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ABSTRACT
When debugging an SDN application, diagnosing the prob-
lem is merely the first step – the operator must still imple-
ment a solution that works, and that does not cause new
problems elsewhere. However, most existing SDN debug-
gers focus exclusively on identifying the problem and offer
the network operator little or no help with finding an effec-
tive fix. Finding a fix is challenging because the number of
potential repairs can be enormous.

In this paper, we propose a first step towards automated
repair for SDN applications. Our approach consists of two
elements. The first is a data structure we call meta prove-
nance, which can be used to efficiently find good candi-
date repairs. Meta provenance is inspired by the provenance
concept from the database community. However, whereas
standard provenance can only reason about changes to data,
meta-provenance can also reason about changes to programs.
The second element is a system that can efficiently back-test
a set of candidate repairs using historical data from the net-
work. This is used to eliminate candidate repairs that do not
work well, or that cause other problems. We present initial
results from a case study, which suggest our approach is able
to efficiently find high-quality repairs.

Categories and Subject Descriptors
D.2.5 [Testing and debugging]: Diagnostics
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Software-defined Networks, Debugging, Provenance

1. INTRODUCTION
Debugging networks is notoriously hard. The advent of soft-
ware-defined networking (SDN) has added a new dimension
to the problem: networks can now be controlled by programs
written in software, and, like all other programs, these pro-
grams can have bugs.
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There is a substantial literature on network debugging and
root cause analysis [5, 9, 10, 28, 18, 26, 11]. These tools
can offer network operators a lot of help with debugging.
For instance, systems like NetSight [9] and negative prove-
nance [26] provide a kind of “backtrace”, analogous to a
stack trace in a conventional debugger, that can link an ob-
served effect of a bug (say, packets being dropped in the net-
work) to its root causes (say, an incorrect flow table entry).

However, in practice, diagnosing the problem is only the
first step. Once the root cause of a problem is known, the op-
erator must find an effective fix (repair) that not only solves
the problem at hand, but also avoids creating new problems
elsewhere in the network. Given the complexity of modern
controller programs and configuration files, finding a good
fix can be as challenging as – or perhaps even more chal-
lenging than – diagnostics, and it often requires considerable
expertise on the part of the operator. However, current tools
offer far less help with this second step than with the first. In
this paper, we present a first step towards automated bug fix-
ing in SDN applications. Our (slightly idealistic) long-term
vision is a “Fix it!” button that will automatically find and
fix the root cause of an observed problem. However, we ini-
tially aim for something less ambitious, which is to provide
the operator with a list of suggested patches.

We believe that it may be possible to reach this goal by
leveraging and enhancing some concepts that have been de-
veloped in the database community. For some time, this
community has been studying the question how to explain
the presence or absence of certain data tuples in the result
of a database query, and whether and how the query can be
adjusted to make certain tuples appear or disappear [3, 25].
By seeing SDN applications as “queries” that operate on a
“database” of incoming packets and produce a “result” of
delivered or dropped packets, it should be possible to ask
similar queries – e.g., why a given packet was absent (mis-
routed/dropped) from an observed “result”.

The key concept in this line of work is that of data prove-
nance [2]. In essence, provenance tracks causality: the prove-
nance of a tuple (or packet, or data item) consists of the tu-
ples from which it was directly derived. By applying this
idea recursively, it is possible to trace the provenance of a
tuple in the output of a query all the way to the “base tu-
ples” in the underlying databases. The result is a compre-
hensive causal explanation of how the tuple came to exist.
This idea has previously been adapted for the SDN setting
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as network provenance, and it has been used, e.g., in debug-
gers and forensic tools such as ExSPAN [30], SNP [28] and
Y! [26]. However, so far this work has considered prove-
nance only in terms of packets and configuration data – the
SDN controller program was assumed to be immutable. This
is sufficient for diagnosis, but not for repair: we must also be
able to infer which parts of the controller program were re-
sponsible for an observed event, and how the event might be
affected by changes to that program.

In this paper, we take the next step and extend network
provenance to both programs and data. At a high level, we
accomplish this with a combination of two ideas. First, we
treat programs as just another kind of data; this allows us to
reason about the provenance of data not only in terms of the
data it was computed from, but also in terms of the parts of
the program it was computed with. Second, we use a form of
counterfactual reasoning to enable a form of negative prove-
nance [26], so that operators can ask why some condition did
not hold (Example: “Why didn’t any DNS requests arrive at
the DNS server?”). This is a natural way to phrase a diagnos-
tic query, and the resulting meta provenance is, in essence, a
tree of changes (to the program and/or to configuration data)
that could make the condition true.

We discuss three key challenges. First, there are infinitely
many possible repairs to a given program (including, e.g., a
complete rewrite), and not all of them will make the con-
dition hold. We demonstrate ways to find suitable repairs
efficiently using properties of the provenance itself. Second,
even if we consider only suitable changes, there are still in-
finitely many possibilities. To overcome this problem, we
leverage the fact that most bugs affect only a small part of
the program, and that programmers tend to make certain er-
rors more often than others [12, 21]. This allows us to rank
the possible changes according to plausibility, and to explore
only the most plausible ones. Finally, even a small change
that fixes the problem at hand might still cause problems
elsewhere in the network. To avoid such fixes, we back-
test them using historical information that was collected in
the network. In combination, this approach should allow us
to return to the operator a list of suggested fixes that 1) are
small and plausible, 2) fix the problem at hand, and 3) are
unlikely to affect unrelated parts of the network.

We proceed with an overview in Section 2 and then sketch
a simple meta-provenance model and the corresponding prove-
nance engine in Section 3. In Section 4, we report results
from an initial case study, which suggest that meta prove-
nance can indeed identify the root cause and find useful fixes
for realistic network problems automatically.

2. OVERVIEW
We illustrate the problem with a simple scenario (Figure 1).
A network operator manages an SDN that connects two web
servers and a DNS server to the Internet. To balance the load,
incoming web requests are forwarded to different servers
based on their source IP. At some point, the administrator
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Figure 1: Example scenario. The primary web server (H1) is
too busy, so the network is supposed to offload some HTTP
requests to a backup web server (H2). However, offloading
does not work because of a bug in the controller program.

notices that web server H2 is not receiving any requests from
the Internet.

Our goal is to build a debugger that accepts a simple spec-
ification of the observed problem (e.g. “H2 is not receiving
any traffic on TCP port 80”) and returns a) a detailed causal
explanation of the problem, and b) a ranked list of suggested
fixes. We consider a suggested fix to be useful if it a) fixes
the specified problem and b) has few or no side-effects on
the rest of the network.

2.1 Background: Network Datalog
For ease of exposition, we will assume here that the con-
troller programs are written in network datalog (NDlog) [16].
The reason is that our approach is based on provenance, and,
in a declarative language, provenance is particularly easy to
see. (However, our approach is not specific to NDlog or to
declarative languages and should work with any other lan-
guage.) Before we proceed, we briefly review some key fea-
tures of NDlog.

In NDlog, the state of a node (switch, controller, or server)
is modeled as a set of tables, which each contain a number
of tuples. For instance, an SDN switch might contain a ta-
ble called FlowTable, and each tuple in this table might
represent a flow entry; an SDN controller might have a table
called PacketIn that contains the packets it has received
from the switches. Tuples can be manually inserted, or they
can be programmatically derived from other tuples; the for-
mer are called base tuples, and the latter are derived tuples.

NDlog programs consist of rules that describe how tuples
should be derived from each other. For example, the rule
A(@X,P):-B(@X,Q),Q=2*P says that a tuple A(@X,P)
should be derived on node X whenever there is also a tuple
B(@X,Q) on that node, and Q=2*P. Here, P and Q are vari-
ables that must be instantiated with values when the rule is
applied: a tuple B(@X,10)would create a tuple A(@X,5).
The @ operator specifies the node on which the tuple resides.
Rules may include tuples from different nodes; for instance,
C(@X,P):- C(@Y,P) says that tuples in table C on node
Y should be sent to node X and inserted into table C there.
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r1: FlowTable(@C,Swi,Sip,Dpt,Act) :- PacketIn(@C,Swi,Sip,Dpt),Swi==1,Sip in 10.0.1.0/24,Dpt==80,Act:=’Output-1’.
r2: PacketInMSG(@C,Swi,Sip,Dpt) :- PacketIn(@C,Swi,Sip,Dpt).
r3: FlowTableCNT(@C,Swi,Sip,Dpt,Count<*>) :- PacketInMSG(@C,Swi,Sip,Dpt),FlowTable(@C,Swi,Sip,Dpt,Act).
r4: FlowTable(@C,Swi,Sip,Dpt,Act) :- FlowTableCNT(@C,Swi,Sip,Dpt,Cnt),Swi==1,Dpt==80,Cnt==0,Act:=’Output-2’.
r5: FlowTable(@C,Swi,Sip,Dpt,Act) :- PacketIn(@C,Swi,Sip,Dpt),Swi==2,Sip in 10.0.0.0/16,Dpt==80,Act:=’Output-1’.
r6: FlowTable(@C,Swi,Sip,Dpt,Act) :- PacketIn(@C,Swi,Sip,Dpt),Swi==2,Sip in 10.0.0.0/16,Dpt==22,Act:=’Output-2’.
r7: FlowTable(@C,Swi,Sip,Dpt,Act) :- PacketIn(@C,Swi,Sip,Dpt),Swi==2,Sip in 10.0.0.0/16,Dpt==80,Act:=’Output-1’.

Figure 2: An SDN controller program written in NDlog. At the aggregation switch S1, certain HTTP requests are offloaded to
the left top-of-rack switch S3 (rule r1). The remaining traffic is sent to the right top-of-rack switch S2 (rules r2+r3+r4). At
S2 and S3, traffic is forwarded to the responsible server based on the destination port (rules r5+r6+r7).

2.2 Classical provenance
In NDlog, it is easy to see why a given tuple exists: if the
tuple was derived using some rule R, then it must be the case
that all the predicates in Rwere true, and all the constraints in
R were satisfied. For instance, if a tuple A(@X,5) was de-
rived using the rule above, then the reason for the derivation
was that the tuple B(@X,10) existed, and that 10=2*5.
This concept can be applied recursively (e.g., to explain the
existence of B(@X,10)) until a set of base tuples is reached
that cannot be explained further (e.g., configuration data or
packet transmissions). The resulting explanation can be vi-
sualized as a provenance graph, in which each vertex repre-
sents a tuple and in which edges represent direct causality;
the tuple at the root is the one that is being explained, and
the base tuples are at the leaves.

A similar kind of reasoning can explain why a given tuple
does not exist [26]: we simply ask, counterfactually, how the
tuple could be derived, and then explain why each precon-
dition did not hold. The result is, again, a (negative) prove-
nance graph, as shown in Figure 3.

2.3 Case study: Faulty program
We now return to the scenario in Figure 1. One possible
reason for this situation is that the administrator has made
a copy-and-paste error when writing the controller program.
Such errors are common in large software because program-
mers prefer reusing code via copy-and-paste in order to re-
duce programming effort [14]. Concretely, suppose that the
controller program initially contained the first six rules shown
in Figure 2. When the second web server H2 was added, the
configuration for switch S3 had to be updated to forward
HTTP requests to H2. Perhaps the administrator saw a sim-
ilar rule that was already in the program (r5), which is used
for sending HTTP requests from S2 to H1, copied and pasted
it to create rule r7, but forgot to change the condition that
matches the switch (Swi==2) to match S3 instead of S2.

When the operator notices that no requests are arriving at
H2, she can use a provenance-based debugger to get a causal
explanation. Provenance trees are more useful than large
packet traces or the system-wide configuration files because
they only contain information that is causally related to the
observed problem. But they can still be quite complex and
require some expertise to interpret – and the operator is still
on her own when fixing the bug.

ABSENCE(t=[15s,185s], HTTP Server, 
packet(@HTTP Server, HTTP)) 

V1 

ABSENCE(t=[1s,185s], S2, 
flowTable(@S2, HTTP, Forward, Port1)) 

V2 

EXISTENCE(t={81s,82s,83s} in [15s,185s], S1, 
packet(@S1, HTTP))  

V3-­‐a 

EXISTENCE(t=[81s,now], S1,  
flowTable(@S1, Ingress HTTP,Forward,Port1))  

V3-­‐b 

EXISTENCE(t={81s,85s,86s}, S2, 
flowTable(@S2, HTTP, Forward, Port2)) 

V4 

EXISTENCE(t=[81s], Controller, 
packetIn(@Controller, HTTP))  

V5-­‐a 

ABSENCE(t=[1,80s], S2,  
flowTable(@S2, HTTP,*,*))  

V5-­‐b 

ABSENCE(t=[1,80s], S1,  
packet(@S1, HTTP))  

V5-­‐c 

EXISTENCE(t=[81s], Controller, 
policy(@Controller, Inport=1,Forward,Port2)  

V6-­‐a 

EXISTENCE(t=[63s], Controller, 
packetIn(@Controller, DNS))  

V6-­‐b 

EXISTENCE(t=[62s], S1, 
packet(@S1, DNS))  

V6-­‐c 

EXISTENCE(t=[61s,now], S1,  
flowTable(@S1, Ingress DNS,Forward,Port1))  

V6-­‐d 

ABSENCE(t=[1,61s], S1, 
flowTable(@S1, DNS,*,*))  

V6-­‐e 

ABSENCE(t=[1,61s], S1,  
packet(@S1, DNS))  

V6-­‐f 

AND 

AND 

AND 
AND 

AND 

The server did not get any HTTP request 
since t=15s because the flow entry was 

missing at an upstream switch.  

The flow entry could only has been 
inserted in response to a HTTP packet. 
Such packets only arrived at t=81s, 82s, 83s.  

But that HTTP packet was handled by an 
existing flow entry at that switch, and was 

therefore not sent to the controller.  

The existing flow entry was derived from 
a policy which was triggered by a DNS  

packet at t=62s.  

... 

... 

Figure 3: Excerpt from a negative provenance graph that ex-
plains why the HTTP server is no longer receiving traffic.

2.4 Meta provenance
Classical provenance is inherently unable to generate fixes
because it reasons about the provenance of data that was
generated by a given program. To find a fix, we also need
the ability to reason about program changes.

We propose to add this capability, in essence, by treating
the program as just another kind of data. Thus, the prove-
nance of a tuple that was derived via a certain rule R does
not only consist of the tuples that triggered R, but also of the
syntactic components of R itself. For instance, when gener-
ating the provenance that explains why, in the scenario from
Figure 1, no HTTP requests are arriving at H2, we eventu-
ally reach a point where we must explain the absence of a
flow table entry in switch S3 that would send HTTP packets
to port #1 on that switch. At this point, we can observe that
rule r7would almost have generated such a flow entry, were
it not for the predicate Swi==2, which did not hold. We can
then, analogous to negative provenance, use counterfactual
reasoning to determine that the rule would have the desired
behavior if the constant were 3 instead of 2. Thus, the fact
that the constant in the predicate is 2 and not 3 should be-
come part of the missing flow entry’s meta provenance.
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2.5 Challenges
An obvious challenge with this approach is that there are
infinitely many possible changes to a given program: con-
stants can be changed, predicates can be added or removed
from existing rules, rules can be added or deleted, and so on.
However, in practice, only a tiny subset of these changes is
actually relevant. Observe that, at any point in the prove-
nance tree, we know exactly what it is that we need to ex-
plain – e.g., the absence of a particular flow entry for HTTP
traffic. Thus, we need not consider changes to r2 or r3 (be-
cause they do not generate flow entries) or to the destination
port (Dpt) in r7 (because that predicate is already true).

Of course, the number of relevant changes, and thus the
size of any meta-provenance graph, is still infinite. This
does mean that we can never fully draw or materialize it –
but there is also no need for that. Studies have shown that
“real” bugs are often small [21], such as off-by-one errors
or missing predicates. Thus, it seems useful to define a cost
metric for changes (perhaps based on the number of syntac-
tic elements they touch), and to explore only the “cheapest”
changes based on the defined metric.

Third, it is not always obvious what to change in order
to achieve a desired effect. For instance, when changing
Swi==2 in the above example, why did we change the con-
stant to 3 and not, say, 4? Here, the reason is easy to see, but
for more complex predicates, it can be harder. Fortunately,
we can use existing tools, such as SMT solvers, that can enu-
merate possibilities quickly for the more difficult cases.

Finally, even if a change fixes the problem at hand, we
cannot be sure that it will not cause new problems elsewhere.
Such side-effects are difficult to capture in the meta prove-
nance itself, but we show that they can be estimated in an-
other way, namely by back-testing changes with historical
information from the network.

3. TOWARDS META PROVENANCE
In this section, we describe how to generate meta provenance
for controller programs written in NDlog.

3.1 Provenance graph
Recall from Section 2.2 that the provenance of an event –
such as the presence or absence of a tuple – can be described
as a graph in which each vertex 1) represents an event, and 2)
has children that represent the direct causes that contribute to
this event. Thus, a useful way to define a (meta-)provenance
graph is to specify an algorithm that can enumerate the chil-
dren of a given vertex.

We start with an existing algorithm from [26] that can gen-
erate positive and negative provenance, but not meta prove-
nance (because it assumes that the rules in the NDlog pro-
gram are immutable), and we extend this algorithm in two
ways. First, we add meta tuples that represent the syntactic
elements of the program itself, such as conditions and pred-
icates; and second, we add meta rules that describe the op-
erational semantics of NDlog. As a first approximation, the

meta tuples/rules behave just like normal tuples and rules;
thus, the algorithm from [26] essentially works out of the
box, with just a few changes we discuss below.

Since NDlog is a relatively simple language, it requires
few meta rules. Figure 4 shows the most important ones.
Writing these rules is a one-time investment for each given
language; once they exist, they can be applied to any pro-
gram written in that language. For instance, rule r1 from
Figure 2 would be represented as a HeadMeta tuple with
name FlowTable, and a PredicateMeta tuple with
name PacketIn; constraint predicates like Swi==1would
be represented by an Expression tuple as well as an Is-
Constraint tuple.

Notice that the meta provenance is not static; it depends
on the state of the network and of the controller program.
For instance, in our example from Section 2, the bug could
have been introduced at some time t, and the program could
have been fine before that. Thus, a practical debugger should
index the provenance by time, and it should have the abil-
ity to remember or reconstruct earlier states. This issue is
somewhat orthogonal to meta provenance and has been the
subject of earlier work [29], so we do not discuss it here.

3.2 Reasoning about program changes
The key difference between meta provenance and classical
provenance is the need to additionally consider the possi-
bility that an unexpectedly present (absent) tuple could have
disappeared (appeared) if the program were modified in some
way. For instance, in our scenario from Section 2, we must
eventually explain the absence of a flow entry on switch S3
that would forward HTTP traffic to server H2. Classical
provenance would end here – such a flow entry simply does
not exist! – but meta provenance must explain the absence
by enumerating facts about the program that are responsible
for it (e.g., “The second predicate in rule r7 is Swi==2 and
not Swi==3”).

We can enumerate such facts using counterfactual reason-
ing. For instance, suppose the following flow entry is miss-
ing: FlowTable(@C,3,10.0.0.5, 80,Output-1).
What could have caused this tuple to exist? It could have
been inserted as a base tuple, it could have been generated
by some rule that is currently missing, or it could have been
generated by a variant of an existing rule. Candidates for the
latter are r1 and r4-7. We can then investigate why these
rules were not triggered in their current form; for instance,
in the case of r7, we would probably find incoming pack-
ets (i.e., PacketIn tuples) with suitable destination IPs and
port numbers, but the condition Swi==2 is inconsistent with
the fact that we are looking for a FlowTable tuple whose
Swi element is 3. Thus, the presence of Swi==2 in rule
r7 is one (of many) reasons for the absence of the missing
FlowTable tuple.

Of course, there are more complicated cases. Suppose, for
instance, that we have a rule A(X):-B(Y,Z),X:=Y+3,
X>5 and a tuple A(X) with X<10 is missing. If a tuple
B(Y,Z) with Y=2 already exists, we can derive the miss-
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h1: Head(Rul,Tab,Vals[]) :- Value(Rul,JID,Arg,Val),HeadMeta(Rul,Tab,Args[]),Arg==Args[0],Vals[0]:=Val,
Constraint(Rul,JID,ID,Val==True),ConstraintCount(Rul,N==1).

h2: Head(Rul,Tab,Vals[]) :- Value(Rul,JID,Arg0,Val0),Value(Rul,JID,Arg1,Val1),HeadMeta(Rul,Tab,Args[]),
Arg0==Args[0],Arg1==Args[1],Vals[0]:=Val0,Vals[1]:=Val1,
Constraint(Rul,JID,ID,Val==True),Constraint(Rul,JID,ID’,Val==True),ID!=ID’,ConstraintCount(Rul,N==2).

h3: Head(Rul,Tab,Vals[]) :- Value(Rul,JID,Arg0,Val0),Value(Rul,JID,Arg1,Val1),HeadMeta(Rul,Tab,Args[]),
Arg0==Args[0],Arg1==Args[1],Vals[0]:=Val0,Vals[1]:=Val1,
Constraint(Rul,JID,ID,Val==True),Constraint(Rul,JID,ID’,Val==True),Constraint(Rul,JID,ID”,Val==True)
ID!=ID’,ID’!=ID”,ID!=ID”,ConstraintCount(Rul,N==3).

d1: Tuple(Tab,Vals[]) :- Head(Rul,Tab,Vals[]),IsDerived(Tab).
d2: Tuple(Tab, Vals[]) :- Base(Tab, Vals[]),IsBase(Tab).
j1: Predicate(Rul,Tab,Args[],Vals[]) :- Tuple(Tab,Vals[]),PredicateMeta(Rul,Tab,Args[]).
j2: Join(Rul,JID,Args[],Vals[]) :- Predicate(Rul,Tab’,Args’[],Vals’[]),Predicate(Rul,Tab”,Args”[],Vals”[]),

Tab’!=Tab”,Args:=Args’+Args”,Vals:=Vals’+Vals”,JID:=f_unique(),PredicateCount(Rul,N==2).
j3: Value(Rul,JID,Arg,Val) :- Join(Rul,JID,Args[],Vals[]),Arg:=Args[0],Val:=Vals[0].
a1: Value(Rul,JID,Arg,Val) :- Assignment(Rul,Arg,ID),Expression(Rul,JID,ID,Val).
c1: Constraint(Rul,JID,ID) :- Expression(Rul,JID,ID,Val),IsConstraint(Rul,ID).
e1: Expression(Rul,JID,ID,Val) :- Constant(Rul,ID,Val),JID:=*.
e2: Expression(Rul,JID,ID,Val) :- Value(Rul,JID,Arg,Val),ID:=f_string(Arg).
e3: Expression(Rul,JID,ID,Val) :- Expression(Rul,JID,ID’,Val’),Expression(Rul,JID,ID”,Val”),ID’!=ID”,

Edge(Rul,ID,ID’),Edge(Rul,ID,ID”),Operator(Rul,ID”’,Opr),Edge(Rul,ID,ID”’),Opr==’==’,Val:=(Val’==Val”).
e4: Expression(Rul,JID,ID,Val) :- Expression(Rul,JID,ID’,Val’),Expression(Rul,JID,ID”,Val”),ID’!=ID”,

Edge(Rul,ID,ID’),Edge(Rul,ID,ID”),Operator(Rul,ID”’,Opr),Edge(Rul,ID,ID”’),Opr==’>’,Val:=(Val’>Val”).

Figure 4: Some key meta rules for NDlog programs (base tuples are underlined). Head tuples derive from the variables in
the head declaration with instantiated values, and only when constraints are satisfied (rules h1–h3). Tuples are either derived
tuples or base tuples (rules d1+d2). Variables derive from joining predicate tuples (rules j1–j3) or arbitrary expressions.
Some expressions are constraints (rule c1). Expressions derive from constants, variables, or composition (rules e1–e4).

ing tuple by changing the assignment from X:=Y+3 to ei-
ther X:=Y+4 or X:=Y+2. However, only the former will
actually work because the latter violates the other constraint,
X>5. In such difficult cases, we could use a constraint solver,
such as Z3 [4], to find constants that satisfy all conditions;
however, in our experience, most constraints in actual pro-
grams are amenable to simpler methods.

3.3 Enumerating changes
Recall that, in general, there are infinitely many candidate
repairs, so we cannot hope to explore all of them. Instead,
we define a cost metric and explore the candidates in cost
order, up to some reasonable cut-off (or until the operator’s
patience runs out). We can derive such a metric from prior
work in software engineering, such as [21], that has studied
the kinds of errors that programmers typically make. By
assigning a low cost to common errors (such as changing a
constant by one or changing a == to a !=) and a high cost
to unlikely errors (such as writing an entirely new rule, or
defining a new table), we can prioritize the search of fixes
to software bugs that are more commonly observed in actual
programming, and thus increase the chances that a working
fix will be found.

3.4 Backtesting candidate repairs
By itself, meta provenance does not consider the side-effects
of a candidate repair; it merely considers whether the repair
would solve the problem at hand. To mitigate this problem,
we can back-test the candidates using historical information
from the network – perhaps a Netflow trace or a sample
of packets, along with some statistics, such as throughput
and network latency, from the various end-hosts. Since the
problems we are aiming to repair are typically subtle (total

network failures are comparatively easy to diagnose!), they
should affect a relatively small fraction of the traffic. Hence,
a “good” candidate repair should have little or no impact on
metrics that are not related to the specified problem.

It is important for the backtesting to be fast: the less time
it takes, the more candidate repairs we can afford to con-
sider. Fortunately, we should be able to leverage another
concept from the database literature for this purpose. Ba-
sically, each backtest simulates the behavior of the network
with the repaired program, and measures some statistics at
the end. Thus, we are effectively running many very similar
“queries” (the repaired programs, which differ only in the
fixes that were applied) over the same “database” (the his-
torical network data), where we expect significant overlaps
among the query computations. This is a classical instance
of multi-query optimization, for which powerful solutions
are available in the literature [17, 6].

4. CASE STUDY
We have implemented an early prototype of a meta prove-
nance engine for SDNs, based on the algorithm and the heuris-
tics above. To illustrate the results our engine produces, we
have set up the scenario from Figure 1 and Figure 2 (our
running example) in the RapidNet [1] simulator. We use the
meta model shown in Figure 4 in combination with a cost
model that is based on two software engineering studies [12,
21] about common programmer errors. For backtesting, we
use a simple approach that uses packet counters at the DNS
server and the primary web server; we discard changes that
cause these counters to change substantially.

To test our prototype, we submitted the problem descrip-
tion from Section 2 (“H2 is not receiving any traffic on TCP
port 80”). This caused our prototype to generate more than
80 initial repair candidates, of which ten are shown in Ta-
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A Changing operator in r7: Swi==2 to Swi!=2 5

B Changing constant in r7: Swi==2 to Swi==3 3

C Changing operator in r5: Swi==2 to Swi>=2 3

D Changing constant in r1: Swi==1 to Swi>=1 3

E Changing operator in r5: Swi==2 to Swi!=2 5

F Changing constant in r5: Swi==2 to Swi==3 3

G Deleting constraint Swi==1 in r1 3

H Changing constraint in r7: Swi==2 to Swi<=3 5

I Deleting constraint Swi==2 in r5 3

J Changing multiple constraints in r6: Swi==2 to
Swi==3, and Dpt==22 to Dpt==80

5

Table 1: Candidate repairs listed in generation order. Some
candidates are discarded after backtesting.

ble 1. Because the candidates were generated using meta
provenance, each of them is effective, i.e., causes H2 to re-
ceive at least some HTTP traffic.

Next, the candidates were submitted to backtesting, and
candidates that caused problems for the rest of the network
were discarded (shown as a cross in the right column of Ta-
ble 1). Table 2 shows the backtesting results for the dis-
carded candidates. For instance, repair candidate A changed
Swi==2 in rule r7 to Swi!=2. This causes the controller
to generate a flow entry that forwards HTTP requests at S3;
however, the modified r7 also causes S1 to offload all HTTP
requests to the backup web server. Similarly, candidate J’s
changes to r6 do fix the problem at hand but also cause DNS
queries to be dropped.

After backtesting, the remaining candidates are presented
to the operator in complexity order, i.e., the simplest can-
didate is shown first. In this example, the first candidate
on the list (B) is also the one that most human operators
would intuitively have chosen – it fixes the copy-and-paste
bug by changing the switch number in the faulty predicate
from Swi==2 to Swi==3.

This initial result is encouraging, particularly because our
meta-provenance model is in no way specific to this partic-
ular scenario. This suggests that meta provenance can po-
tentially find useful fixes for a many other problems as well.
As ongoing work, we are validating this approach on larger
case studies and more sophisticated back-testing techniques.

5. RELATED WORK
Related work on network debugging was already covered in
the introduction, so we focus on other related work below.
Databases: There are several interesting connections be-
tween meta provenance and work from the database litera-
ture. For instance, backtesting could be made efficient with
incremental view maintenance [8, 15]; Gupta et al. [7] de-
scribes a solution where the definition of the view (in our
case, the controller program) can be modified. Multi-query
optimization techniques would help as well; for instance,
CACQ [17] uses a group filter index to share work between
queries on streaming data, and SharedDB [6] aggregates small
queries into large queries for batching computations.

A The primary web server (H1) receives no traffic
E The primary web server (H1) receives no traffic
H The primary web server (H1) receives no traffic
J The DNS server receives no traffic

Table 2: Backtesting results for the discarded candidates.

Meta programming: SecureBlox [19] leverages meta rules
to reference the program for certain purposes, and to dynam-
ically change the program during execution (e.g., by generat-
ing new rules at runtime to enforce access control). In ExS-
PAN [30], the provenance graph contains both tuple vertices
and rule execution vertices.

Automated program fixing: The software engineering com-
munity has been developing techniques such as genetic pro-
gramming [13] and symbolic execution [20] to adapt pro-
grams to a given test suite. We decided against these ap-
proaches because, unlike the database work, they aim for
fully general programs, which networks do not typically need,
and in return are restricted to relatively small programs [20]
or certain kinds of patches [13], which may not be enough.
Some approaches can work with larger programs: Clear-
View [22] mines invariants in programs, correlates viola-
tions with failures, and generates patches at runtime; Conf-
Diagnoser [27] compares correct and undesired executions
to find suspicious predicates in the program; and Sidiroglou
et al. [24] runs attack vectors on instrumented applications
and then generates patches automatically. These systems
primarily rely on heuristics, whereas our proposed approach
uses provenance to track causality and can thus pinpoint spe-
cific root causes. Rx [23] recovers failed programs by modi-
fying the environment; this can prevent bugs from manifest-
ing but does not fix their root causes.

6. CONCLUSION
We believe that it is time for SDN debuggers to transition
from bug diagnostics tools to automated program fixers.
While the eventual goal is ambitious, our paper demonstrates
early promise of feasibility. we hypothesize that techniques
from the database community – such as data provenance –
can be adapted to help us reach this goal. In this paper, we
have proposed an approach that is based on data provenance,
and we have sketched an extension, called meta provenance,
that can reason not only about changes to data but also about
changes to programs. Our initial results from a case study
seem encouraging, and we hope that meta provenance can
eventually diagnose and fix a variety of network problems,
with very little help from the human operator.
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