35].

An interesting class of challenges arises from interference. For
instance, if multiple NFs share the same SmartNIC substrate, there
may be resource contention. As a starting point, Clara could slice
the LNIC to model, for instance, łhalfž of the NIC. In the case where
LNIC łhalvesž leave footprints in each other’s resources (e.g., cache

contention), Clara should be able to leverage advances in the real-
time systems community [42, 50] for worst-case execution time
(WCET) analysis, which takes resource contention into account.

Example: For instance, Clara might output a profile stating that,
for a particular NF, TCP and UDP packets would incur different
amounts of processing cycles. It may also state that, TCP SYN
packets experience higher latency, but the following packets will
hit the flow cache and therefore have lower latency.

4 PRELIMINARY VALIDATION
Clara is still ongoing work, but we have already developed an early
prototype and performed a set of initial experiments. The Clara
prototype now has LNIC support for Netronome Agilio CX 40Gbps
SmartNICs. We have obtained the performance parameters using
a set of microbenchmark programs that we have developed. They
measure the performance of 1) packet parsers, 2) checksum units,
3) flow cache, 4) header and metadata modifications, 5) atomic and
bulk memory loads and stores, as well as 6) a subset of general-
purpose compute instructions. We found that the NPU cores do not
perform out-of-order execution, so they have stable performance
parameters; moreover, the performance parameters for some com-
ponents are functions over the data size or typeÐe.g., the latency
for longest prefix match grows with the number of table entries.
Clara uses LLVM to transform C-based NF programs into CIR.

Our experiments are conducted in a Ubuntu 18.04 server with
six Intel Xeon E5-2643 Quad-core 3.40 GHz CPUs, 128 GB RAM, 1
TB hard disk, and a Netronome SmartNIC. We have evaluated three
NFs: a) LPM, which performs longest prefix matches on incom-
ing packets; b) VNF, a function chain that includes DPI, metering,
header modifications, and flow statistics; and c) NAT, a network
address translator that maintains a per-flow table and performs
table lookups for header translation for each received packet. These
NFs were originally written in C using DPDK libraries; we invoke
Clara on the core packet handler functionsÐthe DPDK processing
framework itself is not included in this analysis, as the SmartNIC im-
plementation does not have this overhead. We have also manually
ported these programs to Netronome using its development toolkits.
These programs are used as the baselines for understanding the
prediction accuracy of Clara.

Figure 3 shows the latency prediction results for the unported
NFs, and compares them with the actual latency after manually
porting them to the SmartNIC.We have used 60k packets per second
as the traffic rate, and computed the average latency across 1 million

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

20

packets. For LPM, VNF, and NAT, we have observed a prediction
inaccuracy of 12%, 3%, and 7%, respectively. This initial set of results
seems encouraging, as the prediction is reasonably close to the
benchmarked performance. As future work, we plan to study a
wider range of NFs, SmartNIC models, and traffic profiles. With
more complex programs and traffic profiles, Clara’s accuracy might
decrease, but even imperfect predictions could still serve as useful
performance hints.

5 RELATEDWORK

Performance profiling. Researchers have developed a line of
work on program performance profiling. These tools can analyze
program performance for GPUs [24, 25, 46], FPGAs [49], mobile
SoCs [23], and specialized hardware accelerators [12, 48]. Clara is
particularly related to program profilers that predict cross-platform
performance: Yang et al. [51] predict overall program performance
by measuring partial executions on different platforms. PHAN-
TOM [52] measures sequential execution time on a single node
to predict parallel performance at a larger scale. CERE [15] ex-
tracts representative codelets from LLVM code for performance
prediction in different high-performance computing architectures.
GROPHECY [37] predicts GPU performance by manually extract-
ing program skeletons of the CPU program and predicting the
performance of each component. XAPP [13] uses machine learning
techniques to predict GPU program performance. Compared to
these work, Clara considers an emerging class of hardware, Smart-
NICs, and specifically focuses on NF performance.

NF performance. High-performance packet processing is an
important goal for network functions. Clara is particularly related
to two recent projects: BOLT [26] and CASTAN [41]. BOLT predicts
the latency profile of DPDK-based network functions written for
x86 platforms. CASTAN builds a high-accuracy CPU cache model,
and uses symbolic execution to enumerate program behaviors for
worst-case execution time analysis. In comparison, Clara focuses
on predicting ported performance for SmartNIC offloading. Recent
NF offloading projects have highlighted the differences between
SmartNIC and x86 platforms [27, 33, 35, 43, 44]; and the opacity of
ported performance motivates the need for a tool like Clara.

Heterogeneous architectures.Hardware heterogeneity has re-
ceived extensive attention from the architecture community, as the
post-Moore era ushers in many domain-specific architectures and
accelerators [22]. The use of ILP to map network functions in Clara
is inspired by compute scheduling on spatial architectures [38] and
multicore platforms [31]. Another project, HPVM [30], develops a
parallel programming model and compiler that rely on LLVM to
generate code for GPUs, CPUs, and vector hardware. Compared
to HPVM, Clara only mimics a compiler, but it does not perform
code generation; rather, it relies on an estimated mapping to predict
performance.

Network processors. Researchers and practitioners have de-
veloped various types of network processor architectures in the
past. MGR [39] designs a 50Gbps IP router using Alpha proces-
sors instead of ASIC as forwarding engines for programmability.
Commercial offerings in the past such as Intel IXP [3] and IBM
PowerNP [11] were also specialized for network flow processing.
Nova [21] and Shangri-La [16] develop programming languages and

compilers for Intel IXP network processors. The recent resurgence
of SmartNICs is closely related to these earlier efforts in network
processor architectures.

6 SUMMARY AND FUTUREWORK

SmartNICs have become a popular offloading platform for net-
work functions (NFs). Existing work has demonstrated performance
benefits for NF offloading, but the performance characteristics of
offloaded programs are opaque prior to porting. In order to under-
stand performance behaviors of an NF, the developer needs to first
port it to the target SmartNIC and then perform workload-specific
hardware benchmarks. Clara is a first step toward automated per-
formance clarity for SmartNIC offloading. It aims to analyze an
unported NF program in its original form, and predict its perfor-
mance on a NIC backend with a particular workload. The resulting
performance hints can guide developers to decide whether to of-
fload a particular NF, how to perform an effective port, and which
SmartNIC model may be best for the workload.

Many interesting research problems remain open as we develop a
full solution to Clara. First, developing prediction techniques for NF
throughput or energy consumption would require extending Clara
to capture core parallelism, queueing capacity and discipline, head-
of-line blocking, and energy models [35]. Second, another useful
task is to understand the performance of partial offloading, where
the NF is partitioned into two componentsÐone resident in the
SmartNIC and another in server CPUs. Capturing partial offloading
performance requires reasoning about the host/NIC interconnect
(e.g., PCIe), and cache coherence protocols (or the lack thereof).
The architecture community has developed related work [12] that
Clara should be able to borrow from. Moreover, the current re-
sults we have obtained are based on a Netronome SmartNIC; SoC-
based SmartNICs have general-purpose cores therefore a closer
programming model to x86 CPUs, whereas FPGA-based SmartNICs
are just the opposite. Related, some SmartNICs only support run-
to-completion packet processing, whereas others can additionally
support pipelined processing. It would be interesting to consider a
wider range of SmartNICs in Clara. Last but not least, predicting
NF performance is only a starting point; developers can benefit
even further if Clara can generate concrete porting strategies for
different NF components as offloading hints.

7 ACKNOWLEDGMENTS

We thank our shepherd, Craig Partridge, and the anonymous review-
ers for their valuable feedback. We also thank James Bornholt, Kuo-
Feng Hsu, Katie Lim, Ratul Mahajan, Srinivas Narayana, Mangpo
Phothilimthana, and Jiarong Xing for their insightful comments.
This work was partially supported by NSF grants CNS-1801884 and
CNS-2016727.

REFERENCES
[1] BlueField SmartNIC Ethernet. https://www.mellanox.com/products/BlueField-

SmartNIC-Ethernet.
[2] eBPF Introduction. https://www.netronome.com/technology/ebpf/.
[3] Intel IXP processors. https://www.intel.com/content/dam/www/public/us/en/d

ocuments/specification-updates/ixp4xx-product-line-network-processors-spe
c-update.pdf.

[4] LiquidIOII Smart NICs. https://www.marvell.com/products/ethernet-adapters-a
nd-controllers/liquidio-smart-nics.html.

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

21

[5] Mellanox Innova-2 Flex Open Programmable SmartNIC. https://www.mellanox
.com/products/smartnics/innova-2-flex/.

[6] Netronome datapath programming tools. https://www.netronome.com/products
/datapath-programming-tools/.

[7] The P4 language repositories. https://github.com/p4lang.
[8] SmartNIC Overview - Netronome. https://www.netronome.com/products/smart

nic/overview/.
[9] IEEE P802.3bs 400 GbE Task Force. Adopted Timeline. http://www.ieee802.org/

3/bs/, 2018.
[10] A. Abel and J. Reineke. Uops. info: Characterizing latency, throughput, and

port usage of instructions on intel microarchitectures. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2019.

[11] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac, G. T. Davis, L. Fr-
elechoux, M. Heddes, A. Herkersdorf, A. Kind, J. F. Logan, M. Peyravian, M. A.
Rinaldi, R. K. Sabhikhi, M. S. Siegel, and M. Waldvogel. IBM PowerNP network
processor: Hardware, software, and applications. IBM Journal of Research and
Development, 47(2.3):177ś193, 2003.

[12] M. S. B. Altaf and D. A. Wood. LogCA: A performance model for hardware
accelerators. IEEE Computer Architecture Letters, 14(2):132ś135, 2014.

[13] N. Ardalani, C. Lestourgeon, K. Sankaralingam, and X. Zhu. Cross-architecture
performance prediction (XAPP) using CPU code to predict GPU performance. In
Proceedings of the 48th International Symposium on Microarchitecture, 2015.

[14] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In 8th USENIX Symposium
on Operating Systems Design and Implementation, 2008.

[15] P. D. O. Castro, C. Akel, E. Petit, M. Popov, and W. Jalby. CERE: LLVM-based
codelet extractor and replayer for piecewise benchmarking and optimization.
ACM Transactions on Architecture and Code Optimization, 12(1), 2015.

[16] M. K. Chen, X. F. Li, R. Lian, J. H. Lin, L. Liu, T. Liu, and R. Ju. Shangri-La: Achiev-
ing high performance from compiled network applications while enabling ease
of programming. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2005.

[17] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum. λ-nic: Interactive server-
less compute on programmable smartnics. In IEEE International Conference on
Distributed Computing Systems, 2020.

[18] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, 2011.

[19] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K. Chandrappa, S. Chaturmohta,
M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Rain-
del, T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg. Azure Accelerated
Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation, 2018.

[20] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. Andrewartha,
H. Angepat, V. Bhanu, A. Caulfield, E. Chung, et al. Azure accelerated networking:
Smartnics in the public cloud. In 15th USENIX Symposium on Networked Systems
Design and Implementation, 2018.

[21] L. George and M. Blume. Taming the IXP network processor. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation,
2003.

[22] J. L. Hennessy and D. A. Patterson. A new golden age for computer architecture.
Communications of the ACM, 62(2):48ś60, 2019.

[23] M. Hill and V. J. Reddi. Gables: A roofline model for mobile SoCs. In Proceedings
of the IEEE International Symposium on High Performance Computer Architecture.
IEEE, 2019.

[24] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. In Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009.

[25] S. Hong and H. Kim. An integrated GPU power and performance model. In
Proceedings of the 37th Annual International Symposium on Computer Architecture,
2010.

[26] R. Iyer, L. Pedrosa, A. Zaostrovnykh, S. Pirelli, K. Argyraki, and G. Candea. Per-
formance contracts for software network functions. In 16th USENIX Symposium
on Networked Systems Design and Implementation, 2019.

[27] G. P. Katsikas, T. Barbette, D. Kostic, R. Steinert, and G. Q. Maguire Jr. Metron:NFV
service chains at the true speed of the underlying hardware. In 15th USENIX
Symposium on Networked Systems Design and Implementation, 2018.

[28] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and A. Krishnamurthy. High
performance packet processing with FlexNIC. In Proceedings of the 21st Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, 2016.

[29] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click modular
router. ACM Trans. Comput. Syst., 18(3):263âĂŞ297, 2000.

[30] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and S. Adve.
HPVM: Heterogeneous parallel virtual machine. In Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2017.

[31] M. Kudlur and S. Mahlke. Orchestrating the Execution of Stream Programs on
Multicore Platforms. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2008.

[32] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of CGO, 2004.

[33] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and L. Zhang. Kv-
direct: High-performance in-memory key-value store with programmable nic.
In Proceedings of the 26th Symposium on Operating Systems Principles, 2017.

[34] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng, and E. Chen.
ClickNP: Highly flexible and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM SIGCOMM Conference,
2016.

[35] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana. E3: Energy-efficient
microservices on smartnic-accelerated servers. In Proceedings of ther 2019 USENIX
Annual Technical Conference, 2019.

[36] C. Mendis, A. Renda, S. P. Amarasinghe, and M. Carbin. IIthemal: Accurate,
portable and fast basic block throughput estimation using deep neural networks.
In Proceedings of International Conference on Machine Learning, 2019.

[37] J. Meng, V. A. Morozov, K. Kumaran, V. Vishwanath, and T. D. Uram. Grophecy:
GPU performance projection from cpu code skeletons. In Proceedings of Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2011.

[38] T. Nowatzki, M. Sartin-Tarm, L. De Carli, K. Sankaralingam, C. Estan, and B. Ro-
batmili. A General Constraint-Centric Scheduling Framework for Spatial Archi-
tectures. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2013.

[39] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hath-
away, P. Herman, A. King, S. Kohalmi, et al. A 50-Gb/s IP router. IEEE/ACM
Transactions on Networking, 6(3):237ś248, 1998.

[40] N. M. Patel. Half-latency rule for finding the knee of the latency curve. ACM
Performance Evaluation Review, 43:28ś29, 2014.

[41] L. Pedrosa, R. Iyer, A. Zaostrovnykh, J. Fietz, and K. Argyraki. Automated
synthesis of adversarial workloads for network functions. In Proceedings of the
2018 ACM SIGCOMM Conference, 2018.

[42] L. T. X. Phan, M. Xu, and I. Lee. Cache-aware interfaces for compositional real-
time systems. In Proceedings of Workshop on Compositional Theory and Technology
for Real-Time Embedded Systems, 2015.

[43] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T. Anderson.
Floem: A programming system for NIC-accelerated network applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation, 2018.

[44] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Bruschi, D. Sanvito,
G. Siracusano, A. Capone, M. Honda, et al. Flowblaze: Stateful packet processing
in hardware. In 16th USENIX Symposium on Networked Systems Design and
Implementation, 2019.

[45] S. Sarda and M. Pandey. LLVM Essentials. O’Reilly, 2015.
[46] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc. A performance analysis framework

for identifying potential benefits in GPU applications. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Parallel Programming,
2012.

[47] A. Snavely, L. Carrington, N. Wolter, and J. Labarta. A framework for perfor-
mance modeling and prediction. In Proceedings of the ACM/IEEE Conference on
Supercomputing, 2002.

[48] A. Sriraman and A. Dhanotia. Accelerometer: Understanding acceleration op-
portunities for data center overheads at hyperscale. In Proceedings of the 25th
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2020.

[49] Z. Wang, B. He, W. Zhang, and S. Jiang. A performance analysis framework for
optimizing opencl applications on fpgas. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture. IEEE, 2016.

[50] M. Xu, L. T. X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and C. Gill. Cache-aware com-
positional analysis of real-time multicore virtualization platforms. In Proceedings
of IEEE Real-Time Systems Symposium, 2013.

[51] L. T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of
parallel applications using partial execution. In Proceedings of the ACM/IEEE
Conference on Supercomputing. IEEE, 2005.

[52] J. Zhai, W. Chen, and W. Zheng. Phantom: Predicting performance of parallel
applications on large-scale parallel machines using a single node. ACM Sigplan
Notices, 45(5):305ś314, 2010.

[53] R. Zhang, Z. Budimlić, and K. Kennedy. Performance modeling and prediction
for scientific Java applications. In Proceedings of IEEE International Symposium
on Performance Analysis of Systems and Software, 2006.

[54] W. Zhang, M. Hao, and M. Snir. Predicting HPC parallel program performance
based on LLVM compiler. Cluster Computing, 20, 2017.

Session 1: Network Modeling and Experimentation HotNets '20, November 4–6, 2020, Virtual Event, USA

22

	Abstract
	1 Introduction
	2 Motivation
	2.1 Understanding performance is hard
	2.2 State of the art & Limitations
	2.3 Clara: Automated performance clarity

	3 Solution Sketch
	3.1 The logical SmartNIC model
	3.2 Parameterizing the LNIC
	3.3 Transforming NFs to dataflow graphs
	3.4 Mapping dataflow graphs to LNIC
	3.5 Predicting performance

	4 Preliminary Validation
	5 Related Work
	6 Summary and Future Work
	7 Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20201016104519
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 474
 343

 Fixed
 Up
 3.6000
 0.0000

 Both
 4
 AllDoc
 4

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

