Accelerated Service Chaining on a Single Switch ASIC

Dingming Wu
Rice University & Alibaba Group
dingming.wu@rice.edu

Guohui Wang
Alibaba Group
g.wang@alibaba-inc.com

ABSTRACT

Network functions and service function chaining are preva-
lent in cloud and ISP networks. In traditional software-based
solutions, scaling up the capacity of these functions requires
a large number of server cores. However, edge clouds are
severely resource-constrained in terms of space, power, and
budget, so traditional methods incur a high cost. We present
Dejavu, a system that can offload a service chain to a pro-
grammable switch to achieve high performance and resource
efficiency. Our system can compose multiple network func-
tions into a single program that preserves the original chain-
ing requirements, and exploit features of the switch ASIC to
efficiently deploy the composed program on a single switch.

KEYWORDS

Service Function Chaining; Programmable Switch; Edge Cloud

ACM Reference Format:

Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui Wang, and Haiy-
ong Wang. 2019. Accelerated Service Chaining on a Single Switch
ASIC. In The 18th ACM Workshop on Hot Topics in Networks (HotNets
’19), November 13—15, 2019, Princeton, Nj, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3365609.3365849

1 INTRODUCTION

Today, network service function chaining (SFC) is a preva-
lent need in cloud and ISP networks [18]. SFC connects a
sequence of network functions (NFs), e.g., load balancers,
NATs, and provides it “as-a-service” to multiple tenants.
Tenants’ traffic is then steered through different NFs for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotNets ’19, November 13—15, 2019, Princeton, NJ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7020-2/19/11...$15.00
https://doi.org/10.1145/3365609.3365849

Ang Chen

Rice University
angchen@rice.edu

T. S. Eugene Ng

Rice University
eugeneng(@cs.rice.edu

Haiyong Wang
Alibaba Group
haiyong.wang@alibaba-inc.com

processing. In response to the inflexibility and high cost of
hardware-based middleboxes, a recent trend is to implement
the services in software to run on baremetal servers or in
VMs [12, 14, 17, 21, 24-27, 36, 38]. Software-based NFs re-
duce hardware costs and shorten the cycles for new service
deployment, and they have gained popularity in large opera-
tional clouds [12, 16, 36].

However, software NFs are generally one or two orders of
magnitude slower than their hardware counterparts [13, 28,
31], due to the huge performance gap between commodity
CPUs and specialized switch hardware. While it requires
multiple CPU cores to reach a packet processing speed of
10s of Gbps [30, 41], a single switch ASIC at a similar cost
can easily process packets at several Tbps [1]. In order to
handle the ever-increasing traffic volume, cloud networks
need to deploy a large number of NF instances on dedicated
servers [12, 30, 36]. This comes at the cost of a reduced
amount of available resources for application-layer process-
ing, which in turn translates to economic implications for
the service provider.

Edge clouds are a place where this inefficiency is partic-
ularly problematic. Unlike regular cloud services that run
on large-scale data centers, edge services need to be placed
close to end users (e.g., mobile or IoT devices [40]), typically
in leased facilities with tight power, space, and compute con-
straints. In such resource-constrained data centers, every
available CPU cycle is precious. If a sizable amount of ma-
chines are enlisted just for packet processing, the capacity
and benefit of edge clouds would considerably decrease.

Recent advances in programmable switch ASICs and data
plane programming languages such as P4 [3] are quickly
changing the landscape of NF implementation. Emerging
switch ASICs, e.g., Intel FlexPipe [33] and Barefoot Tofino [1],
are designed with a reconfigurable match-action architec-
ture [4]. Switch programs written in P4 can be compiled to
run on these switch ASICs, parse customized packet formats,
and perform a rich set of operations over packet headers
at Tbps speeds [1]. Recent work has shown that many NFs,
such as layer-4 load balancing [31], caching [22] and security
functions [32] can be implemented on programmable ASICs

https://doi.org/10.1145/3365609.3365849
https://doi.org/10.1145/3365609.3365849

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

at very high performance. This presents unprecedented op-
portunities for reducing the cost of network service functions
at edge clouds.

Our work builds upon this trend, but takes it much further
by exploring how we could deploy an entire service chain on
a single programmable switch. If this is feasible, we could
then build SFC solutions that are much more compact than
software-based NFs, operating at much higher throughput
and lower deployment footprints. One key challenge, how-
ever, is that the hardware resources needed by a service chain
could easily exceed the capacity of any given switch ASIC
pipeline. As a result, the possibility of supporting SFCs on a
programmable switch remains an open problem today.

To bridge this gap, our project, called Dejavu, proposes
a new model for utilizing programmable switch ASIC re-
sources. This model does away with the static “ingress” or
“egress” designation of processing pipelines, and explicitly
enables packets to visit and revisit different processing logic
nearly arbitrarily to efficiently realize SFCs. Dejavu lever-
ages the multi-stage, multi-pipeline feature of the RMT ar-
chitecture [1, 4], as well as the modularity of the recent P4
language [8] to connect multiple NFs and host them on a sin-
gle switch ASIC. The individual functions are composed and
placed on the ASIC in a manner that preserves the original
functionality while maintaining high processing speeds.

The design of Dejavu addresses a set of challenges, such as
merging the data plane programs, optimizing NF placements,
and routing packet internally on the switch ASIC. In the rest
of this paper, we present the technical challenges and our
solution sketches. To obtain initial evidence of its feasibil-
ity, we have also developed a prototype of Dejavu, which
supports a service chain of 5 NFs (traffic classifier, packet
filtering firewall, virtualization gateway, L4 load balancer,
and IP router) from a production edge cloud.

Although our current discussion focuses on single-switch
scenarios, the techniques we develop can be naturally ex-
tended to multi-switch scenarios. We believe that the re-
source utilization model in Dejavu can enable more flexi-
ble ways to managing hardware resources—switch ASIC re-
sources can be managed at the granularity of pipeline stages,
network functions can be deployed at arbitrary pipeline lo-
cations, and flexible chaining policies can be constructed
among functions within a switch or across switches to real-
ize more advanced network services in the cloud.

2 BACKGROUND AND CHALLENGES

Switch ASIC Architecture. Fig. 1 shows the switch ASIC
architecture based on the Portable Switch Architecture [9]
from the P4 language consortium. In this architecture, a
full packet processing pipeline contains an ingress pipe, an
egress pipe, and a traffic manager. In an ingress/egress pipe

D. Wu et al.

— Normal Traffic === Resubmission Traffic ~ — = Recirculation Traffic
Ingress Egress

i i
1o Ingress Ingress [Traffic Egress Egress
-l> Parser MAUs Deparser Manager Parser MAUs Deparser [—

(called a pipelet henceforth), packets are first parsed and
then go through a series of match-action units (MAUs). Each
MAU has a fixed amount of hardware resources (e.g., TCAM,
SRAM, Crossbars, Gateways) for header and metadata pro-
cessing. Packets are reassembled by the deparsers at the end
of ingress pipe or egress pipe. A switch ASIC may have mul-
tiple such pipelines that share the same traffic manager. The
traffic manager has packet buffers and can forward packets
from any ingress pipe to any egress pipe. Pipelines are con-
figured by data plane programming languages, such as P4 [7].
Existing work has demonstrated that many network service
functions can be implemented in P4. However, the current P4
programming model does not support multi-programming—
each NF must be implemented as a monolithic P4 program
that is compiled and loaded onto the entire ASIC.

Recent advances in programmable switch ASIC architec-
ture and the high-level languages (i.e., P4) present opportuni-
ties for SFC. First, the latest versions of the P4 language have
made significant improvements for building modular NFs.
For instance, they provide constructs (e.g., extern methods,
parser, control and action blocks) for building and composing
modular control blocks [8]. Furthermore, language primi-
tives (e.g., Tofino Native Architecture [2]) are also available
for independent pipeline configuration. These features pro-
vide building blocks for SFC to leverage the multi-pipeline
switch architecture. Second, most switch ASICs support traf-
fic loopback that allows packets to go through the ingress
or egress pipe multiple times via packet resubmission and
pipeline recirculation!. As shown in Fig. 1, a packet can be
resubmitted to the same ingress parser after it finishes the
ingress processing, or recirculated to the ingress parser after
it completes the egress processing. Resubmitted or recircu-
lated packets carry a special header that can be recognized
by the ingress or egress parser and provides hints to the
MAUSs to perform different operations.

Challenges. The programmable ASIC architecture and
the language features discussed above provide a useful start-
ing point. However, the design of Dejavu needs to address
several technical challenges. First, how should we imple-
ment and deploy multiple NFs on a single programmable
ASIC? Since we can only load a monolithic P4 program on
one ASIC, we need to merge or compose multiple NFs. Sec-
ond, how should we chain multiple NFs based on the SFC
policies? A flexible on-chip routing mechanism is needed

!The name of our work, Dejavu, captures the experience of packets travers-
ing the same pipeline multiple times.

Accelerated Service Chaining on a Single Switch ASIC

Network service functions

|
: Virt,

I Gateway

|

Internet

Figure 2: An example SFC in an edge cloud. Traffic may tra-
verse the NFs in different orders. The Classifier and Router
are supplied by the Dejavu framework for all SFC paths.

2 Bytes 1 Byte 4 Bytes
Service | Service | Platform
ath ID index

metadata
Figure 3: Network service header used by Dejavu.

12 Bytes 1 Byte
Next
protocol

| Context data

to direct the traffic through NFs. Third, due to the architec-
tural constraints on ASIC, different NF placements on the
pipelines may require packets to travel through different
physical paths. How should we optimize the placements to
reduce the performance impact? Finally, the SFC policy may
contain complex NFs in a long chain, whereas the packet
processing pipeline usually has a small number of stages.
How should we efficiently use the limited pipeline resources
and compose more NFs?

3 SOLUTION SKETCH

Next, we sketch an initial design of Dejavu, using 5 NFs from
a production edge cloud as an example (shown in Fig. 2).
Depending on the SFC policies, traffic from the Internet may
need to travel different paths: Classifier-FW-VGW-LB-Router
(red arrows), Classifier-VGW-Router (orange arrows) and
Classifier-Router (green arrows). Our goal is to place these 5
NFs onto a single multi-pipeline switch ASIC.

SFC Header Format. Dejavu uses a customized SFC header
based on the IETF NSH proposal [37] (Fig. 3). In this header,
a 2-byte service path ID and a 1-byte service index uniquely
identify the next NF for a packet. The service index field will
be modified after each NF. The following 4 bytes contain a
copy of the platform-specific metadata, which in our current
design includes 6 fields: inPort, outPort, resubmissionFlag, re-
circulationFlag, dropFlag, mirrorFlag, and toCpuFlag. inPort
is the physical ingress port where the packet is received. out-
Port is the physical egress port that the packet needs to be
forwarded to. The next 5 flag bits indicate whether a packet
should be resubmitted, recirculated, dropped, mirrored or
sent to CPU, respectively. Following the platform metadata,
the SFC header provides 12 bytes of context header for NFs.
This header allows a packet to carry context data, such as
tenant ID, application ID and debugging info, along a ser-
vice path so that NFs can perform policy decisions based on
the context. The context header is formatted as key-value
pairs, with 1-byte keys and 2-byte values. We embed the SFC
header between Ethernet and IP headers and use a special

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

EtherType to signify its existence. It is added by the Classifier
module and removed by the Router module.

Generic Parser A P4 parser constructs a directed acyclic
graph (DAG), where each vertex represents a header type at
a particular location offset, and each edge represents a tran-
sition from one header to another. Note that the same header
types appearing in different packet locations are represented
by different vertices. The original parser of individual NFs
may only include headers that it needs. To enable the co-
location of multiple NFs, we merge the parsers of individual
NFs and generate a generic parser. While DAG-merging al-
gorithms exist [5], they cannot be directly applied to parser
DAGs, as it is difficult to check the equivalence of two head-
ers (vertices) in different parsers (DAGs)—a header may have
different names or appears in different location offsets in
different parsers. To solve the problem, we consider repre-
senting vertices in the DAG as (header_type, offset) tuples
so that two vertices are equivalent only when their head-
ers have the same type and appears at the same location
offset. We create a lookup table that maps each such tuple
to a global ID. The size of this table should be small as nor-
mal packets have limited header types and each header has
limited possible offsets. Since parser merging requires the
tuple IDs, we currently ask the NF programmer to supply
this information in the program.

3.1 Control Block Programming Interface

Dejavu allows developers to write NFs in modular control
blocks, and it hides the platform-specific metadata by pro-
viding a simple API with only one argument.
control XX control (inout all _headers_t hdr);

The choice of function name (“XX”) is up to the developer.
The argument hdr is instantiated by the generic parser and
provides all required protocol header fields, platform meta-
data and context metadata for the NFs. This API signifi-
cantly reduces the complexity of developing NF programs as
platform-specific features less relevant to the core NF logic
(e.g., packet forwarding, ingress processing, egress process-
ing, recirculation) are shielded by Dejavu.

Fig. 4 shows an example implementation of a L4 load
balancer. It has only one match-action table Ib_session that
implements the core logic—replacing the destination IP of
a packet with a selected server IP based on the hash of its
5-tuple, or sending the packet to CPU if there is a table miss.
The 5-tuple header fields are read from the hdr argument
(line 5). The session table [b_session stores the hash of all
matched flows. If there is a hit on the hash code, action
modify_dstIp will be called to modify the destination IP. If
there is a miss, the default action toCpu will set the toCpuFlag
in the SFC header. In the latter case, the Dejavu framework
will check the flags and send the packet to the control plane.

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

1 control LB_control(inout all_header_t hdr){

2 bit<32> sessionHash;

3 Hash<bit<32>>(HashAlgorithm_t.CRC32) hasher;

! action computeFiveTupleHash(){

5 sessionHash = hasher.get({hdr.ipv4.src_addr,
hdr.ipv4.dst_addr, hdr.trans_prtcl,
hdr.tcp.src_port, hdr.tcp.dst_port});

6 }

7 action modify_dstIp(bit<32>dip){hdr.ipv4.dst_addr = dip;}
8 action toCpu(){hdr.sfc.toCpuFlag = true;}

9 table lb_session{

10 key = {sessionHash:exact;}

11 actions = {modify_dstIp; toCpu;}

12 const default_action = toCpu();

13 }

14 apply{computeFiveTupleHash(); lb_session.apply();3}

15 }
Figure 4: An example implementation of a L4 load balancer
using Dejavu’s programming interface.

1 //sequential operator
2 control Ingress(inout all_header_t hdr, inout common_metadata_t
md, inout standard_metadata_t standard_metadata){

3 apply{

4 if(-apply () .LB){
5 LB_control.apply(hdr);

6 -apply(); }
7 if(-apply () .FW){
8 FW_control.apply(hdr);

9 -apply(); }

10 3}

11 }

12 //parallel opeartor

13 control Ingress(inout all_header_t hdr, inout common_metadata_t
md, inout standard_metadata_t standard_metadata){

14 apply{

15 if(.apply() .LB){LB_control.apply(hdr);3}
16 else if(.apply () .FW)

17 { FW_control.apply(hdr); }

18 -apply();

19 3}

20 %}

Figure 5: An example of the sequential and parallel compo-
sitions. Both invoke LB and FW on the same pipelet. Dejavu
APIs are marked in blue.

Both actions will modify the corresponding fields in the hdr
argument. Normally, the control plane will simply install
a new session in the Ib_session upon packet reception and
reinject the packet into the data plane.

3.2 NF Composition

Dejavu has multiple ways to compose the NFs and generate
a single multi-pipeline P4 program that can be compiled and
loaded onto the physical pipelines. To reduce resource usage,
Dejavu will pack multiple NFs onto the same pipelet when-
ever the hardware permits. Deciding whether two NFs can
share the same pipelet requires the knowledge of the hard-
ware resource usage of each NF. This information is usually
available from the P4 compiler, which typically reports the

D. Wu et al.

exact amount of resource usage, e.g., MAU stages, SRAMs,
TCAMs, of a P4 program([1, 23].

NFs can be composed either sequentially or parallelly to
share the pipelet in different ways. Sequential composition
places NFs on a pipelet back-to-back, and parallel composi-
tion places them side-by-side. Fig. 5 shows the implementa-
tions of these two composition approaches wrapped in an
ingress processing block. The input arguments are based on
an open-source switch target [10] and are similar for other
targets such as Tofino [1]. The first implementation invokes
LB and FW sequentially. After the packet passes an NF, De-
javu checks the SFC headers (using API check-_sfcFlags()),
and translates any modification to the provided hdr argu-
ment to the corresponding platform metadata. In the second
implementation, Dejavu invokes either LB or FW, but not
both, and performs similar flag checks afterward.

The two composition approaches offer an efficiency and
feasibility trade-off for NF placements. Parallel composition
allows multiple NFs to share the same MAUS, and thus can
pack more NFs on a pipelet. However, since packets can only
traverse one branch on a pipelet, transitions from one branch
to another require at least one resubmission (if on ingress
pipe) or one recirculation (if on egress pipe). On the contrary,
sequential composition places multiple NFs back-to-back on
a pipelet and has no extra transition cost among those NFs.
Nevertheless, sequential composition imposes an implicit
dependency? between the chained NFs and enforces the P4
compiler to place the NFs in separate MAU stages, which
may fail if the pipelet does not have enough stages.

3.3 NF Placement Optimization

Switch targets may have different constraints on packet re-
submissions/recirculations. For example, Tofino [1] has the
following constraints: a) packets can only be resubmitted
(recirculated) after it is done with the ingress (egress) pipe;
b) recirculation decisions must be made in the ingress by
setting a packet’s egress port to a loopback port; c) recircula-
tion bandwidth is only supported at a granularity of Ethernet
ports; and d) in a multi-pipe switch ASIC, packet resubmis-
sion and recirculation can only occur within a pipeline.
One implication of such constraints is that the NF loca-
tions have a large impact on the overall throughput and
latency. Particularly, different NF placements will result in a
different number of packet resubmission/recirculation—both
will reduce the effective throughput and increase latency. If
hardware permits, it is desirable to place two adjacent NFs
on a single pipelet sequentially, or place the first NF on an
ingress pipe and the second NF on an egress pipe. In both
cases, packets transitions across these two NFs are cheap, as
2Multiple NFs may access the same data fields in argument hdr and thus

incur different types of dependencies, e.g., match, action, or successor de-
pendencies [23].

Accelerated Service Chaining on a Single Switch ASIC

they require no resubmissions or recirculations. In all other
cases, packets will need to be resubmitted/recirculated at
least once to receive processing from both NFs.

One may imagine that this could be done by placing NFs
one by one by order of their indexes, alternating between
ingress and egress pipes. However, this naive scheme usu-
ally results in sub-optimal placements. For instance, Fig. 6(a)
shows an example of placement under the SFC policy A-B-
C-D-E-F. Without loss of generality, we assume that packets
should be eventually forwarded to a port on Egress 0 after
finishing the service chain. In this example, both AB and EF
are composed sequentially. According to Tofino’s recircula-
tion constraints, packets will have to traverse the NFs in the
order of Ingress 0—Egress 0—Ingress 0—Egress 1—Ingress
1—Egress 1—Ingress 1— Egress 0, causing three recircula-
tions. Fig. 6(b) shows an improvement by exchanging the
locations of C and EF. The traversal order then becomes
Ingress 0—Egress 1—Ingress 1—Egress 0, requiring only
one recirculation. Therefore, we believe that interesting opti-
mization opportunities exist to reduce packet recirculations.
In practice, there could be multiple chains. Each chain may
require packets traversing the NFs in a different order, which
adds another layer of complexity to NF placements.

Therefore, a general optimization model is needed to de-
cide where each NF should be placed and when and how
NFs should be composed to share the same pipelet. We en-
vision that each SFC policy may carry a weight reflecting
the percentage of traffic following that chaining policy. Our
goal is then to minimize the weighted sum of the number of
recirculations for all service chains. The input to this model
would include the number of pipelines n, the number of NFs
m, the set of chaining policy P, and the weight of each policy
w. Developing such an optimization model is part of our
ongoing work.

Ing.o|_AB | >< [¢ Jee0 (o) ing. o AB] >< Eg.o
@ Ing. 1 [EF Jeet Ing. 1 [¢ Jeet

Figure 6: Two NF placement schemes under the SFC policy
A-B-C-D-E-F.

3.4 On-Chip Packet Routing

Switch ASICs provide only basic recirculation/resubmission
primitives and do not support flexible on-chip routing in
the language interface. Dejavu builds on these primitives
and employs an on-chip routing mechanism that faithfully
routes packets through their desired NFs. To do this, we in-
sert a branching table in the last MAU stage of all ingress
pipelet, which directs packets to their next NFs based on the
service path ID and index in the SFC header. If the outPort
of a packet is already set, the branching table will directly

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

SATTY e VL P,
A A
@ el e a2 e

Figure 7: Illustration of the packet recirculation paths.

120 B On-chip 0 Off-chip
100
R (a) 150 -
1
© 2 " i (b)
20 I 2 110
o o - £l
——
1 2 3 4 s 70

Recirculations Recirculation latency
Figure 8: Throughput and latency impact of packet recircu-

lations.

forward the packet to the port and bypass the egress pipe.
Routing rules of this table can only be installed after NF
placement. Depending on the next NF location, a packet can
either be resubmitted to the same ingress pipe or switched to
an egress pipe via the traffic manager. After the egress pro-
cessing, a packet can be recirculated or sent out depending
on whether the egress port is in loopback mode.

4 UNDERSTANDING RECIRCULATION

In this work, we advocate the use of packet recirculation as
a “first class” functionality. It is necessary to understand the
impact of recirculation on the service chaining performance.
On Tofino, each pipeline provides 100 Gbps recirculation
bandwidth for free via a dedicated recirculation port beside
the normal Ethernet ports. However, this is not enough if a
large fraction of the traffic (e.g., Tbps) needs recirculation.
To provide extra bandwidth, we set a number of the Ethernet
ports in loopback mode. On Tofino, a loopback port can no
longer take external traffic and bounces all packets back into
the ingress pipe.

Throughput. In general, we can analyze the throughput
of recirculated packets using the following model. If m out
of n Ethernet ports are in loopback mode, we can offer =™

n

of the ASIC capacity for external traffic where min(1, =)
of the traffic can recirculate for once. However, this linear
reduction of effective throughput will not hold if traffic needs
multiple recirculations. Fig 7(a) shows an example of two
Ethernet ports A and B, each with bandwidth T. Each also
has an ingress (Ia/Ip) port and an egress port (E4/Eg). We
set Ethernet port B in loopback mode so that the switch can
offer 50% of its original capacity. Packets coming from I4
will traverse different paths depending on its recirculation
requirements. Under such setting, it can be seen that both the
no-recirculation path (I4—E4) and 1-recirculation path (I4—
Ep-Ig—E4) will have throughput T. However, when packets
need multiple recirculations, the switch buffer will form a
feedback queue where recirculated packets for the first time
will compete for bandwidth with recirculated packets for

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

the second time on Ep, as shown in Fig 7(b). Assume the
throughputs of steps 2 and 3 are x and y, respectively, then
we have:

y+x =T,y =xT/(T +x)

where T/(T +x) is the packet loss rate at Eg due to congestion.
Solving the above equations gives us x = 0.62 T. The effective
throughput of step 5is then T—0.62 T = 0.38 T. Following the
same feedback queue model, we can also obtain the effective
throughput of the traffic throughput with 3-recirculation as
0.16 T.

We conduct testbed evaluation to confirm the throughput
impact on a Tofino ASIC under the same setting as in Fig. 7(a).
We use Tofino’s internal packet generator to inject 100 Gbps
traffic into one Ethernet port, which is then recirculated for
several times before being sent out of the switch. Fig 8(a)
shows the throughput reduction with an increasing number
of recirculations. The results match our calculations well, and
show that the effective throughput degrades super-linearly
with the number of recirculations.

Latency. Recirculation adds extra latency for packet pro-
cessing. This latency can be obtained by calculating the dif-
ference between the timestamps of packet leaving the egress
pipeline and entering the ingress pipeline. On-chip packet
recirculation is usually via dedicate circuitry on the chip
without serialization/de-serialization, meaning that the extra
latency should be very small. Fig 8(b) shows that this latency
is ~75 ns, about 11.5% of the measured port-to-port latency
without recirculation(~650 ns under idle switch buffer). We
also measure the off-chip recirculation latency via a direct
attach cable (1 m), which includes both the serialization/de-
serialization delay and the propagation delay. As is shown,
it is about 70 ns slower than on-chip recirculation.

Takeaways: Our analysis and benchmarks on the impact
of recirculation indicate that: 1) recirculation does impact
effective throughput significantly and an NF placement algo-
rithm that minimizes the number of recirculations is critical
for the overall SFC performance; 2) network operators can
expect and calculate the throughput of their service chains
after placement—the ASIC itself does not introduce any inef-
ficiency on recirculation throughput; 3) recirculation latency
is relatively small compared to the port-to-port hop latency
and on-chip recirculation is 2 faster than off-chip recircula-
tion.

5 INITIAL VALIDATION

We have built a preliminary Dejavu prototype using the SFC
example in Fig. 2. Our testbed consists of a Wedge-100B 32X
switch with a Tofino chip with 32x100 Gbps Ethernet ports
and 2 physical pipelines (4 pipelets). Each pipeline has 16
hardwired Ethernet ports. We connect two servers to the

D. Wu et al.

Generic parser "
Router O O Branching table
w7/ @/ (O Generic deparser

=70 E]o9 X
=0@@ed-Ho @ oh=

Figure 9: A prototype implementation of Dejavu SFC on
aTofino ASIC with 2 pipelines and 4 pipelets.

Classifier VGW FW LB
. w

Table 1: Resource overhead of Dejavu on Tofino.

Computational

Stages TableIDs Gateways Crossbars VLIWs SRAM TCAM
20.8% 4.2% 2% 0.4% 1.5% 0.2% 0%

Memory

switch via 25 Gbps breakout cables, one as the sender and
the other as the receiver.

Placement. Fig. 9 shows the placement of NFs on 2 pipelines

(4 pipelets) produced by Dejavu. Here, we put the 16 Eth-
ernet ports of ingress 1 into loopback mode. Hence ingress
pipe 1 takes no external traffic and is used only for recircula-
tion, and traffic sent to egress pipe 1 will be automatically
recirculated to ingress pipe 1. In this setting, our switch can
provide 1.6 Tbps capacity and allow all the traffic recirculate
on the ASIC for once. We test the input and output packets
of multiple SFC paths using the Packet Test Framework [11]
and have verified that the placement and routing logic in our
example successfully achieve the original functionalities.

Resource overhead. There are three types of match-
action tables: the branching table, the “check_next_hop” table
and the “check_sfcFlags” table. The branching table and the
“check_next_hop” table each has an entry for each (pathID,
servicelndex) pair, and the “check_sfcFlags” table has an
entry for each field of the platform metadata. These tables
are independent of the traffic and their sizes are determined
at compile time. Dejavu tables are placed in separate MAU
stages due to data dependencies on the platform metadata,
and they consume 20.8% of the stages in total (shown in Ta-
ble 1). However, Dejavu does not use the stages exclusively.
NF tables that are independent of Dejavu tables can comfort-
ably share the same stages with Dejavu. Due to the simple
logic and bare-minimum table sizes, we observe negligible
overheads for other types of resources.

6 RELATED WORK

Service Function Chaining. Most existing works on
SFC consider a software-based architecture for chaining
network functions, such as NetBricks [35], Click-OS [30],
NetVM [21], and Hyper-Switch [39]. To increase perfor-
mance under this software-based architecture, researchers

Accelerated Service Chaining on a Single Switch ASIC

have proposed adding different kinds of hardware accel-
erators to servers, such as GPU [19], FPGA [28] and Net-
work Processors [43]. In contrast, Dejavu uses programmable
switches for high performance SFC. We provide a unified
platform that shields the complexity of switch targets from
NFs, as well as a programming model that can compose
multiple NFs together.

Data Plane Multiplexing. Hyper4 [20] and HyperV [46]
virtualize the switch data plane by running a general-purpose
P4 program that can be configured to emulate the behavior
of multiple P4 programs. However, these approaches require
significantly more hardware resources (3-7x) compared to
the native programs. P4Visor [47], P4Bricks [42] and P4SC [6]
merge multiple P4 programs at the code level and achieve
much higher resource efficiency. However, since they do not
assume knowledge of the underlying hardware, they could
either miss opportunities provided by new hardware fea-
tures or generate programs that violate hardware constraints.
Dejavu, on the other hand, can perform optimizations for
program composition under hardware constraints.

7 DISCUSSION AND FUTURE WORK

Hardware restrictions. Dejavu relies on, and inherits a
set of restrictions from the underlying hardware platform
it runs on. First, the current generation of programmable
ASICs cannot access packet payload easily. The implication
is that NFs that require payload processing (e.g., DPI, WAN
optimizer, NIDs) are not supported. Second, the NFs are
subject to the inherent resource limitations of the hardware,
such as table sizes, the number of MAUs, and others. These
hardware restrictions will likely loosen over time with the
advances of next-generation programmable ASICs. In the
meantime, optimizations that can best leverage the on-chip
hardware resource to implement more advanced NFs, and
methods that can efficiently interpose Dejavu with other
off-chip NFs are still active research directions.

Control plane merge. So far, we have mostly focused on
merging the data plane programs to form a chain of functions.
However, another important component would be to also
merge the control plane logic for the respective data plane
programs. Such logic is typically implemented in software.
To merge the control plane software of different network
services, a translation layer, as proposed in P4Visor [47], is
likely needed to map the original control plane APIs to use
the newly generated SFC APIs. So this should be achievable
with a minimal amount of modification to the actual control
plane source code.

Towards clusters of switch data planes. In this work,

have we focused on running SFC on a single switch. However,
there are certainly cases where a particular combination of

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

NFs cannot fit in the pipelines of a single switch. We note
that Dejavu can be readily extended to support NF place-
ment across multiple switches. In the simplest case, multiple
switches can be chained back-to-back to provide the same
bandwidth of a single switch but with manyfold more MAU
stages. This gives our placement algorithm high flexibility to
accommodate more complicated NFs. Our off-chip recircula-
tion latency in Fig 8(b) also reflects that the packet transition
delay from one switch to another is low enough to be practi-
cal, although it is slightly higher than on-chip recirculations.
Generally speaking, an extended placement algorithm that
optimizes for throughput and latency needs to consider sev-
eral factors: NF affinity, switch locality and cluster topology.
Such an algorithm draws a parallel to a wide range of existing
work on VM/container/NFV scheduling on compute clus-
ters [15, 27, 29, 34, 44, 45], though the data plane programs
have a much higher loading cost and should be operated at
a relatively larger timescale.

Implications for hardware/compiler designers. De-
javu introduces a new resource utilization model, which
sheds light on the design of future programmable switch
ASICs. In particular, current ASICs can only support packet
recirculation at per-port granularity. And recirculation de-
cisions must be made in the ingress pipe. If recirculation
decision can be done at per-packet granularity (e.g., packets
can choose to be recirculated or be sent out of the switch af-
ter egress processing), we would not only have fine-grained
control over the traffic that needs recirculation, but also
more flexible function placement and potentially fewer re-
circulations in the pipelines. At the language level, the cur-
rent P4 compilers do not provide direct support for multi-
programming. Existing works advocating data plane multi-
plexing [42, 47, 48] have to merge multiple programs at the
source code level to achieve more sophisticated functions.
A language that can natively support multi-programming
model will significantly improve the modularity and reusabil-
ity of data plane programs for SFC.

Implications for network operation. Running a ser-
vice function chain on a shared switch ASIC brings signifi-
cant changes to how network operators manage and operate
the network services. There are several interesting research
problems in this space, such as service upgrade and expan-
sion, failure handling, and troubleshooting. Solving these
operational challenges can have significant impacts on the
wider adoption of programmable network devices.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers of Hot-
Nets’19 for their thoughtful feedback. This research was
sponsored by the NSF under CNS-1815525, CNS-1801884
and CNS-1718980.

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

REFERENCES

(1]

[2

—

[3

—_

—
N
flaas?

(8]
(9]
[10]
(11]

(12]

(13

[t

(14]

[15

—

(16]

(17]

(18]

Barefoot. 2019. Barefoot Tofino. https://www.barefootnetworks.com/
products/brief-tofino-2/. (2019).

Barefoot. 2019. P4STUDIO Architecture. https://www.
barefootnetworks.com/products/brief-p4-studio/. (2019).

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. In ACM SIGCOMM Computer Communication
Review, Vol. 43. ACM, 99-110.

Doruk Bozdag, Fusun Ozguner, and Umit V Catalyurek. 2009. Com-
paction of schedules and a two-stage approach for duplication-based
DAG scheduling. IEEE Transactions on Parallel and Distributed Systems
20, 6 (2009), 857-871.

X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou. 2019. P4SC: Towards
High-Performance Service Function Chain Implementation on the P4-
Capable Device. In 2019 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). 1-9.

P4 Language Consortium. 2019. P4 Language Specification. https:
//p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf. (2019).

P4 Language Consortium. 2019. P44 Language Specification. https:
//p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html. (2019).

P4 Language Consortium. 2019. P44 Portable Switch Architecture.
https://p4.org/p4-spec/docs/PSA-v1.1.0.html. (2019).

P4 Language Consortium. 2019. P4_16 Prototype Compiler. https:
//github.com/p4lang/p4c. (2019).

P4 Language Consortium. 2019. Packet Test Framework. https://github.
com/p4lang/ptf. (2019).

Daniel E Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable
Software Network Load Balancer.. In NSDI 523-535.

Rohan Gandhi, Honggiang Harry Liu, Y. Charlie Hu, Guohan Lu, Ji-
tendra Padhye, Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud Scale
Load Balancing with Hardware and Software. In Proceedings of the
2014 ACM Conference on SIGCOMM (SIGCOMM °14). ACM, New York,
NY, USA, 27-38. https://doi.org/10.1145/2619239.2626317

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash,
Robert Grandl, Junaid Khalid, Sourav Das, and Aditya Akella. 2014.
OpenNF: Enabling innovation in network function control. In ACM
SIGCOMM Computer Communication Review, Vol. 44. ACM, 163-174.

Ionel Gog, Malte Schwarzkopf, Adam Gleave, Robert N. M. Watson, and
Steven Hand. 2016. Firmament: Fast, Centralized Cluster Scheduling
at Scale. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 99—
115. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gog

A Greenberg. 2014. Windows azure: Scaling SDN in the public cloud.
Open Networking Summit (ONS) (2014).

Adam Greenhalgh, Felipe Huici, Mickael Hoerdt, Panagiotis Papadim-
itriou, Mark Handley, and Laurent Mathy. 2009. Flow processing and
the rise of commodity network hardware. ACM SIGCOMM Computer
Communication Review 39, 2 (2009), 20-26.

Joel Halpern and Carlos Pignataro. 2015. Service function chaining
(sfc) architecture. IETF, RFC7665 (2015).

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

D. Wu et al.

Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. Pack-
etShader: A GPU-accelerated Software Router. In Proceedings of the
ACM SIGCOMM 2010 Conference (SSIGCOMM °10). ACM, New York, NY,
USA, 195-206. https://doi.org/10.1145/1851182.1851207

David Hancock and Jacobus Van der Merwe. 2016. Hyper4: Using p4
to virtualize the programmable data plane. In Proceedings of the 12th
International on Conference on emerging Networking EXperiments and
Technologies. ACM, 35-49.

Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, 445-458. https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/hwang

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 121-136.
Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015.
Compiling packet programs to reconfigurable switches. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI'15).
103-115.

Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. State-
less network functions: Breaking the tight coupling of state and pro-
cessing. In 14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17). 97-112.

Georgios P Katsikas, Tom Barbette, Dejan Kostic, Rebecca Steinert, and
Gerald Q Maguire Jr. 2018. Metron:{NFV} Service Chains at the True
Speed of the Underlying Hardware. In 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). 171-186.
Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram,
Ethan J Jackson, et al. 2014. Network Virtualization in Multi-tenant
Datacenters.. In NSDI, Vol. 14. 203-216.

Sameer G Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
KK Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and Xi-
aoming Fu. 2017. Nfvnice: Dynamic backpressure and scheduling for
nfv service chains. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 71-84.

Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016.
Clicknp: Highly flexible and high performance network processing
with reconfigurable hardware. In Proceedings of the 2016 ACM SIG-
COMM Conference. ACM, 1-14.

Y.Li, L. T. X. Phan, and B. T. Loo. 2016. Network functions virtualization
with soft real-time guarantees. In IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications.
1-9. https://doi.org/10.1109/INFOCOM.2016.7524563

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the art of network function virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation.
USENIX Association, 459-473.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and
Cheap Using Switching ASICs. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 15-28.
Adam Morrison, Lei Xue, Ang Chen, and Xiapu Luo. 2018. Enforc-
ing Context-Aware BYOD Policies with In-Network Security. In 10th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’18).
Recep Ozdag. 2012. Intel® Ethernet Switch FM6000 Series-Software
Defined Networking. See goo. gl/AnvOvX (2012), 5.

https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://www.barefootnetworks.com/products/brief-p4-studio/
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://github.com/p4lang/ptf
https://github.com/p4lang/ptf
https://doi.org/10.1145/2619239.2626317
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gog
https://doi.org/10.1145/1851182.1851207
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://doi.org/10.1109/INFOCOM.2016.7524563

[

[

=

—

=

—

Accelerated Service Chaining on a Single Switch ASIC

[34] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,

Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Frame-
work for NFV Applications. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
121-136. https://doi.org/10.1145/2815400.2815423

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of
{NFV}. In 12th USENLX Symposium on Operating Systems Design and
Implementation (OSDI’16). 203-216.

Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert
Greenberg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos,
Hongyu Wu, Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud
Scale Load Balancing. In Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 207-218.
https://doi.org/10.1145/2486001.2486026

Paul Quinn, Uri Elzur, and Carlos Pignataro. 2018. Network service
header (nsh). IETE, RFC 8300 (2018).

Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. 2013. Split/merge: System support for elastic execution
in virtual middleboxes. In Presented as part of the 10th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 13).
227-240.

Kaushik Kumar Ram, Alan L Cox, Mehul Chadha, and Scott Rixner.
2013. Hyper-switch: A scalable software virtual switching architecture.
In 2013 USENIX Annual Technical Conference (ATC’13). 13-24.
Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel
Davies. 2009. The case for vim-based cloudlets in mobile computing.
IEEE pervasive Computing 4 (2009), 14-23.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and
Guangyu Shi. 2012. Design and implementation of a consolidated

HotNets *19, November 13-15, 2019, Princeton, NJ, USA

middlebox architecture. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association,
24-24.

Hardik Soni, Thierry Turletti, and Walid Dabbous. 2018. P4Bricks:
Enabling multiprocessing using Linker-based network data plane ar-
chitecture. (Feb. 2018). https://hal.inria.fr/hal-01632431 working paper
or preprint.

Tammo Spalink, Scott Karlin, Larry Peterson, and Yitzchak Gottlieb.
2001. Building a robust software-based router using network proces-
sors. In ACM SIGOPS Operating Systems Review, Vol. 35. ACM, 216-229.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. 2013. Apache hadoop yarn: Yet an-
other resource negotiator. In Proceedings of the 4th annual Symposium
on Cloud Computing. ACM, 5.

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In Proceedings of the European Conference
on Computer Systems (EuroSys). Bordeaux, France.

Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu.
2017. HyperV: A high performance hypervisor for virtualization of
the programmable data plane. In 2017 26th International Conference on
Computer Communication and Networks (ICCCN). IEEE, 1-9.

Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor:
Lightweight Virtualization and Composition Primitives for Building
and Testing Modular Programs. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’18). ACM, 98-111. https://doi.org/10.1145/3281411.3281436
Yu Zhou and Jun Bi. 2017. Clickp4: Towards modular programming of
p4. In Proceedings of the SSIGCOMM Posters and Demos. ACM, 100-102.

https://doi.org/10.1145/2815400.2815423
https://doi.org/10.1145/2486001.2486026
https://hal.inria.fr/hal-01632431
https://doi.org/10.1145/3281411.3281436

	Abstract
	1 Introduction
	2 Background and Challenges
	3 Solution Sketch
	3.1 Control Block Programming Interface
	3.2 NF Composition
	3.3 NF Placement Optimization
	3.4 On-Chip Packet Routing

	4 Understanding Recirculation
	5 Initial Validation
	6 Related Work
	7 Discussion And Future Work
	References

