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Today, network operators are increasingly playing the role of
part-time detectives: they must routinely diagnose intricate
problems and malfunctions, e.g., routing or performance is-
sues, and they must often perform forensic investigations of
past misbehavior, e.g., intrusions or cybercrimes. However,
the current Internet architecture offers little direct support for
them. A variety of solutions have been proposed, but each
solution tends to address only one specific problem. More-
over, each solution proposes a different fix that is incompat-
ible with the others, which complicates deployment.

In this paper, we make the observation that most of the
existing solutions share a common “functional core”, which
suggests that it may be possible to add a single primitive to
the Internet architecture that can support a wide variety of
diagnostic and forensic tasks. We then present one specific
candidate that we call secure packet provenance (SPP). We
show that SPP is easy to add to the current architecture, that
it can be implemented efficiently in both software and hard-
ware, and that it can be used to approximate (and sometimes
surpass) the capabilities offered by a variety of existing di-
agnostic and forensic systems.

1. Introduction

Diagnostics and forensics were not among the top priorities
for the original design of the Internet [17], and as a result, the
architecture offers relatively little direct support for them.
At the interdomain level, the only features that are likely
to be available are ICMP and a few IP header options, and
even these are often disabled [25] or implemented inconsis-
tently [60]. Thus, when an operator encounters a problem
that is not limited to her own network (such as bad perfor-
mance on a given path), there is relatively little tool support;
the best option is still often to post a message to a mailing
list like NANOG, or to call other operators on the phone.
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Over the years, a variety of diagnostic and forensic chal-
lenges have been identified. These include diagnosing high
delay, reordering, or loss [9, 41, 45], identifying the source
of attack traffic [43, 62], localizing failures [11, 36, 37],
detecting prefix hijacking [71], testing for traffic differen-
tiation [70], topology mapping [60], finding the root cause
of routing problems [20, 66], collecting evidence of cyber-
crimes [42], and verifying SLAs between ISPs [24, 46, 53],
and so on. Each of these challenges involves a specific prob-
lem deep within the network, which is difficult to diagnose
without network-level support.

In the absence of direct support from the network, most
existing work takes one of the following two approaches.
The first is to approximate the missing functionality by
creatively “abusing” a feature that exists for some other
purpose (such as certain header options [60] or ICMP re-
sponses [11]). This is often surprisingly effective, but it typi-
cally relies on underspecified behavior and/or idiosyncrasies
of certain router implementations, which can diminish data
quality and require an enormous amount of ingenuity to
work around (e.g., [36, 60]). The second approach is to ex-
tend the architecture with a new feature of some kind (e.g.,
[7, 53]), such as a new protocol, header field, etc. Such ex-
tensions provide a “clean” solution for the problem at hand,
but deploying new features in the entire network is extremely
difficult — so difficult, in fact, that hardly any of the proposed
solutions have been widely deployed so far. To make mat-
ters worse, existing proposals typically focus on solving one
particular problem and do not help with any of the other
diagnostic and forensic problems that have been identified;
thus, a comprehensive solution would require deploying all
of the proposed extensions in combination. Given the ISPs’
reluctance to make major changes to the network, this seems
unrealistic.

In this paper, we ask the following question: If ISPs were
willing to deploy only one new primitive in the network to
help with diagnostics and forensics, what should that primi-
tive be? Our key observation is that, while the existing so-
lutions seem very different at first glance, they all essen-
tially answer variants of the same question: “What were the
causes and/or effects of a given past event in the network?”.
If the network could remember recent events (such as packet



transmissions) and the corresponding causes and effects,
even for a short amount of time, many forensic problems
would be easy to solve. For instance, reverse traceroute [36]
could locate the source of packet drops simply by following
packets on their way from the sender to the receiver (and po-
tentially back), and note the point at which they no longer
made progress. Other forensic problems would require some
post-processing: for instance, WhyHigh [41] could find the
source of high latencies by inspecting the differences be-
tween packet transmission and arrival times, and Netdiff [46]
could calculate the throughput on each path segment to find
the bottleneck. However, this processing could be done at
the edge without further changes to the core.

There is one additional feature that some forensic sys-
tems require: the ability to prove the correctness of a given
answer [7, 24, 43, 53, 72]. This is necessary because at-
tackers may falsify evidence to cover their tracks [40]. Al-
though the strength of proofs and the properties being proven
sometimes vary, in essence they are all concerned with the
presence or absence of particular entries in our hypotheti-
cal ledger: for instance, the PoPs in ICING [53] essentially
correspond to a chain of entries that connects a packet to a
particular sender, the signatures in Passport [43] and AIP [7]
correspond to the beginning of this chain, and the logs in
SNP [72] correspond to causal connections along the chain.

This commonality suggests that it may be possible to de-
ploy a single primitive in the network, once and for all, and
then re-implement the previously proposed diagnostic and
forensic systems as “applications” on top of it, without fur-
ther changes to the network core. In this paper, we propose
one specific candidate for such a primitive that we call se-
cure packet provenance (SPP). SPP is based on the concept
of data provenance from the database literature [14], which
has already been used for diagnostics and forensics in other
contexts, such as operating systems [31] and distributed sys-
tems [67, 72, 75]. However, as we show experimentally
in Section 7, existing solutions would be completely over-
whelmed with the high data rates at the network data plane.
SPP solves this problem by avoiding cryptographic opera-
tions on the fast path and by relying mostly on ephemeral
state; as a result, it outperforms the state-of-the-art secure
provenance system by several orders of magnitude.

While the key insights of this paper are architectural (that
there can be a single shared primitive, and that SPP is a good
candidate), we have also designed and implemented a con-
crete protocol that could provide SPP in the Internet. Other
than a small link-layer header, our protocol does not require
any changes to the current data plane and can be imple-
mented efficiently in hardware. (We demonstrate this with
a NetFPGA prototype that runs at 10 Gbps.) We also used
SPP to approximate six different diagnostic primitives from
the literature, and we show that with SPP, each primitive can
be implemented with just a few lines of code. Our main con-
tributions are:

e Two architectural insights: that a single shared primitive
can support a wide variety of diagnostic and forensic
tasks, and that provenance is a good candidate for such
a primitive (Section 2);

e the definition of a secure provenance model for the Inter-
net’s data plane (Section 3);

e SPP, a concrete protocol for maintaining secure prove-
nance (Section 4);

e case studies showing that SPP can approximate a number
of existing diagnostic systems (Section 5);

e software and hardware prototypes (Section 6); and

e an experimental evaluation, as well as proof-of-concept
implementations of six diagnostic primitives on SPP
(Section 7).

We discuss deployment strategies and their implications in
Section 8, and we present related work in Section 9.

2. Overview

Diagnostics and forensics were not among the top priori-
ties for the original Internet [17], as it was small in scale
and experimental in nature. But today’s Internet, with its
broad range of applications, has attracted problems of all
kinds [4, 30, 34, 40, 41, 57], which sometimes cause losses
of millions of dollars [23]. But the available tools are far
from adequate: packet traces, IP addresses [5], and even
thumbnail images [2] are serving as evidence; due to the
lack of reliable forensics, innocent users have been falsely
accused of wrongdoings [2, 5, 65]. We believe that there is a
need for better support for diagnostics and forensics.

2.1 Goal: A single primitive

There is a rich body of work on diagnostic and forensic sys-
tems that solve specific variants of this problem, typically by
extending the Internet in one way or another [7, 10, 11, 18,
19, 26, 29, 36, 41, 43, 45, 51, 53, 58, 59, 62, 64, 70]. How-
ever, the resulting variety of problem-specific, mutually in-
compatible extensions represents a challenge for widespread
deployment. Hence, rather than trying to improve any indi-
vidual one of these systems, we ask: Is there a single prim-
itive that could be added to the Internet to solve a wide
range of diagnostic and forensic challenges? Such a prim-
itive would not necessarily match the efficiency of the more
specialized solutions, since a shared primitive would need to
provide a strict superset of the functionalities of the individ-
ual primitives; but it could certainly be more efficient than
deploying all of them together. Moreover, if so many exist-
ing diagnostic and forensic systems are based on some vari-
ant of this primitive, we have good reasons to believe that
it will be useful for solving future, as-yet-unknown foren-
sic challenges as well — which is a key requirement for any
possible addition to the network architecture.

In this paper, we propose secure packet provenance as
a candidate for such a primitive. At a high level, prove-



nance [14] tracks how data flows through the network by
recording each event, e.g., the transmission of a packet, or
the installation of a new route, and its direct causes and ef-
fects. With this information, any event of interest can be ex-
plained by recursively looking up the causes of the event un-
til a set of “root causes” (such as the transmission of a new
packet at an end host, or the origination of a new route) is
reached. Additionally, our proposed primitive collects cryp-
tographic evidence of network-level events; this can be used
to authenticate the provenance even in adversarial settings.

2.2 Challenges

Intuitively, maintaining a secure provenance graph for the
Internet would be sufficient for diagnostics and forensics,
since it contains a complete and accurate description of
what happened, why, when, and where. However, two key
challenges need to be solved to make this approach practical.

Challenge #1: Overhead. A complete provenance graph of
the entire Internet data plane would quickly consume any
amount of space that could realistically be provided. We pro-
pose to solve this by keeping the full provenance only very
briefly, and by offering a way to save (and later authenticate)
any parts of the graph that are relevant for ongoing diagnos-
tic and forensic tasks. To keep the computational overhead
low, our proposed solution relies mostly on cryptographic
primitives that can work at high speeds, such as hashing, and
it applies several optimizations, such as batching.

Challenge #2: Privacy. Collecting all the provenance in a
central location would be a privacy disaster. Our proposed
solution avoids this by distributing the graph, and by allow-
ing each network-level component to keep the part of the
graph that pertains to itself. Also, we do not allow “global”
queries of the form “show me all the packets that Bob sent”
— users can only explore the provenance graph hop by hop,
starting from a vertex they already know about. In effect,
users can only query the provenance of packets they have
already seen in their entirety. Moreover, we allow ISPs to
restrict the visibility of their own subgraph; for instance, an
ISP might permit its local admins to see its complete prove-
nance, including routing policies and link statuses, but it
might limit queriers from other domains to only forwarding-
related information, e.g., the path that packets were sent on.

3. The provenance graph

We begin by defining the data model for the provenance
information we wish to provide. A common way to represent
the provenance is as a provenance graph [75] — a DAG in
which each vertex represents an event and edges connect
causes to effects. In this graph, the explanation of an event is
simply the tree that is rooted as the corresponding vertex.

3.1 What is the right layer?

For a single provenance model to work for heterogeneous
networks, it needs to be detailed enough to encode useful

debugging information, but also general enough to abstract
away hardware-specific features. We observe that this chal-
lenge resembles that of the original Internet, which needed
to interconnect a variety of different network types and pro-
tocols. The answer in the original design was IP’s “narrow
waist”, which was itself universal but permitted diversity at
layers above and below. Thus, if our provenance model cap-
tures the network’s operation at the IP layer, it will form
a basis that different networks could agree on. As we will
show in Section 3.4, operations on other layers can still be
encoded as extensions to the IP-level provenance graph.

Network model: We model the network as a graph whose
nodes are [P-capable devices. Each node has a number of
ports, which can be connected to ports on other nodes us-
ing links. Nodes can transmit packets on their ports to some
or all of the nodes that are connected to the corresponding
(unicast or multicast) link. Therefore, this model not only in-
cludes routers and middleboxes, but also end hosts. Packets
can be lost or corrupted in transmission, and nodes can mu-
tate, duplicate, or drop any packet. Moreover, each node has
a set of rules that decide how packets should be processed,
and an increment-only local timer to obtain timestamps.

3.2 The provenance graph G

For clarity, we define the provenance graph G := (V, E)
from the perspective of a hypothetical global observer that
can observe every single event in the network — i.e., every
time a packet is sent or received, a link goes up or down,
and a rule is inserted or deleted. G is a DAG and contains
one vertex for each event, as well as a directed edge (v1, v2)
whenever v, causally depends on v;. Vertexes can have
multiple incoming edges; for instance, a node might send a
packet on a particular port because a) it received the packet
earlier, b) it had a rule that matched the packet and specified
this port, and c) the link on that port was up. Specifically, we
define six vertex types, using a provenance model similar to
the one from DTaP [74]:

e When a link [ goes up/down on node N at time ¢, add a
vertex LINKUP(V,t,l) / LINKDOWN(NV,t,0).

e When a node N adds/removes a rule r at time ¢, add a
vertex RULEADD(NN,t,r) / RULEDEL(V,t,r).

e When a node N receives a packet p on port P at time ¢,
insert a vertex v:=RECEIVE(V,p,P,t) to V; also, find the
vertex v1:=LINKUP(NV,t,l) for the link [ that is currently
connected to P, and add an edge (v1,v) to E.

® When a node N sends a packet p on port P at time
t, add a vertex v:=SEND(N,p,P,t) to V. If p is sent
because a packet p’ was previously received by N at
time ¢’ on port P’ and is forwarded to port P because
of a rule r, find the vertexes v9:=RULEADD(N,t”,r) and
v3 :=RECEIVE(N,p/,P',t') in V and add edges (v2,v)
and (vs,v) to E.



G is, in effect, a complete chronicle of everything that hap-
pened in the network: in principle, it is possible to “replay”
the entire execution of the network in simulation. Thus, if a
question can be answered in this very detailed simulation, it
must also be possible to answer it using the information in
G. In particular, to explain why an event e has occurred, we
can simply find the corresponding vertex v in G and look at
the subtree that is rooted at it, the leaves of which are the
“root causes” that, in conjunction, have caused e to occur.
Later, we will describe a distributed algorithm that maintains
a close approximation of G without assuming a central en-
tity. This is based on the observation that each vertex v € G
has a natural “home”: the node N that appears as the first
entry will store the vertex v.

3.3 Querying and evidence

We allow users to examine the graph G with a query primi-
tive QUERY (v) that returns v’s adjacent vertexes in G. Thus,
users could start with a vertex they know (say, the transmis-
sion or arrival of a packet at their local node) and explore
the graph by invoking QUERY recursively. However, recall
that (G is distributed, and that each node stores the vertexes
that pertain to it. So a malfunctioning or compromised node
could fabricate or destroy vertexes that it stores locally. To
prevent this, nodes are required to store not only the vertexes
themselves, but also evidence to prove that the adjacent ver-
texes exist. The evidence e, of a vertex v can be thought of
as a statement that is signed by the “home” node of v saying
that v is a part of G. Conceptually, nodes exchange evidence
whenever they add an edge to G between two of their ver-
texes. Thus, each node can use the evidence to prove to any
third-party that the other end of the edge must exist in G.

Hence, we augment the query primitive with evidence.
QUERY(v,e,) returns two sets of vertexes: all the predeces-
sors and successors of v in G. Each returned vertex v’ is
accompanied with evidence that 1) v’ is in V, and that 2) the
relevant edge ((v’, v) for predecessors and (v, v") for succes-
sors) is in E. As before, users can use QUERY to explore a
larger portion of G by invoking QUERY recursively, starting
from some vertex they know and have evidence for.

3.4 Extensions

The above data model only captures IP-level provenance.
But as we discussed in Section 3.1, operations above and
below the IP layer can be encoded as extensions to this basic
provenance graph to support richer diagnostic and forensic
capabilities. Below, we briefly sketch two examples.

Control-plane diagnostics: In the basic provenance model
from Section 3.2, changes to link statuses and rules are “root
causes” that cannot be explained further. However, it would
be easy to add more entries to the TELs to further explain the
provenance of these events. For instance, NetReview [24]
already records a type of secure provenance for the BGP
control plane; this provenance could be integrated with the
IP-level model to further explain the RULE vertexes. Prove-

nance tools that do not understand the new vertex types in
the TEL could simply ignore them and continue to treat the
RULE vertexes as basic events in the provenance graph.

Summarizations: To enable longer-term forensic queries, it
could be useful to have a less detailed but smaller version
of the IP-level provenance graph (say, a flow-level version);
thus, the detailed version could be discarded after a few sec-
onds, while the aggregated version could remain available
for hours, or even days. Our basic model can accommodate
such extensions by having routers commit to the basic graph
and its summarizations simultaneously. As long as both end-
points of a link generate the summarizations in the same way
(e.g., by using the same sampling technique), they can verify
correctness exactly as in the basic IP-level version.

Visualization: To help operators to better understand the di-
agnostic results, the evidence can be displayed using prove-
nance visualizers such as NetTrails [73].

3.5 Does G reveal too much information?

End users might be concerned that QUERY could be used to
spy on their traffic. But our design prevents this: to query a
vertex in (G, the querier must already have evidence for an
adjacent vertex. So, in order to access the provenance of a
packet p that was sent from A to B, the querier must have
some evidence of p’s existence — which is only available
at the sender A, the recipient B, and the ASes along the
path, all of whom have already seen p in its entirety. Thus,
there are only two cases: 1) the querier already knows that p
exists, and what exactly it contains; in this case, QUERY will
reveal where p came from, where it went, and what exactly
happened along the way. Or 2) the querier does not yet know
that p exists; in this case, the querier learns nothing from
QUERY because the invocation will fail.

ISPs could have similar concerns about the topology and
the configuration of their own infrastructure. But the In-
ternet’s topology can already be learned in great detail to-
day [60], so G does not reveal much additional information —
it merely reduces the effort that is needed to obtain it. More-
over, networks can protect policy-related information by hid-
ing certain vertexes: each node can implement its own policy
to decide which vertexes should be hidden. For instance, a
network may want to reveal RULE and LINK vertexes only to
its own admins, and hide them from users in other domains.
Thus, each querier is presented with a view of the provenance
graph, and can explore only the parts that are visible to her.
To preserve usability, our provenance model prescribes that
the SEND and RECEIVE vertexes be included in any view.
Therefore, queries with a restricted view, e.g., inter-domain
queries, can only trace packet paths from the returned SEND
and RECEIVE vertexes; queries with an admin’s view, e.g.,
intra-domain queries, can additionally learn why, i.e., from
the RULE and LINK vertexes.
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Figure 1: Data flow in the commitment protocol.

4. The SPP protocol

We now describe a distributed algorithm called SPP that
implements the proposed provenance graph.

4.1 Assumptions and threat model
We design SPP based on the following assumptions:

e There is a hash function H(-) that is pre-image resistant
and collision resistant.

e Each node i has a key pair 7;/0; that can be used to sign
messages. A node ¢’s signatures cannot be forged without
knowing ¢’s private key o;.

e If a link ¢+ — j exists, then j has a back channel for
sending a small number of messages back to i.

The first assumption could be satisfied, e.g., by SHA-256.
The second assumption could be satisfied with a small ex-
tension to the RPKI. The third assumption holds trivially for
all bidirectional links; for other links, it could be satisfied by
using a different link for the back channel.

Threat model: We assume that nodes can fail or be com-
promised by a Byzantine attacker, i.e., we make no special
assumptions about the affected nodes, other than that they
cannot break cryptographic keys. In particular, these nodes
can drop, alter, or fabricate packets, they can destroy or tam-
per with any local state, and/or collude with each other.

4.2 Commitment protocol

The purpose of the commitment protocol (illustrated in Fig-
ure 1) is to generate evidence for the provenance graph. The
protocol runs between the two endpoints A and B of each
link A — B; bidirectional links run two separate instances
of the protocol, and nodes with multiple ports run separate
instances for each local port. By this protocol, A would be
able to prove that the packets it has sent have been received
by B, and B would be able to prove that the packets it has
received were indeed sent by A. This is done as follows.

Sender: A uses its local timer to divide time into epochs of
some fixed length, e.g., 100ms, and both A and B maintain a
small number of epoch buffers in which they record informa-
tion about the packets they have sent or received. A begins
a new epoch FE; by sending a message NEWEPOCH(?) to B.
After that, whenever A sends a packet p to B, A appends
the hash H (p) to the buffer and then prepends an index j of

packet in the epoch buffer as a small extra header before p.
A ends E; by sending message ENDEPOCH(i,n) to B, where
n is the total number of packets it has sent to B in this epoch.

Receiver: B has meanwhile forwarded each packet as usual,
but it has also recorded in its own epoch buffer the hashes
of all the packets it has received correctly — i.e., without
link-layer errors or CRC mismatches — from A; moreover,
B has identified any missing index numbers (by looking for
gaps in the sequence of numbers) and has recorded these
in a small separate buffer M, so it can later report them
to A. When A’s ENDEPOCH message arrives, B computes
a Merkle Hash Tree [49] (MHT) over the hashes in the
epoch buffer, extracts the top-level hash hg, writes an entry
sp = EPOCHLOCAL(A — B,i, hp) to its tamper-evident
log (see Section 4.3), and returns a message COMMIT(,
ap, CHAIN(ap, sg), M) back to A. ap is an authenticator
(defined in Section 4.3), and CHAIN(a g, sp) is a hash chain
that connects ag to sp. (This is used to enable audits later
on.) By sending this message, B commits to having received
the packets in its epoch buffer.

Agreement: While B is working on its commitments, A
continues to forward packets, and it records the correspond-
ing hashes in other epoch buffers to avoid being stalled.
However, once the COMMIT message arrives, A locates the
corresponding buffer, removes the packets with sequence
numbers in M, and then computes a MHT over it in the
same way as B, which should yield the same top-level hash
ho. A then records an entry s4 := EPOCHREMOTE(A —
B, i, hg,ap,CHAIN(ap, sg)) in its local tamper-evident log
and returns a CONFIRM(%, a4, CHAIN(a4, $4)) message to
B, which records a FINAL(i, a4, CHAIN(a4, S4)) entry in
its log. At this point, A and B have agreed on the set of
packets that have been sent over the link in this epoch, and
they both hold evidence of this fact (the authenticators and
hash chains) in their respective logs. Note that this does not
attempt to make packet transmissions reliable, but merely
enables the endpoints to agree on the set of correctly trans-
mitted packets.

Actions: Nodes not only have to remember each packet
they received, but also what happened to it, so that it can
be tracked down a path. SPP represents this information as
1) a time offset to the beginning of the epoch to indicate
the time when the packet was received; 2) a set of links to
which the packet was forwarded (i.e., to capture both unicast
and multicast protocols), if any; and 3) for each such link, a
list of rule identifiers and mutations that were applied. Such
information is collected in action buffers that are “parallel”
to the epoch buffers. The nodes commit to their actions by
building an MHT over the action buffer, just as it does for
the epoch buffers; and the top-level hash h§ is recorded in
an entry ACTION(A — B, 4, hY) in its tamper-evident log,
just after the EPOCHLOCAL entry.

SPP uses the action buffers to produce the RULE vertexes
that link a RECEIVE(p) vertex to its SEND(p}) vertex. This



is crucial because some nodes can apply mutations to pack-
ets in transit: for instance, a NAT will change the port num-
bers and IP addresses in the header, and many routers will
decrement the TTL field. In these cases, the hash H (p}) of
the forwarded packet will differ from the hash H(p) of the
packet that was received. But given the recorded actions, an
auditor whose view includes the RULE vertexes can reapply
them to p and verify whether H (p}) is the correct hash.

Epoch faults: If any of the required messages does not
arrive, or if A and B compute different top-level hashes, they
report this as an epoch fault to their local administrator, e.g.,
by incrementing an SNMP counter. Absent link failures and
attacks, epoch faults can only occur due to undetected packet
corruption that has not been handled at the MAC layer, or
due to loss of control packets (which could be avoided with
extra FEC on these packets, or by sending control packets
multiple times.) Therefore, a non-trivial number of epoch
faults suggests either a link failure or an attack, and should
be investigated immediately by an administrator.

4.3 Tamper-evident log

To prevent nodes from “changing history” and from pre-
senting different views of their history to different audi-
tors, each node maintains an append-only tamper-evident log
(TEL) [28]. The TEL consists of entries of the form s; :=
(t,hi,E,c), where t is a timestamp, £ is an entry type, c is
the content of the entry, and h; := H(h;—1 || t]|E || H(c))
forms a hash chain of the entries. SPP has nine entry types:

® RULEADD(r, R) / RULEDEL(r): A rule R with rule ID r
was added or deleted;

e LINKUP(!) / LINKDOWN(!): Link ! went up or down;

® EPOCHLOCAL(l, FE, hg) / EPOCHREMOTE(, E, hg, a, ¢):
The top-level hash of the local/remote MHT for an epoch
FE on link [ was hg. a and ¢ are the remote node’s authen-
ticator and hash chain.

¢ FINAL(l, F, a, c¢): The final authenticator and hash chain
for epoch F on link [ were a and c, respectively.

® ACTION(!, E, h§): The top-level hash of the action buffer
for an epoch E on link [ was hg.

e CHECKPOINT(C): C contains a snapshot of the node’s
current link statuses and rules.

The TEL can be used to authenticate past entries as follows.
Recall from Section 4.2, any node A can commit to the
contents of its TEL up to some entry s; by sending an
authenticator ay, := (k, hi,, 04 (k|| hi)) to another node. If
A ever tampers with a previously recorded entry s;, j < k,
this change will invalidate the hash values of all subsequent
entries and be inconsistent with ay, as well as any other
authenticators that the node has sent since s;. Therefore,
suppose that A wants to prove to B that an entry s; was
part of the log that was authenticated by ay, & > j. Then
A can provide a hash chain CHAIN(ay, s;) that consists of
(tz, &, H(sz)),7 < x < k; using this information, B can

recompute hj, hjiq1, ..., hy; if by matches the value in ay,
and ay, is properly signed with A’s secret key, B can be sure
that the claim is valid [28].

The TEL has two other uses. First, it can be used to
reconstruct previous states, e.g., a rule that was used in
some past epoch, by loading the most recent checkpoint
before that epoch and replaying all the subsequent actions
until the epoch of interest has been reached. Second, SPP
does not require synchronized clocks across the network;
the EPOCHLOCAL and EPOCHREMOTE entries in the TEL
provide a form of timeline entanglement [47], which limits
how much a compromised node can distort the timing of
events to the length of a single epoch.

Notice that the data in the TEL is needed to respond to
queries; if a node’s TEL is lost or corrupted, that node will
no longer be able to respond and thus will (appropriately)
register as faulty. However, the loss of the TEL will also
prevent a more detailed diagnosis. If this is undesirable, the
system can maintain replicas of the TEL.

4.4 Query processing protocol
We now describe how to query the evidence in the TELSs.

Querier: A can query the fate of some packet p it has pre-
viously sent to B as follows. A scans its epoch buffers for
the hash H (p) and identifies 1) the epoch ¢ in which p was
sent, 2) its index j, and 3) the commitment ¢ := op(A —
Bl|i||ho) with which B has acknowledged p’s receipt.
A then constructs a containment proof PROOF(c, H(p)),
which shows that H(p) is a leaf node in the MHT rooted
at hg, and invokes QUERY(p) on B with the tuple u :=
(¢, PROOF(c, H(p)).

Responder: When B receives the query, it first verifies that
the provided commitment is genuine. If so, it uses the epoch
number and the link identifier in ¢ to locate the correspond-
ing action buffer, which will tell B the rule that it has ap-
plied to p, and which link(s) p was forwarded to. Finally, B
provides the following response: 1) for each link B — C'
to which p was forwarded, the commitment cc := o¢(B —
Cllill hg’j ); 2) the new hash H (p’); 3) a containment proof
PROOF(cc, H(p')); 4) the relevant entry s, in the action
buffer, and 5) a containment proof PROOF(cc, H(sp)). 1)—
3) give A all it needs to invoke QUERY on the next hop C' (or,
if the packet was cloned, on each next hop), and to generate
the SEND and RECEIVE vertexes for the next-hop link(s); 4)
and 5) allow A to apply the mutations in s, and verify that
p’ is the same packet as p.

4.5 Retroactive freezing protocol

So far, we have explained SPP as if each node kept all of its
epoch buffers forever. In practice, SPP allows each node to
expire old epoch buffers after some time 7'z, while ensuring
that malicious nodes cannot discard their buffers freely to
cover their tracks, and that normal queries are given enough
time to complete.



Capabilities
System Goal Information offered Secure | Supports | Covers entire | Fine-grained | Fine-grained
evidence | forensics Internet entities traces

Tulip [45] Fault localization Loss, delay, reordering X X v v'(Routers) v (Packets)
NetPolice [70] Traffic differentiation detection Loss X X v X (ISPs) X (Flows)
SPIE [62] P traceback Backward routes X v v v'(Routers) v (Packets)
NetSight [29] Network debugging Packet histories X v X v/(Routers) v (Packets)
Netdiff [46] ISP performance benchmarking Delay X X v X (ISPs) v (Packets)
Paris-traceroute [11] Load-balancer detection Load-balanced routes X X v v/(Routers) v (Packets)
HAL [26] Packet attestation Packet transmissions v v X v (Links) v (Packets)

Audlt [9] Performance accountability Loss, delay X X v x (ISPs) v/ (Both)
SPP Single network-level primitive All of the above v v v v/(Routers) v (Packets)

Table 1: Comparison between SPP and some existing diagnostic and forensic primitives.

SPP uses a retroactive freezing protocol, where a node
A can request that the evidence for a packet p be frozen
into stable storage, so that it can be inspected on human
timescales. A does so by sending a special freeze packet
p’ = FREEZE(H(p)) on the same port as p before T
elapses. p’ and p maintain the same header so that they will
likely take the same path. But if path divergence happens or
p’ gets dropped, SPP can be recursively applied to p’ to in-
vestigate such instances. Moreover, the freeze packet is sent
retroactively, up to several seconds after the packet was orig-
inally sent, so that a compromised node cannot predict which
packets will be frozen, and then treat these packets differ-
ently to avoid detection; by the time the freeze packet arrive,
the nodes will have forwarded the packets and committed
to their actions. The end users can choose which packets to
freeze according to their needs, or randomly freeze a subset
of their traffic. To prevent the freeze primitive from being
abused (e.g., for DoS attacks), nodes can limit the rate at
which they are willing to freeze packets: if a node receives
too many freeze requests from a neighbor, it can record the
requests and the corresponding commitment, and then deny
the excess request. If that node is challenged later because it
did not respond to a request, it can show the saved requests
to prove its innocence.

4.6 Properties

Next, we discuss the properties of SPP. In the presence of
Byzantine nodes, the provenance graph G constructed from
the collected evidence e is only an approximation of the “ac-
tual” provenance graph G; for example, a faulty node may
refuse to provide an explanation consistent to e in response
to a QUERY request. However, G, is a close enough approx-
imation of G, providing the following guarantees:

e (3. is accurate. G, faithfully reproduces all the vertexes
on correct nodes, that is, 1) if a vertex v on a correct node
exists in G, then v must also exist in G, with the same
predecessors and successors; and 2) a correct node will
never be accused as faulty.

® (5. is complete. Given evidence e from correct nodes, 1)
each vertex in G on a correct node also appears in GG, and
2) when some node is detectably faulty, recursive QUERY
invocations will identify at least one faulty node.

In other words, although we cannot force faulty nodes to co-
operate, SPP will always generate provenance that reflects
the actual execution of all correct nodes, and SPP can cor-
rectly expose at least one faulty node with non-repudiable
evidence.

In terms of privacy guarantees, a node is not allowed to
audit or otherwise learn about packets it has not processed:

e (G, is private. Given an evidence e collected through
recursive QUERY, G, constructed by node v contains
only SEND and RECEIVE vertexes for packets that are
visible to v. We say a packet p is visible to anode v, if 1) p
is received or sent by v, 2) p is mutated and forwarded as
p’ that is visible to v, or 3) a visible packet p’ is mutated
and forwarded as p.

4.7 Limitations

SPP is designed for diagnostics and forensics on the Inter-
net’s data plane, and there are at least three classes of prob-
lems that SPP cannot diagnose directly: a) faults of a remote
node that do not affect any external messages, such as CPU
overload; b) faults that happen outside of the Internet data
plane, such as BGP prefix hijacking; and c) faults that need
aggregate information about the packets, such as high per-
flow latencies. Next, we explain these categories in more de-
tail, and discuss potential ways of addressing some of them.

Non-observable faults: Not all problems on a node can be
detected from only its externally visible inputs and outputs.
For instance, if a bit flips in a node’s memory, its CPU load
is high, or its disk has failed, the network packets that the
nodes sends may not be affected initially (or ever). Even if
the problem does affect a network packet, detection may still
be impossible if the nodes that receives the packets is also
faulty. This limitation is inherent [27] and also affects other
systems that attempt to detect or diagnose faults based on
network events.

Control-plane diagnostics: SPP, as described here, gen-
erates an IP-level provenance graph on the Internet’s data
plane; it does not provide visibility into control-plane events.
Thus, SPP’s QUERY primitive cannot detect faults that man-
ifest entirely on the control plane, such as BGP prefix hi-
jacking, routing policy violations, and the like. This limita-
tion is not inherent, and it should be possible to remove it



by extending the provenance model to capture control-plane
events, as discussed in Section 3.4.

Aggregate information: SPP’s QUERY primitive returns in-
formation about individual packets, so it cannot directly di-
agnose problems that are related to aggregate properties of
multiple packets or entire flows. For instance, if a flow is ex-
periencing low throughput, this cannot be detected based on
what happened to individual packets in that flow. One way
to get around this would be to implement the summariza-
tion extension from Section 3.4; an even simpler way would
be to query multiple packets and to do the analysis as a post-
processing step. The precision of the second approach would
be limited by the accuracy of the nodes’ timestamps (recall
that SPP does not assume synchronized clocks); however,
previous work has shown [10] that useful performance mea-
surements are possible even when the clocks are only loosely
synchronized.

5. Case studies

Next, we describe four classes of common diagnostic and
forensic tasks for which specialized solutions already exist.
We explain how SPP can approximate these solutions, and
how they could be re-implemented on top of SPP. Table 1
provides a summary.

Traceback: Traceback is the process of identifying the
sender of a (potentially spoofed) packet. This is difficult in
the current Internet because packets contain no secure data
about their source or the paths they have traversed. Source
authentication systems like AIP [7] and Passport [43] aim to
prevent spoofing using cryptographic signatures. Path veri-
fication systems aim to reconstruct a packet’s path, e.g., by
securely recording it in a header [53], by probabilistically
marking packets [59], or by keeping digests of packets at
each router [62]. Both types of traceback essentially require
access to the path a received packet has taken, which is a
part of the packet-level provenance that SPP offers (although
SPP does not proactively prevent spoofing).

Routing and performance problems: A common diagnos-
tic task is to determine why a particular path has unusu-
ally high packet loss, delay, or has become unavailable [11,
41, 64]. To overcome the limited visibility deep within the
network, proposals have been made to extract more diag-
nostic information, e.g., by using more vantage points [36],
adding network extensions [10, 45, 56], or using historical
data [19, 62]. NetSight [29] even remembers packet “histo-
ries” that are similar to the provenance in SPP (though in
an intra-domain setting). In essence, those systems want to
know the path a transmitted packet has taken, along with
some timing information for each hop. SPP exposes a su-
perset of the information needed: packet-level properties are
visible directly; flow-level properties can be extracted by
some post-processing on a set of frozen packets.

Intrusions and misbehavior: Internet-related evidence is
appearing in many court cases, but forged packets and IP

addresses can lead to judicial errors [26] and bogus ac-
tions [55]. One possible solution is to enable the use of
packet traces as secure evidence using source or packet au-
thentication. AIP [7] and Passport [43] provide the former,
and HAL [26] provides the latter; ICING [53], Clue [6], and
DRKey [38] support both. In some cases, the ISPs them-
selves have an incentive to manipulate unwanted traffic [18]
or to inject advertisements [58]. Systems to detect such mis-
behaviors include, e.g., Glasnost [18] and NetPolice [70] that
detect traffic differentiation, and Web Tripwires [58] that de-
tects in-flight packet modifications. However, to ultimately
resolve such situations, one also needs evidence: since the
recipient of the packet (the victim) is usually different from
the entity that takes action (e.g., a judge), it is necessary to
verify that a particular evidence is authentic. SPP’s authenti-
cators are designed for this purpose.

Topology discovery: Topology mapping is useful for la-
tency prediction and modeling [60]. However, in the absence
of direct support, people must generally rely on low-quality
data, e.g., from traceroutes or IP record-route options, which
require great ingenuity to collect and clean up. It would be
much easier if the network provided explicit and unambigu-
ous information, so that there would be no need for “guess-
work” based on subtle idiosyncrasies of network hardware.

6. Implementation

We have implemented two prototypes of SPP: a software-
only implementation of the entire system, and a NetFPGA
prototype of the parts that would need to run at line speed.

Software prototype: Our software prototype is written in
C/C++. It can be configured to run 1) as a Click router mod-
ule [39], or 2) as a standalone program. In Click mode, SPP
runs with live traffic forwarding; we performed functional-
ity checks and prototyped six common diagnostic routines
in this mode. In standalone mode, SPP still runs the entire
protocol but disables traffic forwarding; we used this mode
to evaluate SPP’s protocol overhead as a very conservative
lower-bound. Both modes are trace-based, so they are not
limited by the speed of our physical NICs. We used SHA-1
for the hash function! and RSA-2048 for the cryptographic
signatures, as implemented in the OpenSSL library v1.0.1.f.
Our Click mode implementation is based on Click v2.1.

NetFPGA prototype: As we will show in Section 7, the
dominating cost in SPP comes from packet hashing and
MHT construction. To evaluate its performance in realistic
deployment, we have built an additional implementation of
those two components in hardware, on a NetFPGA-10G [13]
platform. Our platform contains a Xilinx Virtex 5 (65nm)
FPGA (xc5vtx240tffg1759-2 [32]), as well as four SFP+
modules that can each support 10 Gbps traffic. We have im-
plemented SPP as part of the Output Port Lookup module

! After the recent discovery of a collision [63], SHA-1 is no longer consid-
ered secure. Future implementations should use a more recent hash func-
tion, such as SHA-256.



(somewhat analogous to the design in [52]), so that it can run
in parallel with the traffic forwarding path. Our logic is di-
vided into 13 fully pipelined stages. The first stage contains
a state machine that parses packets from NetFPGA’s AXI4-
Stream interconnects; the second stage computes per-packet
hashes; and the remaining 11 stages construct the MHTs.
Our implementation builds on NetFPGA and open-source
hashing libraries, and consists of 2,588 lines of Verilog code.
The first stage routes 64 bits of packet data per cycle from
the AXI4-Stream interconnects, so it can send a minimum-
sized packet to the hashing stage every eight cycles. Our
hasher also accepts 64 bits per cycle, but it incurs a 14-cycle
delay after the packet’s last-bit signal is asserted. To nev-
ertheless keep up with the incoming data rate, the hashing
stage contains four separate instances of the hasher and uses
them in a round-robin fashion. Each of the MHT stages con-
sists of a buffering phase and a hashing phase: the buffering
phase uses a fallthrough FIFO in SRAM to hold the hashes
produced by the previous stage, and the hashing phase de-
queues hashes from its FIFO, hashes them in pairs, and then
enqueues the new hash at the next FIFO. The last stage’s
hasher produces the MHT roots. Since the data rate de-
creases as hashes pass through the MHT stages, we are able
to do rate matching using 15 hashers: four for the first MHT
stage, two for the second MHT stage, and one per each of
the remaining stages. We have used SHA-3 (Keccak) in the
hardware implementation for its good performance; to make
the results comparable to those from the software prototype,
we use only the last 160 bits to match the length of SHA-1.

7. Evaluation

In this section, we evaluate SPP’s performance overhead
and demonstrate how common diagnostic functionalities can
easily be built with it. We first evaluate SPP’s protocol over-
head with our software prototype, including storage, band-
width, and computation costs, both with real high-speed
traffic, and in worst-case scenarios; in addition, we report
our hardware microbenchmarks to show that the seemingly
high computation cost in software could be easily handled
by off-the-shelf hardware technology. (Note that the stor-
age and bandwidth overheads, unlike the computation cost,
would not differ across hardware and software platforms.)
We obtained our real traffic from CAIDA’s live capture on
a 10 Gbps OC-192 link on Jan. 19, 2012, in which 4.6 mil-
lion packets were sent with an average rate of 2.46 Gbps. For
the worst-case scenarios, we synthesized traffic at 100 Mbps,
1 Gbps, and 10 Gbps in which all packets have the mini-
mum size, and thus the traffic has the maximum packet rate
(which is unlikely to occur with real traffic). We also used an
epoch length of 7' = 100ms, and 10-bit sequence numbers
in the link-layer headers, allowing the numbers in the header
to wrap: the full sequence number can be reconstructed as
long as loss bursts are below 21°. Our software experiments
were run on a Dell OptiPlex 9020 workstation, which has a

[ = Others
r mmmm Verification
10 - = Signing
 mmmm Hashing

-

100Mbps 1Gbps 10Gbps
Link speed

Cores

1

0C-192

Figure 2: Computation cost of SPP’s commitment protocol,
normalized to the power of one core. The cost of hashing
dominates. (The other bars are too low to see.)

3.40 GHz Intel i7-4770 CPU (with 8 cores), 16 GB of RAM,
and a 500 GB hard disk. The OS was Ubuntu 14.04 with
kernel version 3.8.0.

7.1 Recording: Computation cost

SPP requires each network component to regularly generate
commitments for the traffic it sends and receives, and to ver-
ify its neighbors’ commitments. We first used our software
prototype to quantify this cost. We generated synthetic traces
that consisted entirely of 40-byte packets (the smallest valid
TCP packet, 84 bytes on the wire [35], and thus the worst
case for SPP) with rates of 100 Mbps, 1 Gbps, and 10 Gbps.
We then ran all four traces through our software prototype,
measured the computation time to generate and verify the
commitments, and normalized the cost to the performance of
an individual core. For instance, if one core took 2 seconds
to process the commitments for packets sent in 1 second, we
report this as 2 cores. (SPP trivially scales to multiple cores,
as the cores can work on different epochs independently.)
We report a decomposition of the cost of hashing, signature
generation, and signature verification.

Figure 2 shows that the dominant computational cost of
SPP is hashing, especially at higher link speeds. This is good
news because hashing is easy to do in hardware [22, 54], and
it is also the reason why our NetFPGA prototype focuses
on hashing: the remaining computations have a moderate
cost, so routers should be able to perform them in software.
Figure 3 shows results from a similar experiment where the
two highest-cost traces still maintain the same rates, but have
different packet sizes (and 14-byte Ethernet headers). The
figure shows that the overhead drops quickly as the packet
size increases. This is because the number of internal hashes
in the MHT depends only on the number of packets, but not
on their size. At a more typical packet size of 300 bytes [61],
the cost is 54% lower.

Hardware prototype: For our NetFPGA prototype, com-
putation cost is not a good metric; instead, we quantify the
maximum supported bitrate and the number of hardware el-
ements that it requires. Our NetFPGA prototype can be syn-
thesized to run at 200 MHz (5 ns per clock cycle), which
achieves a theoretical throughput of 12.8 Gbps, and an ef-
fective throughput of 10 Gbps with the existing SFP+ mod-
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Figure 3: Computation cost for different packet sizes in the
two traces with the highest costs.

Resource Used Total available | Utilization
Slice registers | 53,964 149,760 36%

Slice LUTs 109,040 149,760 72%
Block RAMs 28 324 8%

Table 2: Hardware cost for hashing and building MHTs.

ules. We note that these results are consistent with other
benchmarking efforts [12, 21, 48]. We have listed the hard-
ware utilization in Table 2, in terms of LUTs (LookUp Ta-
bles), registers, and Block RAMs used. They are well within
the resources available on Virtex-5 FPGAs, and would be
only a fraction if mapped on more recent FPGAs: for in-
stance, NetFPGA-SUME’s Virtex-7 has nearly three times
as many logical elements [76]. We also note that 10 Gbps
is not the limit: for 100 Gbps routers, there are optimized
hashers that could achieve 34.27 Gbps per hasher on Virtex-
5 FPGAs [50], which is about ten times faster than the
hash module we have used. The performance of our hard-
ware prototype represents a lower bound on the performance
that a hardware implementation of SPP can achieve; in a
real-world deployment, the packet processing would be per-
formed on ASICs in high-speed routers, which are much
faster than FPGAs.

7.2 Recording: Bandwidth cost

Since SPP’s bandwidth and storage overheads do not vary
with the underlying hardware or software platforms - unlike
the computation speed - we evaluated them on our software
prototype. SPP requires an extra link-layer header, as well as
some new control messages for exchanging commitments.
Both consume some fraction of the raw link capacity that
is no longer available for sending traffic. To quantify this
effect, we measured the fraction of the raw link capacity
that was used by SPP. We sent R = 3 replicas of each
control message, to conservatively account for message loss,
and we assumed a link-level packet loss rate of 1%, which
is orders of magnitude above typical rates today [1, 3]. We
show results for 40-byte packets (the worst case) and a more
typical packet size of 300 bytes.

Figure 4 shows our results. For the 100 Mbps trace with
40-byte packets, SPP only consumes about 2.06% of the
available link capacity. Moreover, the overhead drops with
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Figure 4: Bandwidth consumption of SPP’s commitment
protocol, as a fraction of the raw link capacity.

increasing link speeds and increasing packet size. This is
because the overhead has two components: one consists
of three fixed-size messages (NEWEPOCH, ENDEPOCH, and
CONFIRM) that are sent once per epoch, regardless of the link
speed and the number of messages, and the other consists of
the link-layer headers and the entries in the missing packet
list (COMMIT), which are both proportional to the number
of packets. At 1 Gbps and with the more typical 300-byte
packets, the overhead is only 0.42%. For the most realistic
case of the OC-192 link, the overhead is only 0.16%.

7.3 Recording: Memory

SPP requires a certain amount of RAM for epoch buffers,
action buffers, and the list of lost packets. Next, we quantify
how much memory these data structures require.

In our implementation, an entry in the epoch buffer re-
quires 20 bytes (the size of a hash value), an entry in the
action buffer requires 30 bytes (the size of a timestamp, a
destination port number, and up to 3 mutation records), and
an entry in the loss buffer requires 10 bits (the size of a se-
quence number). For each received packet, SPP adds one
entry to each of the first two buffers, and for each missing
sequence number, it adds an entry to the third buffer. We
also dimension the buffers for the worst case. If we assume
a 1 Gbps link, an epoch length of 7" = 100ms, and a mini-
mum packet size of 40 bytes (i.e., up to 312,500 packets per
epoch), the epoch and action buffers would require 6.25MB
and 9.38MB of memory, respectively; with a link-level loss
rate of 1%, the loss buffer would require 3.91 kB. Since all
sizes are proportional to the link speed, a 10 Gbps link would
require ten times as much.

The number of buffers depends on the number of ports the
node has, and on the latency that is needed to finish the com-
mitment protocol, which depends on the link’s RTT. (Recall
that the sender must retain the hashes until the receivers’
COMMIT message arrives.) If we conservatively assume a
per-link RTT of up to 100ms, 2% (100/7T") = 2 buffers would
be needed per port, so a node with twenty 1 Gbps ports
would need 625 MB of RAM. Note that the hashes are writ-
ten at much lower rates than the links’ bitrates, so expensive
SRAM is not required — commodity DRAM is enough, e.g.,
NetFPGA-SUME has 8 GB of DDR3 synchronous DRAM
with a 238.8 Gbps peak memory throughput [76].
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Figure 5: Data rates for different auditing rates ¢.
7.4 Recording: Disk space

SPP requires disk space to store the packet-level evidence
that has been “frozen” by queriers, as described in Sec-
tion 4.5. To quantify how much storage is needed, we ran
the traces through SPP and randomly froze a certain frac-
tion ¢ of the packets. Figure 5 shows the amount of data
written to disk due to audits. It is expected that the amount
of frozen evidence increases with ¢. However, the increase
is not linear: for small ¢, SPP must store not only the hash
of each frozen packet but also the hashes of internal nodes
along the path to the root. But, as ¢ increases, there is more
and more overlap between the paths, which reduces the num-
ber of additional hashes that need to be stored for each new
frozen packet. Note that the next-hop authenticator needs to
be stored only once per epoch, so the necessary space is com-
paratively small. From the figure we can see that, an audit-
ing rate of ¢ = 1% can be well supported by the through-
put of a hard disk, and ¢ = 15% with a commodity SSD.
Summarizations (Section 3.4) can further reduce the stor-
age consumption: with flow-level summarization (see [15]),
a 100 GB disk can store the summaries from the OC-192
trace for the most recent 25.3 hours, i.e., for more than a
day. In order to store even more data, the granularity of the
summarization could be reduced further.

7.5 Querying

Computation: Upon a query, SPP must freeze and retrieve
the evidence that is needed to answer it. The evidence can be
constructed by building a MHT with packets in the queried
epoch, and tracing the relevant paths from the root to the
queried packets. Querying multiple packets in the same
epoch only costs marginally more than querying only one
packet from that epoch, because queries for packets in the
same epoch can be buffered until the end of the epoch and
answered altogether. Therefore, the worst-case cost is when
MHTs for all epochs need to be reconstructed. Note that this
is a simple repetition of the MHT construction at recording
time (Section 7.1), only this time we do not need to hash
the packets again. We show the computation cost for dif-
ferent link speeds in Figure 6, and note that our NetFPGA
prototype could achieve this at a 10 Gbps rate.

Bandwidth: The bandwidth needed for freezing is low (a
single 40-byte packet), so we focus on the bandwidth for re-
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Figure 6: Computation cost for answering queries.

Core functionality LoC
Trace a transmitted packet’s path [33] 8
Trace a received packet’s traversed path  [62] 8
Identify node on path that drops a packet [45] 8
Attest to the transmission of a packet [26] 9
Identify link on path with highest delay [411 | 24
Compute a link’s average throughput [46] | 26

Table 3: Several applications we built with SPP, and the lines
of code (LoC) they required.

trieving the evidence. Recall that to query the provenance
of a packet p on a node n, the querier provide n with p’s
hash, the number of the epoch p was sent in and the corre-
sponding authenticator, p’s index in the epoch buffer, and a
containment proof that links the authenticator to the hash;
the response contains the same information for the next hop,
along with the relevant entry from the action buffer. For a
given choice of hash function and signature algorithm, the
size of all fields is fixed, except for the containment proof,
which grows with the height of the per-epoch MHT. For a
1Gbps link with T = 100ms, the size of a single query in our
implementation is 680 bytes; for a 10Gbps link, the MHT
grows by four levels, and thus the size of a query grows to
760 bytes. Responses are 30 bytes larger because of the ad-
ditional action buffer entry. Both queries and responses are
small enough to fit into a single packet.

We now estimate the worst-case bandwidth cost of query-
ing. The cost for a single query (with freeze packet and head-
ers for request and response) is 40+680+710+2%x28=1486
bytes, or 4.95 times the average packet size of 300 bytes.
Thus, if a node allows up to 1% of its traffic to be queried,
query-related packets would account for 4.7% of its traffic.

7.6 Comparison with SNP

We next compare SPP with SNP [72], the state-of-the-art
system for secure provenance. SNP has been applied to BGP,
Chord, and Hadoop, but it is not designed to handle the high
data rates on the network data plane. To demonstrate this,
we ran SNP and SPP side by side, and we streamed packets
through both of them; we report the results we have obtained
on the 1Gbps trace with 40B packets.

Disk space: At an auditing rate of 1%, SPP wrote 65% less
evidence on disk than SNP. This is because SPP’s evidence



void tracert (Packet xp, Evidence xe) {
IP x*nextHop = gatewayIP;
Packet *p0 = p;

do {

query (&p, &e, nextHop);

print (nextHop+" "+ (e.time-p0.time));
} while (nextHop != END.OF_PATH);

Figure 7: Code for tracing a packet’s traversed path.

mostly consists of 20-byte hashes and not the longer RSA
signatures that SNP requires.

Bandwidth: SPP consumes 98.2% less bandwidth than
SNP. This is because SPP’s can commit to a batch of packets
using a single root hash, whereas SNP has to commit to each
packet one by one.

Computation: On the same trace, SPP runs 1378.5 times
faster than SNP. This is because SPP only performs two
hashes per packet and one RSA signature per batch, whereas
SNP needs to sign every single packet. At this speed, SNP
would require the equivalent of more than a thousand CPU
cores to process 1 Gbps of traffic in software, whereas SPP
can do the same with a single core.

7.7 Building applications with SPP

To determine whether SPP can fulfill its key promise of sup-
porting a wide variety of diagnostic and forensic tasks, we
implemented the core functionalities of six diagnostic and
forensic systems from the literature on top of the QUERY
primitive that SPP provides. Table 3 shows a list of the six
systems, along with the lines of code (LoC) in our imple-
mentations. The LoC numbers are very low: our most com-
plex application consists of 26 LoC, and four of the six
applications have less than 10 LoC. For concreteness, Fig-
ure 7 shows the slightly simplified code for tracing the path
a transmitted packet p has traversed; the code simply iterates
through the sequence of hops, starting with the evidence it
received when p was originally sent, and outputs the IPs and
latencies it encountered along the way.

The low number of LoC may seem surprising, but the
reason is that most of the complexity in the original appli-
cations was in the special-purpose network primitives they
proposed, or in smart techniques for leveraging and working
around existing primitives (such as ICMP TTL Exceeded)
that were originally introduced for some other purpose. With
SPP in place, the applications we tried reduce mostly to gath-
ering the relevant evidence and/or performing some simple
post-processing. Therefore, SPP does deliver its key benefit:
a single primitive that can handle most existing — and hope-
fully future — diagnostic and forensic tasks.

8. Deployment

As with most extensions to the Internet architecture, getting
SPP deployed at scale would not be easy. However, SPP
has a number of properties that could help to facilitate its

deployment. We summarize these properties below; for more
details, please refer to our full paper [15, Appendix B].

One primitive, many applications: As we have argued, it
should be possible to implement a variety of existing diag-
nostic and forensic systems on top of SPP. Thus, although
deploying any new feature in the data plane would not be
cheap, at least this effort would have to be spent only once
(rather than once for each specialized solution), and it would
yield a solution for a wide range of problems.

Few changes to the protocol stack: SPP leaves the cur-
rent protocol stack (almost) untouched; it mostly “sits on
the sidelines” and collects information about the traffic it ob-
serves. (The one change it does require is the additional link-
layer header for the commitment protocol, which is only vis-
ible to the routers on that particular link.) Thus, SPP requires
much fewer changes than a design that introduces a new kind
of addresses [7] or major packet header changes [53].

Using existing routers: Deploying SPP does not necessar-
ily require new routers. If a link does not have SPP-enabled
routers, it can still use SPP by attaching a separate machine
of FPGA (i.e., an SPP proxy) to each endpoint of the link,
and mirroring all traffic to them. The proxies can make com-
mitments and enable audits, while the routers themselves
forward traffic as usual. If a link has an SPP-enabled router
on one side and a conventional router on the other, a similar
proxy could be used to pair with the SPP-enabled router.

Incremental deployments are useful: SPP can be usefully
deployed at an individual ISP to diagnose ISP-local prob-
lems, so there is no need for a global “flag day”. Its benefits
increase gradually with the size of the deployment: This is
very different from a protocol like S-BGP, which must be
deployed almost universally to be useful.

Efficient hardware implementation: Like most secure
diagnostic primitives, SPP requires at least some crypto-
graphic operations. However, its fast path mostly requires
hashing, which can be implemented efficiently in hardware.

8.1 Incentives

We believe that ISPs have at least two incentives to deploy
SPP. First, SPP can handle troubleshooting tasks that are
directly useful to an individual ISP, even without considering
the rest of the Internet. Thus, each ISP would initially have
at least some incentive to deploy SPP in its own network,
independent of what everyone else is doing. SPP is perhaps
more heavyweight than a specialized troubleshooting tool
that serves a single purpose, but SPP has a wide variety of
uses, so an ISP might be willing to shoulder some additional
cost for the extra flexibility.

Second, SPP can help with cross-domain fault localiza-
tion, which is notoriously difficult. For instance, suppose
two adjacent ISPs cannot agree whether a path performance
problem lies in one ISP or the other. Today, this situation
might involve long phone calls between the ISP operator
teams, and potentially some customer dissatisfaction on both



sides. This creates a triple incentive to deploy SPP: 1) ISPs
might prefer to peer with networks that support SPP, to
better diagnose problems in these networks; 2) ISPs might
adopt SPP in their own network to distinguish themselves
from competitors and to highlight their own reliability; and
3) ISPs might adopt SPP to quickly establish that the prob-
lem is not on their side.

Ideally, these incentives would initially lead to the for-
mation of “deployment islands”, which would then slowly
grow until they start to merge. In the process, the fraction of
a typical path that would be covered by SPP would slowly
increase, leading to better and better end-to-end diagnostics.

9. Related Work

Specialized primitives: As discussed in Section 2, there is a
rich literature on systems that solve a particular diagnostic
or forensic problem [7, 10, 11, 18, 19, 26, 29, 36, 41, 43,
45, 51, 53, 58, 59, 62, 64, 70]. To address all of the under-
lying problems, it would be necessary to deploy all of these
systems in combination. In contrast, SPP aims to provide a
single primitive that can be used for a broad variety of tasks.

Packet-level diagnostics: SPIE [62], HAL [26], and Net-
Sight [29] resemble SPP in that they all “remember” every
single network packet. However, SPIE cannot reliably iden-
tify a specific packet due to the use of Bloom filters, and
HAL only collects per-packet evidence but does not perform
diagnosis. NetSight [29] is closest to SPP: it assembles a
“history” of each packet for SDNs. However, NetSight pro-
vides no security guarantees in the presence of compromised
nodes, and it is designed for a data-center setting, where
packet traces can be recorded without privacy concerns and
data does not need to be shared with other domains. Uni-
vMon [44] and OpenSketch [68] are recent proposals for
flow-level monitoring counters based on sketches. These ap-
proaches are useful for gathering traffic statistics, but, unlike
SPP, they do not provide packet-level provenance data.

Provenance: The concept of data provenance originated in
the database literature [14], and has since found a num-
ber applications in the networking domain [16, 67, 72, 75].
Among these, SNP [72] is the only one that is suitable for ad-
versarial settings. However, SNP’s overhead would be enor-
mous if it were applied to high-speed data, and it also lacks
the privacy protections that are needed for wide-area diag-
nostics across multiple domains.

Accountability: SPP is similar in spirit to previous pro-
posals for network-level accountability, e.g., “packet obit-
uary” [8] that reports packet drops, or AudlIt [9] that pro-
vides secure records of delay and loss rates. Network Con-
fessional [10] uses a similar retroactive sampling approach
to prevent special treatment of the sampled packets; how-
ever, it focuses on forwarding performance verification, not
direct support for diagnostics or forensics. PAAI [69] also
uses retroactive sampling to track lost packets, but it as-
sumed that end hosts are always honest.

10. Conclusion

As the large number of proposed extensions shows, the cur-
rent Internet architecture does not support diagnostics and
forensics very well. However, most existing proposals are
specialized solutions; thus, a comprehensive solution would
require deploying several of them concurrently, at a substan-
tial cost — in terms of both overhead and complexity. In this
paper, we have made a case for a network-level primitive
that can support a variety of different diagnostic and foren-
sic applications, and we have also presented SPP as a con-
crete proposal. Our evaluation shows that SPP can be imple-
mented efficiently in hardware and can approximate a vari-
ety of common diagnostic and forensic tasks.

Acknowledgments

We thank our shepherd, Dejan Kosti¢, and the anonymous
reviewers for their thoughtful comments and suggestions.
We are also grateful for the feedback we received from
André DeHon, Albert Kwon, Christopher W. Fletcher, Ling
Ren, and Sizhuo Zhang on the FPGA prototype. This work
was supported in part by NSF grants CNS-1054229, CNS-
1065130, CNS-1218066, CNS-1453392, CNS-1513679,
and CNS-1513734.

References

[1] NTT SLA. http://www.ntt.net/english/
service/sla_ts.html.

[2] Police face £750k bill for false Operation Ore charges. http:
//www.telegraph.co.uk/technology/news/
8422200/Police-face-750k-bill-for-false-
Operation-Ore-charges.html.

[3] Sprint SLA. https://www.sprint.net/sla_
performance.php.

[4] Symantec says hackers tried extortion.

//bits.blogs.nytimes.com/2012/02/07/
symantec—says—hackers—-tried-extortion/.

http:

[5] Techie  lands in jail due to  Airtel, sues
it. http://ibnlive.in.com/news/
techie-lands-in-jail-due-to-airtel-
sues—-1t/101343-3.html.

[6] M. Afanasyev, T. Kohno, J. Ma, N. Murphy, S. Savage, A. C.
Snoeren, and G. M. Voelker. Privacy-preserving network
forensics. Commun. ACM, 54(5):78-87, May 2011.

[7] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable Internet protocol
(AIP). In Proc. SIGCOMM, 2008.

[8] K. Argyraki, P. Maniatis, D. R. Cheriton, and S. Shenker.
Providing packet obituaries. In Proc. HotNets, 2004.

[9] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker.
Loss and delay accountability for the Internet. In Proc. ICNP,
2007.

[10] K. Argyraki, P. Maniatis, and A. Singla. Verifiable network-
performance measurements. In Proc. CoNEXT, 2010.



[11] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman,
M. Latapy, C. Magnien, and R. Teixeira. Avoiding traceroute
anomalies with Paris traceroute. In Proc. IMC, 2006.

[12] B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne,
M. Neill, and W. P. Marnane. FPGA implementations of the
round two SHA-3 candidates. In Proc. Second SHA-3 Candi-
date Conference, 2010.

[13] M. Blott, J. Ellithorpe, N. McKeown, K. Visssers, and
H. Zeng. FPGA research design platform fuels network ad-
vances. Xilinx Xcell Journal, 2010.

[14] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A
characterization of data provenance. In Proc. ICDT, 2001.

[15] A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. One prim-
itive to diagnose them all: Architectural support for Internet
diagnostics. Technical Report MS-CIS-17-04, University of
Pennsylvania, 2017.

[16] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo. The
good, the bad, and the differences: Better network diagnostics
with differential provenance. In Proc. SIGCOMM, 2016.

[17] D. Clark. The design philosophy of the DARPA Internet pro-
tocols. ACM Computer Communication Review, 18(4):106—
114, 1988.

[18] M. Dischinger, M. Marcon, S. Guha, K. P. Gummadi, R. Ma-
hajan, and S. Saroiu. Glasnost: Enabling end users to detect
traffic differentiation. In Proc. NSDI, 2010.

[19] N. G. Duffield and M. Grossglauser. Trajectory sampling
for direct traffic observation. IEEE/ACM Trans. Netw.,
9(13):280-292, 2001.

[20] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and
B. Maggs. Locating Internet routing instabilities. In Proc.
SIGCOMM, 2004.

[21] K. Gaj, E. Homsirikamol, and M. Rogawski. Comprehen-
sive comparison of hardware performance of fourteen round
2 SHA-3 candidates with 512-bit outputs using field pro-
grammable gate arrays. In Proc. Second SHA-3 Candidate
Conference, 2010.

K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U.
Sharif. Comprehensive evaluation of high-speed and medium-
speed implementations of five SHA-3 finalists using Xil-
inx and Altera FPGAs. https://eprint.iacr.org/
2012/368.pdf.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost
of a cloud: Research problems in data center networks. ACM
Computer Communication Review, 39(1):68-73, Dec. 2008.

[24] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel.
NetReview: Detecting when interdomain routing goes wrong.
In Proc. NSDI, 2009.

[25] A. Haeberlen, M. Dischinger, K. P. Gummadi, and S. Saroiu.
Monarch: A tool to emulate transport protocol flows over the
Internet at large. In Proc. IMC, 2006.

[26] A. Haeberlen, P. Fonseca, R. Rodrigues, and P. Druschel.
Fighting cybercrime with packet attestation. Technical Re-
port MPI-SWS-2011-002, Max Planck Institute for Software
Systems, July 2011.

(22]

(23]

[27] A. Haeberlen and P. Kuznetsov. The fault detection problem.
In Proc. OPODIS, 2009.

[28] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview:
Practical accountability for distributed systems. In Proc.
SOSP, 2007.

[29] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and
N. McKeown. I know what your packet did last hop: Us-
ing packet histories to troubleshoot networks. In Proc. NSDI,
2014.

[30] S. Hao, M. Thomas, V. Paxson, N. Feamster, C. Kreibich,
C. Grier, and S. Hollenbeck. Understanding the domain reg-
istration behavior of spammers. In Proc. IMC, 2013.

[31] R. Hasan, R. Sion, and M. Winslett. The case of the fake
picasso: Preventing history forgery with secure provenance.
In Proc. FAST, 2009.

[32] X. Inc. Virtex-5 family overview. http://www.xilinx.
com/support/documentation/data_sheets/
ds100.pdf, Feb. 2009.

[33] V. Jacobson. Traceroute.
traceroute.tar.gz.

ftp://ftp.ee.lbl.gov/

[34] A. Juels and J. Brainard. Client puzzles: A cryptographic
countermeasure against connection depletion attacks. In Proc.
NDSS, 1999.

[35] Juniper Networks. Packets per second. http:
//kb.juniper.net/InfoCenter/index?page=
content&id=KB14737.

[36] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott,
J. Sherry, P. Van Wesep, T. Anderson, and A. Krishnamurthy.
Reverse traceroute. In Proc. NSDI, 2010.

[37] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishna-

murthy, D. Wetherall, and T. Anderson. Studying black holes
in the Internet with Hubble. In Proc. NSDI, 2008.

[38] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and
A. Perrig. Lightweight source authentication and path valida-
tion. In Proc. SIGCOMM, 2014.

[39] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans. on Com-
puter Systems, 18(3):263-297, 2000.

[40] M. Kotadia. Trojan horse found responsible for child porn.
ZDNet, 8/1/2003.

[41] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Kr-
ishnamurthy, T. Anderson, and J. Gao. Moving beyond end-
to-end path information to optimize CDN performance. In
Proc. IMC, 2009.

[42] M. Liberatore, B. N. Levine, and C. Shields. Strengthening

forensic investigations of child pornography on P2P networks.
In Proc. CoNEXT, 2010.

[43] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure
and adoptable source authentication. In Proc. NSDI, 2008.

[44] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braver-
man. One sketch to rule them all: Rethinking network flow
monitoring with UnivMon. In Proc. SIGCOMM, 2016.

[45] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-
level Internet path diagnosis. In Proc. SOSP, 2003.



[46] R. Mahajan, M. Zhang, L. Poole, and V. Pai. Uncovering
performance differences among backbone ISPs with Netdiff.
In Proc. NSDI, 2008.

[47] P. Maniatis and M. Baker. Secure history preservation through
timeline entanglement. In Proc. USENIX Security, 2002.

[48] S. Matsuo, M. Knezevic, P. Schaumont, I. Verbauwhede,
A. Satoh, K. Sakiyama, and K. Ota. How can we conduct
fair and consistent hardware evaluation for SHA-3 candidate?
In Proc. Second SHA-3 Candidate Conference, 2010.

[49] R. Merkle. Protocols for public key cryptosystems. In Proc.
IEEE S&P, 1980.

[50] H. E. Michail, L. Ioannou, and A. G. Voyiatzis. Pipelined
SHA-3 implementations on FPGA: Architecture and perfor-
mance analysis. In Proc. CS2, 2015.

[51] A. Mizrak, S. Savage, and K. Marzullo. Detecting compro-
mised routers via packet forwarding behavior. IEEE Network,
22(2):34-39, 2008.

[52] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and
N. McKeown. Implementing an openflow switch on the NetF-
PGA platform. In Proc. ANCS, 2008.

[53] J. Naous, M. Walfish, A. Nicolosi, D. Maziéres, M. Miller,
and A. Seehra. Verifying and enforcing network paths with
ICING. In Proc. CoONEXT, 2011.

[54] D. Naylor, M. K. Mukerjee, and P. Steenkiste. Balancing ac-
countability and privacy in the network. In Proc. SIGCOMM,
2014.

[55] M. Piatek, T. Kohno, and A. Krishnamurthy. Challenges and
directions for monitoring P2P file sharing networks. In Proc.
HotSec, 2008.

[56] A.Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feam-
ster. Packets with provenance. In Proc. SIGCOMM Poster,
2008.

[57] A. Ramachandran and N. Feamster. = Understanding the
network-level behavior of spammers. In Proc. SIGCOMM,
2006.

[58] C.Reis, S. D. Gribble, T. Kohno, and N. C. Weaver. Detecting
in-flight page changes with web tripwires. In Proc. NSDI,
2008.

[59] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for IP traceback. In Proc. SIGCOMM, 2000.

[60] R. Sherwood, A. Bender, and N. Spring. DisCarte: A disjunc-
tive Internet cartographer. In Proc. SIGCOMM, 2008.

[61] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet
size distributions: Some observations. Technical Report ISI-
TR-2007-643, USC ISI, 2007.

[62] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakoun-
tio, B. Schwartz, S. Kent, and W. Strayer. Single-packet IP
traceback. IEEE/ACM Trans. Netw., 10(6):721-734, 2002.

[63] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and
Y. Markov. The first collision for full SHA-1. Cryptology
ePrint Archive, Report 2017/190, 2017.

[64] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. H. Katz.
Listen and Whisper: Security mechanisms for BGP. In Proc.
NSDI, 2004.

[65] R. Sylvester. IP address typo leads to a false arrest in Kansas.
The Wichita Eagle, http://www.kansas.com/mld/
eagle/news/local/crime_courts/12620843.
htm.

[66] R. Teixeira and J. Rexford. A measurement framework for
pin-pointing routing changes. In Proc. NetT, 2004.

[67] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Di-
agnosing missing events in distributed systems with negative
provenance. In Proc. SIGCOMM, 2014.

[68] M. Yu, L. Jose, and R. Miao. Software defined traffic mea-
surement with OpenSketch. In Proc. NSDI, 2013.

[69] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary
identification for data plane security. In CoNEXT, 2008.

[70] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting traffic dif-
ferentiation in backbone ISPs with NetPolice. In Proc. IMC,
20009.

[71] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush. iSPY:
Detecting IP prefix hijacking on my own. IEEE/ACM Trans.
Netw., 18(6):1815-1828, Dec. 2010.

[72] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr. Secure network provenance. In Proc. SOSP, 2011.

[73] W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z. Ives, B. T.
Loo, and M. Sherr. NetTrails: A declarative platform for
provenance maintenance and querying in distributed systems.
In Proc. SIGMOD Demo, 2011.

[74] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen, Z. Ives,
B. T. Loo, and M. Sherr. Distributed time-aware provenance.
In Proc. VLDB, 2013.

[75]1 W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network provenance at
Internet-scale. In Proc. SIGMOD, 2010.

[76] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.
Moore. NetFPGA SUME: Toward 100 Gbps as research
commodity. IEEE Micro, 34(5):32-41, 2014.



