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The use of trust for onion routing has been proved effective in thwarting malicious onion
routers. However, even state-of-the-art trust-based onion routing protocols still suffer
from two key limitations in protecting anonymity. First, these protocols have no means
to verify the correctness of the trust they rely on. Second, they run a high risk of being
deanonymized by an inference attack due to biased trust distributions. In this paper, we
propose SGor, a trust graph based onion routing that mitigates the key limitations of trust
in protecting anonymity. SGor is novel with three unique properties. First, SGor aggregates
group trust from mutual friends to verify the correctness of users’ trust assignments. Sec-
ond, SGor employs an adaptive trust propagation algorithm to derive global trust from
trust graph. The global trust removes the restriction of users’ local knowledge and defeats
inference attacks by guiding users to discover and trust more honest routers (i.e., reducing
the bias of trust distribution). Third, SGor is designed to operate in a fully decentralized
manner. This decentralized design mitigates the leakage of a priori trust relationships.
We evaluate SGor with simulation-based experiments using several real-world social trust
datasets. The experimental results confirm that SGor can mitigate key limitations in the use
of trust for protecting anonymity but introduces only a few overheads.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction (e.g., the Tor network [14]). To thwart the correlation-like
Trust-based onion routing has recently attracted con-
siderable attention from research communities [1–3].
Onion routing networks hide users’ identities behind a cir-
cuit of selected onion routers. However, they run a high
risk of being compromised in the presence of the adversar-
ies who employ malicious onion routers to perform corre-
lation-like attacks [4–13]. Due to a lack of effective trust
models, it is very difficult for users to evade adversaries’
routers when establishing onion circuits. As a result, the
adversaries who control a large fraction of onion routers
pose a serious threat to existing onion routing networks
attacks, recent research proposes trust-based onion rout-
ing. With the trust that users have readily assigned to rou-
ters’ owners, adversaries’ routers can be identified and
excluded from users’ onion circuits.

However, existing trust-based onion routing computes
trust only according to users’ own knowledge [2,3]. This
trust is local and subject to two key limitations. First,
since people could have inaccurate knowledge about oth-
ers, users’ local trust on routers’ owners could be incor-
rect [3]. If a user wrongly trusts an adversary, trust-
based onion routing has no effective ways to remove this
incorrect trust assignment. Second, based on users’ own
knowledge, users can trust only the onion routers de-
ployed by their acquaintances. Users are forced to blindly
treat their unfamiliar routers as adversaries. Since nor-
mal users usually have knowledge only for a small group
of onion routers and different users have knowledge for
different fractions of the network, the resulting trust dis-
tribution could be largely biased. This biased distribution
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leads honest routers to be trusted by a small number of
users. For this reason, an adversary who knows a priori
trust relationships has a high probability to guess the
initial user of an onion circuit if the adversary can ob-
serve a router in this circuit (i.e., inference attack). As
an extreme example, if an adversary Pete observes a
Bob’s router in an onion circuit and has a priori knowl-
edge that Bob is only trusted by Alice, Pete can therefore
immediately confirm that the initial user of this onion
circuit is Alice.

To effectively protect anonymity using trust in onion
routing networks, a fundamental challenge is to eliminate
aforementioned limitations. However, no complete solu-
tion has been proposed yet to address this challenge in pre-
vious studies. To the best of our knowledge, no prior
research has provided solutions that enhance the correct-
ness of trust assignments in trust-based onion routing.
Moreover, although several inference attack countermea-
sures have been proposed, the root cause of this attack
has not been addressed. For example, to thwart inference
attacks, a downhill algorithm [3] employs a decreasing
trust threshold along onion circuits, while a trust degree
based algorithm [15] takes other users’ trust into consider-
ation. These counters cannot reduce the bias of a priori
trust distributions, hence missing the opportunity to solve
the root cause of inference attacks.

In this paper, we propose SGor, a novel trust graph
based onion routing that mitigates key limitations in the
use of trust for protecting anonymity. SGor is designed
based on two key insights. First, if people can assign trust
to others according to their own knowledge independently,
the trust from a group of honest people is more likely to be
correct than the trust from a single honest person. Based
on this observation, SGor aggregates group trust from mu-
tual friends. The group trust enables users to verify the cor-
rectness of their trust assignments by consulting their
friends’ independent opinions. Second, although users
have no immediate knowledge for their unfamiliar routers,
these routers are not necessarily controlled by adversaries.
This observation motivates us to propose an adaptive trust
propagation algorithm. By guiding users to discover more
honest routers even if they have no immediate knowledge
about these routers, the proposed algorithm can derive
global trust from a trust graph. The global trust leads hon-
est routers to be trusted and selected by more users and
thus impedes inference attacks by alleviating the bias of
trust distributions.

Moreover, SGor is designed to run in a fully decentral-
ized manner. This design benefits SGor in two aspects.
First, our decentralized algorithms do not require users
to expose their local trust relationships to other third par-
ties (e.g., a centralized server). Since inference attacks can
only be successfully launched with the knowledge of a pri-
ori trust relationships, this design assists SGor to evade
inference attacks by mitigating the leakage of a priori trust
relationships. Second, the removal of a centralized server
can help SGor adapt efficiently to a large-scale trust graph
with low costs.

To sum up, our contributions in this paper are
threefold:
1. We propose SGor, a new onion routing protocol that
protects anonymity using a trust graph.

2. We design novel decentralized algorithms to derive
group trust and global trust from the trust graph. The
group trust can be used to enhance the correctness of
trust assignments, and the global trust is effective in
reducing the bias of trust distributions. Using these
new trust features, SGor mitigates key limitations in
the use of trust for protecting anonymity.

3. We evaluate SGor with extensive simulation-based
experiments using real-world social trust datasets.
The experimental results confirm that SGor can make
an effective use of the trust graph to protect anonymity
but introduce only a few overheads.

The remainder of this paper is organized as follows. We
start by revisiting state-of-the-art trust-based onion rout-
ing in Section 2. We present a high level overview of SGor
in Section 3. We elaborate on the design of SGor in Sec-
tion 4. We evaluate SGor using real-world social trust data-
sets in Section 5. After discussing several limitations in
Section 6, we conclude SGor in Section 7.
2. State-of-the-art

Since users always expect to prevent their identities
(usually in the form of IP addresses) from leaking to others
when they visit the Internet, anonymous communication
becomes an essential part to Internet communications.
Onion routing protocol [14,16] is one of the most domi-
nated anonymous communication techniques in the Inter-
net today. It wraps users’ traffic using successive layers of
encryption along a circuit of selected onion routers, hence
hiding the initial users behind the onion circuits. However,
if users select adversaries’ onion routers in their circuits,
they are more likely to be deanonymized by various corre-
lation-like attacks [4–13]. For example, adversaries can
passively analyze traffic characteristics and patterns [4–
9,12] or actively embed traffic watermarks [4,10,11,13] to
correlate the onion routers controlled by them, hence lar-
gely reducing the anonymity protected by onion routing
networks. Due to the lack of an effective mechanism that
verifies the identities and technical competence of routers’
owners, the correlation-like attack is hard to be prevented
by existing onion routing networks.

To defeat correlation-like attacks, recent research pro-
poses the use of trust for excluding adversaries’ routers.
For example, Krishna et al. [1] restrict users to only select
onion routers from their 1- and 2-hop friends in an online
social network. Drac [17] and Pisces [18] perform random
walks through social links on top of an online social
network to discover honest routers. Each directed social
link represents a trust that one person assigns to another
person. However, these three studies cannot give an in-
depth analysis for discussing adversary models and opti-
mal trust-based routing algorithms. To fill in this gap, John-
son et al. provide a general model for trust-based onion
routing [2]. This model includes completely theoretical
adversary models and discusses corresponding optimized
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trust-based onion routing algorithms in the presence of
these adversary models. Moreover, Johnson et al. design
an enhanced model to analyze trust-based onion routing
in practical scenarios [3]. This practical model considers
that different users have different distributions of local
trust among onion routers because users are usually at-
tacked by different adversaries in the wild. This practical
model also studies how the accuracy of trust assignments
affects the effectiveness of trust-based onion routing.

Although these trust-based onion routing protocols [1–
3,17,18] employ trust to successfully thwart correlation-
like attacks, they still suffer from two key problems that
limit the effectiveness of protecting anonymity.

2.1. Incorrect trust

In existing trust-based onion routing, users compute
trust only according to their own knowledge about the
owners of onion routers. This trust could be incorrect [3]
because normal users usually have limited competence of
censoring others. Incorrect trust assignments could induce
adversaries’ routers into users’ onion circuits and thus lim-
it the effectiveness of protecting anonymity in trust-based
onion routing.

Pisces [18] proposes a tit-for-tat algorithm to prevent
random walks from going through incorrect social links.
Using this algorithm, each honest router works as a run-
time watch dog and monitors other routers listed in its
routing table. If an honest router A detects that another
router B has excluded A from B’s routing table, A could con-
sider that B is an adversary and remove B from A’s routing
table as a revenge. However, this algorithm needs a heavy
cost in runtime, and could be easily avoided because it
does not utilize additional trust. For example, instead of
removing honest routers from routing tables, smart adver-
saries can simply use a very low probability to choose hon-
est routers in random walks.

Unlike Pisces [18], SGor employs a new trust feature,
called group trust, to verify the correctness of trust assign-
ments. The group trust cannot be easily avoided because it
vouches the correctness of trust assignments using addi-
tional knowledge from honest people.

2.2. Biased trust distribution

Since users assign trust according to their own knowl-
edge and different users usually have knowledge only for
different and small fractions of the network, the resulted
trust distributions are more likely to be biased and honest
routers are usually trusted by only a small set of users. For
this reason, the adversaries who have the knowledge of a
priori trust relationships have chances to guess the initial
users of onion circuits if they can observe routers in these
circuits (i.e., inference attacks).

Prior research has proposed two countermeasures to
circumvent inference attacks. One is a downhill algorithm
that enables users to select routers along their onion cir-
cuits from sets with a decreasing trust threshold [3]. The
other is a trust degree based solution that optimizes
trust-based router selections by considering other users’
trust assignments [15]. However, since these two
countermeasures cannot reduce the bias of trust distribu-
tions, they only provide restricted capabilities of evading
inference attacks.

To reduce the bias of trust distributions, SGor proposes
the use of global trust from a trust graph to thwart infer-
ence attacks. Although SGor is not the first solution that
applies global trust to onion routing, it is novel because it
can mitigate the chance of introducing adversaries when
deriving global trust. Unlike Drac [17] and Pisces [18]
which perform conventional or metropolis–hastings ran-
dom walks through social links to implicitly utilize global
trust, SGor designs a novel adaptive trust propagation algo-
rithm that computes global trust by using group trust to
rate limit trust propagation. This algorithm mitigates the
probability that global trust is propagated through incor-
rect trust edges, hence preventing adversaries from com-
promising global trust during trust propagation.
3. SGor overview

In this section, we describe SGor in a high level. We first
set design goals for SGor in Section 3.1. We then list basic
assumptions in Section 3.2. After elaborating on threat
model and trust model in Sections 3.3 and 3.4 respectively,
we present an overview of SGor with its architecture and
major components in Section 3.5.

3.1. Design goals

To effectively protect anonymity using trust, SGor is ex-
pected to meet the following four key requirements.

Trust Graph: To evade malicious routers and thwart
correlation-like attacks, SGor is required to have the
capability of constructing onion circuits using trust
from a trust graph.
Group Trust: To verify the correctness of trust assign-
ments, SGor is required to have the capability of aggre-
gating group trust from mutual friends.
Global Trust: To reduce the bias of trust distributions
and hence defeat inference attacks, SGor is required to
have the capability of deriving global trust from a trust
graph.
Decentralization: To prevent users’ trust relationships
from leaking to any third parties and adapt efficiently
to a large scale trust graph, SGor is required to have a
fully decentralized architecture.

These requirements work together to distinguish SGor
from past works in the literature [1–3,17,18].

3.2. Basic assumptions

We make three basic assumptions for the design of
SGor.

1. Users and routers’ owners in an onion routing network
are also members of a trust network.

2. Users and routers’ owners can assign trust to others
according to their own knowledge independently.
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3. Users and routers’ owners can run user-agents in their
own machines (e.g., in-browser add-ons, desktop or
mobile phone installs) to support SGor’s decentralized
router selection process in a fully automatic manner.

Assumption 1 defines the potential population who can
use SGor. For example, if we derive a trust graph from an
online social network and apply it to SGor, the members
of this online social network can use SGor to protect their
anonymity when they visit Internet services. As reported
by SocialBakers (www.socialbakers.com) in July 2012,
Facebook, the most popular online social network, has
more than 870 million members. Moreover, there are more
than 2.2 billion Internet users in the world according to a
report from InternetWorldStats (www.internetworld-
stats.com) in December 2011. Apparently, if SGor adopts
Facebook as its trust graph, at least 40% Internet users
who have accounts in Facebook can use SGor when they
access Internet through onion routing.

With Assumption 2, SGor is built upon a trust graph
with independent trust assignments. If users can assign
trust to others independently, they can avoid the influence
of incorrect trust over a group of people. Otherwise, the
group trust could have weak capability of verifying the cor-
rectness of trust assignments. For example, if Bob assigns
trust to Pete due to the reason that Bob’s friend Alice has
already trusted Pete (i.e., Bob’s trust on Pete is correlated
with Alice), Alice cannot rely on the group trust from Bob
to verify the correctness of her trust in Pete, because Bob’s
trust is inherited from Alice. In real world, the friendship
graph of an online social network is more likely to have
correlated trust assignments, because people usually make
friends by consulting their old friends’ friendship circles.
Unlike that, the interaction graph [19,20] admits trust
assignments if and only if users have direct communica-
tions, hence being more independent. For this reason, we
evaluate SGor by adopting the interaction graph in
Section 5.

With Assumption 3, users can select onion routers from
others and onion routers’ owners can provide onion rou-
ters to others in a fully decentralized and automatic man-
ner. For example, if SGor adopts the interaction graph of
Facebook as its trust graph, we can develop a Facebook
App (http://developers.facebook.com) for SGor. All the
users and routers’ owners run this App in their own ma-
chines. The running Apps communicate with each others
in the Internet to accomplish the decentralized router
selection process automatically. The communication traffic
is encrypted to prevent potential leakage.

3.3. Threat model

To compromise users’ anonymity protected by (trust-
based) onion routing networks, we consider adversaries
have the following attacking capabilities:

3.3.1. The capability of compromising onion routers
First, we assume adversaries can arbitrarily deploy their

own malicious routers to existing onion routing networks.
This assumption holds in real-world onion routing net-
works such as Tor [14], because these networks are open
to accept any volunteer’s routers without checking their
identities. Although some networks have runtime monitor-
ing systems to exclude malicious routers, these systems
are usually based on the uptime of normally behaving. As
a result, smart adversaries can easily bypass these moni-
toring systems by operating their routers in normal behav-
iors for a long period. Second, we assume adversaries can
exploit hacking techniques to compromise some honest
routers which contain security vulnerabilities. This
assumption adapts to advanced adversaries who master
powerful computer network skills. Third, we simply as-
sume that Internet services visited by onion routing users
are already controlled by adversaries. This assumption al-
lows us to design SGor by considering the worst scenario,
because users can visit any Internet servers through onion
routing and it is nearly impossible to confirm which serv-
ers are compromised and which are not.

3.3.2. The capability of locally observing onion routers
We assume that adversaries can observe onion routers

in users’ onion circuits. This capability is required by the
adversaries who perform inference attacks. However, since
existing onion routing protocols are not designed to resist
global adversaries who can monitor the whole communi-
cation infrastructure of onion routing networks (e.g., ISP-
level or state-level adversaries) [14,16], we also assume
that adversaries can only employ compromised onion rou-
ters to observe adjacent routers in onion circuits or use
compromised Internet servers to observe the last router
in onion circuits.

3.3.3. The capability of correlating malicious onion routers
We assume that adversaries can correlate the onion

routers and Internet servers under their control in the
same onion circuit (i.e., the capability of performing corre-
lation-like attacks). This assumption holds in real-world
attacking scenarios, because several prior studies have
demonstrated that various traffic watermarking and analy-
sis techniques are effective in correlating two compro-
mised endpoints (e.g., onion routers or Internet servers)
in the same onion circuit [9,11,12,21–24]. Fig. 1(a) illus-
trates an example of the correlation-like attack against
onion routing networks. In this example, Alice is a user
who has no effective method to verify router identities.
Pete is an adversary who control onion routers. If Alice se-
lects Pete’s routers as the first router in her onion circuit
and visits an Internet server under Pete’s control, Pete
can correlate Alice and the server Alice is visiting.

3.3.4. The capability of attracting incorrect trust
We assume that adversaries can exploit users’ inaccu-

rate knowledge to attract incorrect trust assignments.
Since trust-based onion routing computes trust according
to users’ own knowledge about routers’ owners, if users
mistakenly trust an adversary, they could trust all the rou-
ters controlled by this adversary. Fig. 1(b) shows an exam-
ple of an incorrect trust assignment in trust-based onion
routing. If Alice makes a mistake to trust an adversary Pete,
she could select Pete’s routers in her onion circuit. More-
over, although we agree that adversaries can easily deploy
a large number of fake accounts in trust graph (i.e., Sybil
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attack [25]), it is very difficult for them to gain incorrect
trust from a large number of honest humans. Previous so-
cial network based Sybil defences also adopt this assump-
tion because this assumption widely holds in real-world
social networks [26].

3.3.5. The capability of collecting a priori trust relationships
We assume that adversaries can collect a priori trust

relationships of a trust graph. For example, if we apply
an online social network as a trust graph to SGor, adversar-
ies could employ a crawler to run a brute-force scan of this
social network. This approach can reveal the local trust
relationships of users who make available their private
information to the public [27,28]. To obtain the trust rela-
tionships of users who could only expose their private
information to their friends, adversaries could employ
socialbots [29] to make friends with these users, or esti-
mate these users’ relationships using the leakage of their
friends’ trust relationships (i.e., link privacy leakage [30]).
Using a priori trust relationships, adversaries can perform
inference attacks and hence largely reduce users’ anonym-
ity protected by trust-based onion routing. Fig. 1(c) dem-
onstrates an example of inference attack against trust-
based onion routing. In this demonstration, Pete is an
adversary who knows a priori trust relationships. If Pete
observes Ken’s routers in an onion circuit, he can guess
Alice as the initial user of this circuit because Ken is only
trusted by Alice. However, Ken’s routers are in fact honest.
Other users do not trust Ken just because they have no
knowledge about Ken. It is not due to that they confirm
Ken is an adversary.

3.4. Trust model

We model SGor’s trust graph as a directed graph
G = (V,E). V is the set of nodes in G. A node vi 2 V represents
a person in the trust graph. E is the set of edges in G. An
edge vi ? vj = eij 2 E indicates that the person vi 2 V assign
local trust to another person vj 2 V in the trust graph (i.e.,
a trust edge represents a local trust assignment). jVj and
jEj are the numbers of nodes and edges in G, respectively.
As discussed in [2,3], users can only assign coarse level
trust to others. SGor therefore only considers two levels
of local trust assignments, trust and distrust. If vi ? vj ex-
ists, vi trusts vj. Otherwise, vi distrusts vj. Moreover, we
consider the trust is positively transitive [31]. That means
a friend of Alice’s friend is still a friend of Alice.

We can sample SGor’s trust graph G using any real-
world trust networks. For example, we can derive a social
trust graph from an online social network or adopt a repu-
tation-based trust graph from an online community. We
can also design an open community that facilitates users
and routers’ owners to evaluate the trustworthiness of
each other independently, hence generating a customized
trust graph to support SGor. In this paper, we mainly focus
on the design of SGor using online social networks because
this choice makes SGor easy to be applied in the Internet.

In the literature, there are two models that can be used
to sample the trust graph G from an online social network.
One is the friendship model and the other is the interaction
model [19,20]. They have different capability to express
the trust that already exists in online social networks.
We take an example from Facebook to show the difference.
We first assume Alice and Ken are two persons with ac-
counts in Facebook. If Alice attempts to make a friend with
Ken, she sends a friend request to Ken. If Ken confirms this
request, they are shown in each other’s friendship list. The
friendship model treats this kind of relationship as trust.
The interaction model is built on top of the friendship
model. If Alice has local trust with Ken in an interaction
model, only being a friend of Ken is not enough. Alice also
needs bi-directional communications with Ken through
online social networks (e.g., posting messages with each
other in walls or tagging each other in photos).

SGor employs the interaction graph to sample G be-
cause of two reasons. First, the local trust in the interaction
graph is more independent. A person may be easy to make
a new friend who is already a friend of his old friends, but
they are less likely to have bi-directional communications
with each other if they are not acquaintances. Second, re-
cent research has advocated that interaction graphs can
better represent real world trust than friendship graphs
[19,20].

For the ease of description in the following sections,
although we do not use the friendship graph to sample G,
we also regard vj as vi’s friend if vi assigns local trust to vj

(i.e., vi ? vj exists).

3.5. SGor architecture and major components

In this section, we gives a high level overview to intro-
duce SGor’s architecture and major components.

3.5.1. SGor architecture
SGor provides trust graph based onion routing by

‘‘overlaying’’ a trust network on top of the onion routing
infrastructure. SGor has a two layered hierarchical archi-
tecture. The upper layer is for trust graph based router
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selection, and the underlayer is for onion routing. To com-
municate with remote Internet servers through SGor, users
should first select onion routers according to trust in the
trust graph layer. They then use the selected routers to
establish onion circuits in the onion routing layer. We note
that SGor is novel due to its trust graph layer. The onion
routing layer runs the same protocol as traditional onion
routing networks.

In SGor, each person in the trust network layer can arbi-
trarily play any roles in the onion routing layer. In particu-
lar, a person can act as onion routing user who requires
onion routers from others. This person can also operate
as a router owner who provides onion routers to others.
Moreover, a person can work as both of an onion routing
user and a router owner concurrently, or play neither of
the two roles in the onion routing layer. In the last case,
the person merely assists other people to propagate trust
over the trust graph.

Fig. 2 illustrates an example of the architecture of SGor.
In this example, a person v1 attempts to visit a (sensitive)
Internet server through SGor. People v2–v6 provide onion
routers in SGor. v7 and v8 are two adversaries. In the trust
graph layer, although v1 makes a mistake to trust the
adversary v7, SGor has a chance to exclude v7 because no
other v1’s friends trust v7 (i.e., no other ways can be used
to verify the correctness of v1 ? v7). Moreover, although
v1 only has local trust in v2 and v3, SGor can propagate
v1’s trust to other persons v4-v6 in the trust graph. Through
v2, v1’s trust can be propagated to v4 and v5, and further to
v6. However, for security concern, v3 cannot propagate v1’s
trust to v8 because no means can be used to verify the cor-
rectness of the local trust v3 ? v8. In the onion routing
layer, v1 constructs onion circuits using onion routers de-
rived from the trust graph layer. Since SGor calculates trust
features in the trust graph layer, onion routing users can
evade all the onion routers deployed by the person whom
they do not trust (e.g., v8 has two routers in Fig. 2. If v1 does
not trust v8, he can circumvent the two routers deployed
by v8).
3.5.2. Major components
SGor consists of three major components in its trust

graph layer: trust management, trust aggregation and trust
propagation. They work together to meet aforementioned
design requirements for SGor (Refer to Section 3.1).

3.5.2.1. Trust management. This component provides func-
tionalities for managing local trust relationships. Since
SGor is designed to run without any central servers, SGor
users have to manage local trust relationships for them-
selves. As shown in Fig. 2, each SGor user has a trust table
to store local trust for their friends. This design results in
two advantages. First, this design does not require any peo-
ple to expose their local trust to any others, hence mitigat-
ing the leakage of a priori trust relationships. Second, this
design adapts SGor to a large scale trust graph with a
low cost in the storage. Rather than all the trust relation-
ships in the entire trust graph, each SGor user is only re-
quired to store trust relationships for their friends.

3.5.2.2. Trust aggregation. This component aggregates
group trust from mutual friends, hence offering counter-
measures to remove incorrect trust assignments. A per-
son’s friend receives group trust when this friend is also
trusted by many other friends. The group trust can be used
to remove incorrect trust assignments, because people can
verify the correctness of their local trust assignments by
consulting other friends’ independent opinions. This com-
ponent has a basic function to aggregate group trust from
mutual friends. Moreover, since people could join and
leave the trust network dynamically, and update their local
trust assignments when their knowledge is renewed, this
component also provides an additional function to handle
this dynamic behavior.

3.5.2.3. Trust propagation. This component computes global
trust by propagating local trust though trust graph, hence
leading honest routers to be trusted by more users. This
component plays the key role in reducing the bias of trust
distribution and hence resisting inference attacks. We
implement an adaptive trust propagation algorithm for this
component. Using this algorithm, a person can propagate
trust from the people who trust him to the other people
whom he trusts. For example, Alice trusts Bob and Bob
trusts Ken. If Bob propagates the trust from Alice to Ken,
Alice could also trust Ken. Moreover, to mitigate the risk
of mistakenly propagating trust to adversaries, SGor takes
a counter that adapts trust propagation capacity to group
trust (i.e., people use group trust to limit the maximum
number of people to whom they can propagate trust
through a friend). Back to the foregoing example, if Alice
has a higher level group trust in Bob, she can propagate
trust through Bob to more other people. But if Alice has a
lower level group trust in Bob, she could just propagate
trust through Bob to fewer, or even none, other people.
By adaptively propagating trust over the entire trust graph,
people can discover more honest routers and thus mitigate
the bias of trust distributions. In return, these honest rou-
ters can be trusted and selected by more users and become
more effective in thwarting inference attacks.
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4. SGor design

In this section, we elaborate on the design of SGor. First,
we apply an algorithm to aggregate group trust from mu-
tual friends in Section 4.1. Second, we propose an adaptive
trust propagation algorithm to derive global trust from
trust graph in Section 4.2. Based on these two new trust
features, we design a trust graph based router selection
algorithm in Section 4.3. All our proposed algorithms run
in a fully decentralized manner. We also analyze SGor’s
capability of protecting anonymity using a probabilistic
model in Section 4.4.

For the ease of reference, we summarize important
notations used by this paper in Table 1.

4.1. Group trust

SGor employs group trust to verify the correctness of lo-
cal trust assignments. In this section, we discuss the details
for aggregating group trust. We first describe the concept
of robust trust path by analyzing security concerns of trust
path. We then give the definition of group trust based on
robust trust path. Afterwards, we design a decentralized
algorithm to aggregate group trust on top of a trust graph.

4.1.1. Robust trust path
In trust graph G = (V,E), we consider vi has a trust path

to vj if vi can reach vj through a sequence of successive trust
edges. A trust path from vi to vj implicitly indicates that vi

trusts vj, hence providing a unique way for vi to confirm
that vj is not an adversary (the local trust vi ? vj is correct).

We consider that a trust path is robust if this path can-
not be arbitrarily forged through a single incorrect trust
edge. However, not all the trust paths are necessarily ro-
bust. For example, if vi assigns incorrect local trust to two
adversaries vj and vk (i.e., vi ? vj and vi ? vk exist in G),
the adversary vk can forge unlimited number of trust paths
from vi to vj because adversaries can arbitrarily trust other
adversaries. Fig. 3 demonstrates forged trust paths. v1 has
assigned an incorrect local trust to v2 (i.e., v1 ? v2 is incor-
rect). If v3 is also an adversary (i.e., v1 ? v3 is incorrect), he
can arbitrarily forge trust paths from v1 to v2. As shown in
this figure, the adversary v3 has forged 2, 3 and 4 trust
paths from v1 to v2.

In this paper, we find that the trust paths consisting of
no more than two trust edges are robust. We give an
Table 1
Important notations.

Notation Definition Notation

G A trust graph. G = (V,E) V, E
Uij The group trust that a person vi has in another person vj Uh

tij A random token the person vi generates and sends to
his friend vj

Cij

Li The maximum number of hops to which vi can
propagate trust

Ri

Tij The number of vi’s tickets that the person vj receives P(AjjUij)
rj The number of routers that the person vj deploys in

SGor
P(AjjLi)

k P(UijjAj) follows a Poisson distribution with a
parameter k

b

example to explain this finding. Considering two trust
paths from vi to vj, vi ? vk ? vj is a robust trust path while
vi ? vk ? vm ? vj is not. The reason is that, if vk is an adver-
sary, he can arbitrarily trust any other adversaries like vm,
hence forging an unlimited number of trust paths like
vi ? vk ? vm ? vj. However, the adversary vk can only forge
one robust trust path vi ? vk ? vj from vi to vj.

Since robust trust paths cannot be arbitrarily forged by
adversaries (i.e., one incorrect trust edge can only corrupt
one robust trust path), they can provide robust ways to
confirm that a local trust assignment is correct.

4.1.2. Group trust definition
Let Uij be the group trust vi has in vj. Uij can be calcu-

lated by counting up the number of robust trust paths from
vi to vj. We have Uij = 0 if the trust edge vi ? vj does not
exist.

If vi is an honest person but vj is an adversary, Uij re-
flects the number of incorrect trust edges accompanied
with the incorrect trust edge vi ? vj. Theorem 1 proves this
nature.

Theorem 1. If vi is an honest person, vj is an adversary and
Uij = N, there must exist N incorrect trust edges in the robust
trust paths from vi to vj.
Proof. We use mathematical induction for the proof.
Base case: Consider Uij = 1, vi can only have one robust

trust path to vj, i.e., vi ? vj. Meanwhile, this robust trust
path consists of only one trust edge vi ? vj. As a result, if vj

is an adversary, we have 1 incorrect trust edge vi ? vj.
Inductive step: Assuming Theorem 1 holds for Uij = N,

we show that Theorem 1 also holds for Uij = N + 1. Com-
pared with Uij = N, vi has an additional robust trust path to
the adversary vj when Uij = N + 1. We can simply assume
Definition

V is a set of nodes in G, E is a set of edges in G
A minimum group trust threshold
The number of routers to which vi can propagate trust through the
friend vj

The number of routers a person vi expects to collect through trust
propagation
The probability that vj is adversary given vi has group trust Uij for vj

The probability that vj is adversary given vi propagates trust to vj

through Li hops
P(Aj) is independent and identically distributed with a parameter
b 2 (0,1)



Fig. 4. If v1 is an honest person but v2 is an adversary, the group trust U12

equals to the number of incorrect trust edges in the robust trust paths
from v1 to v2.
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this additional path is vi ? vk ? vj. We consider two cases
for this path: (i) vk is an adversary and (ii) vk is an honest
person. For case (i), vi ? vk is an additional incorrect trust
edge. While for case (ii), vk ? vj is incorrect because vj is an
adversary. As a result, if Uij = N indicates N incorrect trust
edges in the robust trust paths from vi to the adversary vj,
Uij = N + 1 can lead to N + 1 incorrect trust edges. h

Fig. 4 gives examples for Theorem 1. It can be seen that
if U12 = 1 and v2 is an adversary, we have only 1 incorrect
trust edge, i.e., v1 ? v2. However, if U12 = 2, 2 incorrect
trust edges are accompanied. In particular, v1 ? v2 and
v3 ? v2 are incorrect if v3 is an honest person, or v1 ? v2

and v1 ? v3 are incorrect if v3 is an adversary. Similarly,
U12 = 3 confirms that there are 3 incorrect trust edges.

Since group trust Uij is the total number of robust trust
paths from vi to vj, a larger Uij indicates that vi can obtain
more robust means to confirm that vj is not an adversary.
SGor therefore use Uij to validate the correctness of vi ? -
vj. In the design of SGor, users can set a minimum group
trust threshold Uh, and have more confidence to confirm
that vi ? vj is correct (i.e., vj is not an adversary) if
Uij P Uh.

4.1.3. Group trust aggregation algorithm
SGor applies a decentralized algorithm to aggregate the

group trust Uij by counting the number of vi’s friends who
have vj as a mutual friend of vi. This algorithm is based on
two observations. First, if vi has a robust trust path vi ?
vk ? vj through vk to vj, vj is a mutual friend of vi and vk.
Second, the group trust Uij is the total number of robust
trust paths from vi to vj.

This group trust aggregation algorithm runs three steps
in a fully decentralized manner. The communications
Fig. 5. The steps of group trus
between any two people in the trust graph layer are as-
sumed to be encrypted.

Step 1: At first, an initial person generates random tokens
on the fly, and maps different tokens to different
friends. The initial person sends each token to this
token’s mapped friend. Since every token is
marked by the initial person, the receivers can
confirm these tokens are initial tokens because
they are sent and marked by the same person. As
shown in Fig. 5, v1 has trust edges to v2, v3, v4

and v5. To aggregate group trust for these friends,
v1 generates and maps random tokens t12, t13, t14

and t15 to v2, v3, v4 and v5, respectively. v1 then
sends these initial tokens to their mapped friends
(i.e., sending t1x to vx, where x = 2, 3, 4, 5).

Step 2: When a person receives an initial token, he will
further forward this token to his friends. These for-
warded tokens are sent and marked by different
people. Receivers regard them as second hand
tokens. As shown in Fig. 5, v2 forwards t12 to v3,
while v3 and v5 forward t13 and t15 to v4. Actually,
v2, v3, v4 and v5 should forward the tokens received
from v1 to all of their friends, even if these friends
are not v1’s friends. We omit this process in Fig. 5
to make a clear demonstration.

Step 3: When a person receives second hand tokens, he
can take actions depending on whether he has
already received an initial token with the same
marker of the second hand tokens. If it is not the
case, this person will discard these second hand
tokens. Otherwise, he will send the initial token
and all the second hand tokens back to the initial
person who marks them. The initial person calcu-
lates the group trust for each of his friends by
counting the number of tokens returned from
these friends. In Fig. 5, v2, v3, v4 and v5 return 1,
2, 3 and 1 tokens to v1, respectively. Hence, v1

obtains U12 = 1, U12 = 2, U13 = 3 and U14 = 1.

Since the proposed group trust aggregation algorithm
operates in a fully decentralized manner, there are three
scenarios that a person has to start running this algorithm:
(i) a fresh person first joins SGor; (ii) a person changes local
trust assignments to his friends; (iii) a person has friends
who change their local trust assignments to these friends’
friends.
t aggregation algorithm.
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4.2. Global trust

SGor employs global trust from trust graph to thwart
inference attacks. We consider a person vi has global trust
in another person vj if vi has at least one trust path to vj.
Using global trust, onion routing users can trust routers
even if they have no direct knowledge for these routers’
owners.

SGor derives global trust through trust propagation.
Considering people vi and vj, vi has global trust in vj if
and only if vi can propagate his trust to vj through a trust
path. However, if people naively propagate trust through
any trust paths without any constraints, they cannot limit
the number of adversaries who receive global trust during
trust propagation. For example, if vk can propagate vi’s
trust but vk is an adversary, vk can arbitrarily propagate
vi’s trust to any other adversaries.

To address this problem, we propose an adaptive trust
propagation algorithm. The key idea is to limit the number
of people to whom a person can propagate trust through a
friend. The limitation is determined by the group trust that
this person has in this friend. This algorithm defends trust
propagation against adversaries in two aspects. First, even
if an honest person mistakenly propagates trust to an
adversary, this adversary can only further propagate trust
to a limited number of other adversaries. Second, since a
larger group trust received by a friend indicates a lower
probability that this friend is an adversary, the friend
who is less likely to be an adversary can propagate trust
to more others than the friend who is more likely to be
an adversary.

We denote the trust propagation capacity Cij as the
number of routers (note that one person could deploy mul-
tiple routers) to which vi can propagate trust through the
friend vj. In our proposed adaptive trust propagation algo-
rithm, Cij must be proportionate to Uij, such as:

Cij ¼
UijP

UikPUh
Uik
�
X

UikPUh

Cik

& ’
: ð1Þ

where d�e is a ceiling function. Uh is a group trust mini-
mum threshold. SGor employs Uh to filter out ineligible
friends because they are more likely to be wrongly trusted.P

UikPUh
Cik is the total number of routers to which vi can

propagate trust through eligible friends, while
P

UikPUh
Uik

is the sum of group trust that vi has in the eligible friends.
Using the adaptive trust propagation algorithm, if an

adversary vk can propagate vi’s trust, he can only propagate
vi’s trust to at most Cik other adversaries.
4.3. Trust graph based router selection

Based on group trust and global trust, SGor proposes a
novel trust graph based router selection algorithm. This
algorithm has three parameters to be set in advance. One
is group trust minimum threshold Uh. The other two are
Ri and Li. The parameter Ri determines the number of can-
didate routers that a person vi expects to collect through
trust propagation. vi constructs onion circuits by selecting
routers uniformly at random from these Ri candidate
routers. The parameter Li limits the maximum number of
hops to which vi can propagate trust.

SGor implements the trust graph based router selection
algorithm using a ticket distribution mechanism. This algo-
rithm consists of three steps:

4.3.1. Initial step
When a person vi (i.e., an onion routing user) attempts

to construct onion circuits, he should create Ri tickets at
first. Each ticket has a time-to-live field which specifies
the maximum number of hops the ticket can be transmit-
ted. vi initializes this field to Li. Afterwards, vi distributes
these Ri tickets to vi’s friends in whom vi has group trust
no smaller than Uh. The amount of tickets that can be dis-
tributed to each eligible friend is calculated according to
Eq. (1), where

P
UikPUh

Cik ¼ Ri.

4.3.2. Ticket distribution step
If a person vj receives Tij vi’s tickets, vj consumes rij tick-

ets to provide rij candidate routers to vi. vj determines rij

depending on Tij and rj (i.e., rj is the amount of onion rou-
ters that vj deploys in SGor). If Tij 6 rj, rij = Tij and vj stops
the ticket distribution. Otherwise, rij = rj. For the remaining
Tij � rj tickets, vj first sets Li = Li � 1. If Li = 0, vj discards
these remaining tickets and stops the ticket distribution.
Otherwise, vj will further distribute the remaining tickets
to vj’s eligible friends who will repeat the ticket distribu-
tion step. The amount of tickets distributed to each of vj’s
eligible friends is also computed using Eq. (1), whereP

UjkPUh
Cjk ¼ Tij � rj. When distributing vi’s tickets, the

ticket distribution step is performed by different people
in parallel. Hence, some people could receive vi’s tickets
more than one time (i.e., the duplicated ticket
distribution).

To eliminate the duplicated ticket distribution, people
should only distribute tickets to the eligible friends who
have not received vi’s tickets before. The intuitive mecha-
nism is to allow people querying their friends whether
they have already received vi’s tickets before they distrib-
ute tickets. However, this mechanism is not resilient to at-
tacks. Adversaries can simply claim they have never
received vi’s tickets and repeatedly defraud tickets.

In this paper, we propose a regressive checking mecha-
nism to effectively avoid both the duplicated ticket distri-
bution and the ticket frauds. Using this mechanism, the
ticket owner vi maintains a list that records the people
who have already received vi’s tickets. For each person vj

who attempts to distribute vi’s tickets, vj should first check
with vi and exclude the friends who have already recorded
in vi’s list. vj then distributes vi’s tickets to vj’s remaining
friends. Meanwhile, vi adds these remaining friends to vi’s
list.

4.3.3. Router discovery step
SGor has two candidate mechanisms for this step: (I)

flooding-based router discovery; and (II) probabilistic rou-
ter discovery.

Using the flooding-based router discovery, any person vj

who receives vi’s tickets should provide rij candidate rou-
ters to vi. These candidate routers are sent to vi alongside
the backward path from vj to vi. Therefore, vi can receive



Fig. 6. An example of trust graph based router selection.
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P
v j2Vi

rij ¼ R�i candidate routers in total, where Vi is the set
of people who receive vi’s tickets. R�i 6 Ri because some vi’s
tickets could be discarded in the ticket distribution step. vi

constructs onion circuits by selecting routers uniformly at
random from these R�i candidate routers, hence resulting in
a selection probability 1

R�i
for each candidate router. How-

ever, since all the R�i candidate routers are sent back along-
side backward trust paths to vi, the flooding-based router
discovery runs a high risk of exposing honest routers to
others.

To mitigate the exposure of honest routers, we propose
a probabilistic router discovery mechanism. Using this
mechanism, a person vj 2 Vi can only response one candi-
date router to the person who distributes tickets to vj. Let
Vij be the set of people who receive vi’s tickets from vj

(i.e., Vij is the set of vj’s eligible friends who receive vi’s tick-
ets). Let P(vk) be the probability that vj sends back a router
from vk to vj’s predecessor, where vk 2 Vij _ vj. The probabi-
listic router discovery sets P(vk) to PðvkÞ ¼ rikP

vm2Vij_vj
rim

. The

same as the flooding-based router discovery, this probabi-
listic router discovery can also result in a selection proba-
bility 1

R�i
for each candidate router. Since each person only

sends back a single router to its predecessor, the probabi-
listic router discovery mitigates the chance of exposing
honest routers to adversaries.

Fig. 6 demonstrates an example of the trust graph based
router selection algorithm. In this example, each person is
assumed to deploy a single router in SGor (i.e., ri = 1,
i = 0, . . . , 9). v1 is the person who attempts to construct
onion circuits. The parameters are set as Uh = 2, R1 = 6
and L1 = 2. In the initial step, v1 generates R1 = 6 tickets
and set L1 = 2 to the time-to-live field of these tickets. v1

then distributes 2 tickets to v3 and 4 tickets to v4 according
to Eq. (1) (i.e., C13 ¼ d U13

U13þU14
e � R1 ¼ 2 and

C14 ¼ d U14
U13þU14

e � R1 ¼ 4). When v3 and v4 receive

T13 = C13 = 2 and T14 = C14 = 4 tickets respectively, each of
them consumes one because each person deploys a single
router. For the remaining tickets (v3 has T13 � r3 = 1 and
v4 has T14 � r4 = 3), since L1 = L1 � 1 = 1 > 0, v3 and v4 can
further distribute these tickets to their eligible friends. v3

has two eligible friends v6 and v7, while v4 has three (v8,
v9 and v0). Although U34 = 2 P Uh, v3 can exclude v4 from
the set of v3’s eligible friends using the regressive checking
mechanism as v4 has already received v1’s tickets from v1.
Using Eq. (1), v3 can calculate
C36 ¼ d U36

U36þU37
e � ðT13 � r3Þ ¼ 1 and C37 ¼ d U37

U36þU37
e

�ðT13 � r3Þ ¼ 1. However, v3 only has T13 � r3 = 1 remaining
tickets. In this case, v3 can simply decide to distribute 1
ticket to v6 but 0 ticket to v7, or vice versa. Upon receiving
tickets, v6, v8, v9 and v0 stop the ticket distribution due to
two reasons. One is L1 = L1 � 1 = 0, and the other is that
they have no remaining tickets after they consume one.
v1 collects onion routers from the users who consume
v1’s tickets. As can be seen in Fig. 6, both of the two router
discovery mechanisms can result in 1

6 selection probability
for each candidate router, although v3 and v4 differently act
in these two mechanisms. In the flooding-based router dis-
covery, v3 and v4 simply send back all the routers they re-
ceive to v1. While in the probabilistic router discovery, v3

uses the probability 0.5 to choose v3’s router or v6’s router
for responding v1, and v4 employs the probability 0.25 to
chose responded routers.

We note that SGor is not the first one that uses ticket dis-
tribution mechanism. The Sybil-resilient rating system has
already used it to defeat Sybil attacks [32]. However, SGor’s
ticket distribution is novel in several aspects. First, SGor
distributes tickets according to group trust, hence having
better capability of preventing tickets being distributed to
adversaries. Second, since people consume tickets based
on the number of routers they deploy, SGor can have better
capability of evading adversaries’ routers if honest people
can deploy more routers. Third, to evade duplicated ticket
distribution, the Sybil-resilient rating system requires a
central server for calculating the shortest path in advance.
Unlike that, SGor proposes a novel regressive checking
mechanism to evade the duplicated ticket distribution. This
checking mechanism does not require a centralized server.
4.4. SGor analysis

In this section, we analyze SGor’s capability of protect-
ing anonymity using a probabilistic model. We first discuss
whether SGor can effectively evade adversaries’ routers
from users’ onion circuits. We then investigate whether
SGor can effectively defend against inference attacks.
4.4.1. The capability of evading adversaries’ routers
Since SGor employs group trust and global trust to

discover honest routers, we analyze how group trust and



3532 P. Zhou et al. / Computer Networks 57 (2013) 3522–3544
global trust affect the capability of evading adversaries’
routers, respectively.

4.4.1.1. Group trust. In this analysis, we focus on answering
the question how likely a person vj is an adversary if an
honest person vi has group trust Uij in vj.

Let Iij be the event that an honest user vi assigns incor-
rect trust to an adversary vj (i.e., vi ? vj is an incorrect trust
assignment). P(Iij) is the probability that the event Iij oc-
curs. Since local trust assignments (i.e., trust edges) in
SGor’s trust graph G = (V,E) are independent (see Sections
3.2 and 3.4), the events Iij for different vi, vj are indepen-
dent with each other. We therefore have P(Iij, Ikl) = P(Iij)
� P(Ikl) for "vi, vj, vk, vl 2 V, where P(Iij, Ikl) is the joint prob-
ability that both events Iij and Ikl happen concurrently.

Let Aj be the event that the user vj 2 V is an adversary.
P(Aj) is the probability that vj is an adversary.

Let Fij be the set of the people who are trusted by vi and
meanwhile trust vj (i.e., for "vk 2 Fij, there must exist vi ?
vk ? vj). Let Kij # Fij be the set of people who are adversar-
ies belonging to Fij.

P(Uij = NjAj) is the probability that vi has group trust
Uij = N for vj on condition that vj is an adversary. We can
calculate P(Uij = NjAj) as:

PðUij ¼ NjAjÞ ¼ PðIijÞ �
X

Kij # Fij

Y
vk2Kij

PðAkÞPðIikÞ

�
Y

vk2FijnKij

ð1� PðAkÞÞPðIkjÞ: ð2Þ

where P(Iij) is the probability that vi assigns incorrect trust
to the adversary vj. P(Ak)P(Iik) represents the probability
that vi assigns incorrect trust to vk and vk is another adver-
sary who can forward vi’s trust to the adversary vj.
(1 � P(Ak))P(Ikj) is the probability that vi assigns trust to
an honest person vk but vk assigns incorrect trust to the
adversary vj.

Since Uij = N indicates N robust trust paths from vi to vj

(see Theorem 1), it is intuitive to have a corollary as below.

Corollary 1. P(Uij = N + 1jAj) 6 P(Uij = NjAj).
Proof. Compared with Uij = N, vi has one more robust trust
path to vj when Uij = N + 1. We can simply assume this
additional path is vi ? vk ? vj. Hence, we have:

PðUij ¼ N þ 1jAjÞ ¼ ðPðAkÞPðIikÞ þ ð1� PðAkÞÞPðIkjÞÞ � PðUij

¼ NjAjÞ 6 ðPðAkÞ þ ð1� PðAkÞÞÞ � PðUij ¼ NjAjÞ ¼ PðUij

¼ NjAjÞ: �

P(AjjUij = N) is the probability that vj is an adversary on
condition that vi has group trust Uij = N for vj. According to
Bayes’ theorem, we can have:

PðAjjUij ¼ NÞ ¼ PðUij ¼ NjAjÞ � PðAjÞ
PðUij ¼ NÞ : ð3Þ

If the probabilities P(Aj) and P(Uij) follow uniform distribu-
tion, P(AjjUij = N) is proportionate to P(Uij = NjAj). Hence
P(AjjUij = N + 1) 6 P(AjjUij = N). That is to say, if an honest
people vi has a larger group trust in another people vj, vj
is less likely to be an adversary. As a result, SGor has a bet-
ter capability of evading adversaries’ routers from users’
onion circuits by using a larger Uh.

However, it is not the fact that the probabilities P(Aj)
and P(Uij) are uniformly distributed in practice. Hence, to
show the effectiveness of group trust, we will do more
practical evaluations using real-world datasets in
Section 5.

4.4.1.2. Global trust. In this analysis, we focus on answering
the question how likely a person vj is an adversary if an
honest person vi can propagate global trust to vj through
a Li-hop trust path.

If an honest person vi propagates global trust to vj

through a Li-hop trust path, the probability that vj is an
adversary can be calculated using a recursive function:

PðAjjLiÞ ¼ PðAkjLi � 1Þ þ ð1� PðAkjLi � 1ÞÞ � PðAjjUkjÞ: ð4Þ

where vk precedes vj in the trust path from vi to vj. If vk is an
adversary, vj must be an adversary. Otherwise, vj has the
probability P(AjjUkj) to be an adversary. The base case of
the recursive Eq. 4 is P(AmjLi = 1) = P(AmjUim), where vm is
the first person after vi in the trust path from vi to vj.

Since a larger Li leads to a higher P(AjjLi), a smaller Li can
help SGor achieve a better capability of evading adversar-
ies’ routers from users’ onion circuits.

4.4.2. The capability of defeating inference attacks
To analyze SGor’s capability of defeating inference at-

tacks, we investigate how many users an onion router
can be trusted and selected by in average. In SGor, global
trust is used to guide people to trust more others in the
trust graph, hence allowing honest routers to be trusted
and selected by more users in return. We note that, if a
router can be selected by more users, inference attackers
are hard to guess the initial user of an onion circuit by
observing this router.

SGor uses an adaptive trust propagation algorithm to
derive global trust. This algorithm has two parameters Li

and Uh (see Section 4.3). Li is used to limit the distance
of trust propagation and Uh is the group trust minimum
threshold that can be used to prevent trust propagation
from adversaries.

Since a larger Li and a smaller Uh could lead more rou-
ters’ owners to be globally trusted, SGor obtains a better
capability of thwarting inference attacks by using a larger
Li and a smaller Uh. However, as discussed in Section 4.4.1,
a larger Li and a smaller Uh also result in a worse capability
of evading adversaries’ routers. As a result, SGor should
choose appropriate Uh and Li to balance the capability of
evading adversaries’ routers and the capability of defeating
inference attacks. Section 5 will evaluate SGor on top of
real-world social trust datasets and show appropriate Uh

and Li for these datasets.
5. Evaluation

In this section, we evaluate SGor using two real-world
social trust datasets. We first describe the datasets in Sec-
tion 5.1. We then evaluate SGor’s capability of evading
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adversaries’ routers and the capability of defeating infer-
ence attacks in Sections 5.2 and 5.3, respectively. We com-
pare SGor with other global trust-based routing protocols
in terms of deanonymization expectation in Section 5.4.
After evaluating the leakage of a priori trust relationships
in Section 5.5, we also evaluate the overheads introduced
by SGor in terms of storage and communication round
trips in Section 5.6.
5.1. Datasets

We adopt two real-world social interaction graph data-
sets to evaluate SGor. One dataset contains post wall inter-
actions between users in a New Orleans regional network
in Facebook [19]. This interaction graph has 46,952 nodes
and 876,993 trust edges. The other dataset is the collection
of one month interactions from another Facebook anony-
mous regional network [20]. It includes 431,995 nodes
and 781,862 trust edges.

In our evaluated interaction graphs, each node repre-
sents a person who registers an account in Facebook. Each
trust edge indicates a local trust that one person assigns to
another person (see Section 3.4). We assume any person
can play the role as an onion routing user or an onion rou-
ter owner, or both or none of them (see Section 3.5.1).

We preprocess these two datasets following a similar
manner as X-Vine [33] and SybilLimit [34] did. In particu-
lar, we remove the nodes with low degrees (e.g., the sum of
outdegree and indegree is less than 5). This process can
guarantee all the nodes in our evaluation have reasonable
connectivity to the trust graph. We also eliminate the self-
linked edges (e.g., vi ? vi) because these trust edges could
mislead group trust computation. After these appropriate
preprocesses, we use the truncated datasets to evaluate
SGor.
Table 2
The two interaction social graphs after preprocess.

Dataset # of
Nodes

# of
Edges

Avg.
degree

Graph
density

New Orleans
[19]

27,601 231,035 8.37 3 � 10�4

Anonymous
[20]

83,034 305,711 3.68 4.4 � 10�5
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Fig. 7. The real-world group tru
Table 2 summarizes basic statistics of these two trun-
cated datasets. The average degree takes both outdegree
and indegree into consideration. It is calculated by using
the number of edges to divide the number of nodes in
the graph (i.e., jEjjV j). The density of a graph is defined as
the number of edges in the graph divided by the number
of edges in a complete graph (i.e., jEj

jV j�ðjV j�1Þ). Both the average
degree and graph density are graph properties that can be
used to show whether a graph is well connected or not. A
larger average degree and density leads to a more tight-
knit graph.

To have a better understanding of how graph properties
(i.e., average degree and graph density) affect the parame-
ter selection in SGor (the selection of Uh and Li), we gener-
ate six synthetic graphs using a tool NetworkX [35] for
investigation. We put the results based on synthetic graphs
in Appendix A.

5.2. Evaluating the capability of evading malicious routers

In this section, we first evaluate group trust’s effective-
ness in evading adversaries’ routers. We then show global
trust’s impacts to this effectiveness. Afterwards, we com-
pare SGor with state-of-the-art trust-based onion routing
to show SGor’s improvement in protecting users from
adversaries’ routers.

5.2.1. Group trust’s effectiveness
We measure group trust’s effectiveness in evading

adversaries’ routers in terms of the probability P(AjjUij = N).
A smaller P(AjjUij = N) indicates a smaller probability that vj

is an adversary given group trust Uij = N. According to Eq.
(3), P(AjjUij = N) is determined by P(Uij = N), P(Uij = NjAj)
and P(Aj).

Based on the two real-world datasets listed in Table 2,
we calculate practical distributions of P(Uij). In New Or-
leans dataset, Uij ranges from 1 to 31. While in the anony-
mous dataset, 1 6Uij 6 18. Fig. 7 illustrates histograms of
P(Uij) for the two datasets. It can be seen that the two data-
sets have the similar distributions of Uij. A larger Uij results
in a smaller P(Uij). Moreover, there are more Uijs having a
smaller value in the Anonymous dataset than those in the
New Orleans dataset. This is probably due to the lower
graph density in the Anonymous dataset. We have further
investigated this phenomenon using syntactic graphs in
Appendix A.
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st distributions of P(Uij).
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According to Theorem 1 and Eq. (2), P(Uij = NjAj) is
determined by the probabilities of events that honest peo-
ple assign incorrect trust to adversaries. Since incorrect
trust assignments are human behaviors, we can model
these behaviors as a Poisson process with an average incor-
rect trust assignments probability k (i.e., P(Uij = NjAj) fol-
lows a Poisson distribution with a parameter k). A large k
indicates that a large number of people in SGor assign
incorrect trust to adversaries. Since it is very difficult for
adversaries to attract incorrect trust from a large number
of honest human beings [26], SGor is not designed for a
large k. Therefore, we only consider a small k in our
evaluation.

We consider adversaries as independent and identically
distributed, i.e., the events Aj are i.i.d. In this case, P(Aj) for
"vj 2 V is equal to a constant b 2 (0,1). A large b indicates a
large fraction of the network is compromised by
adversaries.

We evaluate the effectiveness of group trust Uij in pro-
tecting an honest person vi from an adversary vj’s routers
by investigating P(AjjUij) for different Uijs in the two real-
world datasets. A smaller P(AjjUij) means a local trust
assignment vi ? vj is less likely to be incorrect, hence indi-
cating a better capability of evading adversaries’ routers. In
this evaluation, we consider k = 0.1 or k = 0.05 and b = 0.5
or b = 0.1. Fig. 8 shows the evaluation results. It can be seen
that a larger Uij leads to a smaller P(AjjUij) (i.e., a better
capability of evading adversaries). In particular, for the
dataset [19], P(AjjUij) drops about 1068 times when the
group trust climbs from Uij = 1 to 31. For the dataset
[20], P(AjjUij) declines around 1035 times when the group
trust grows up from Uij = 1 to 18. Moreover, P(AjjUij) with
a setting of smaller k and b is smaller than that with a set-
ting of larger k and b. This indicates that group trust is
more effective in evading adversaries when honest people
make less incorrect local trust assignments in SGor and
adversaries control a smaller fraction of the SGor network.

5.2.2. Global trust’s impact
We evaluate the global trust’s impacts on the capability

of evading adversaries’ routers by investigating P(AjjLi). A
smaller P(AjjLi) indicates that vj is less likely to be an adver-
sary if an honest person vi propagate global trust to vj

through a trust path consisting of Li trust edges. When
SGor derives global trust using adaptive trust propagation
algorithm, P(AjjLi) is determined by the length of the trust
path Li and the group trust of each trust edge in the trust
path. The group trust of each trust edge must be no smaller
than a minimum threshold Uh (see Section 4.3). A larger Li

results in a larger P(AjjLi), while a larger Uh leads to a smal-
ler P(AjjLi).

To evaluate global trust’s impact, we investigate P(AjjLi)
when Li varies in different cases of Uh. We compare P(AjjLi)
with P(AjjUij = 1). P(AjjUij = 1) represents how likely vj is an
adversary if vi has local trust in vj. P(AjjLi) < P(AjjUij = 1)
indicates that the people who receive global trust through
a trust path consisting of Li trust edges are less likely to be
adversaries than the people who receive local trust. As a
result, if SGor can achieve P(AjjLi) < P(AjjUij = 1) using
appropriate Li and Uh, the global trust could not degrade
the capability of evading adversaries’ routers.

Fig. 9 shows the probability P(AjjLi) when Uh = 2, 3, 4
and Li increases from 1 to 50. In this evaluation, we use
the setting of k = 0.1 and b = 0.5, and consider the worst
case that the trust propagation is through the trust paths
where any trust edges vk ? vm have Ukm = Uh. In the data-
set [19], for the case Uh = 2, P(AjjLi) becomes larger than
P(AjjUij = 1) when Li > 12. For the other cases Uh = 3 and
Uh = 4, P(AjjLi) remains smaller than P(AjjUij = 1) even if Li

grows up to 50. While in the dataset [20], for the cases
Uh = 2 and Uh = 3, P(AjjLi) is larger than P(AjjUij = 1) when
Li > 5 and Li > 30 respectively. Based on this evaluation, to
maintain the capability of evading adversaries’ routers,
SGor should propagate global trust through the trust paths
no longer than Li = 12 if Uh = 2 in the dataset [19], and no
longer than Li = 5 if Uh = 2 or Li = 30 if Uh = 3 in the dataset
[20]. It can be seen, SGor can choose a larger Li for trust
propagation in the graph with higher density (i.e., the data-
set [19] has a higher graph density than the dataset [20]).

5.2.3. Simulation of SGor and trust-based onion routing
To show SGor’s advantage in evading adversaries’ rou-

ters compared with trust-based onion routing, we simulate
router selections based on the two real-world datasets
with setting of k = 0.1 and b = 0.5. In this simulation, SGor
sets Li = 1, Uh = 2, 3, 4 and Ri to a large enough value,
respectively. SGor uses Uh to filter the routers whose group
trust is smaller than Uh and propagates global trust to at
most Li hops. We note that the trust-based onion routing
operates in the same manner as SGor with Li = 1 and
Uh = 1. We also assume each person deploys a single router
in the network. We generate a pseudo random value
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p 2 [0,1] for each person vj who deploys an onion router.
From an honest person vi’s point of view, vj is regarded
as an adversary if p < P(AjjLi).

We simulate a person vi as an honest person to select a
router deployed by other people using existing trust-based
onion routing algorithms [2,3] or the trust graph based
algorithm proposed in Section 4.3. We define a round of
simulation by iterating all the people in the two real-world
datasets to operate as vi one by one. We conduct 10,000
rounds of router selection simulations for trust-based
onion routing and SGor with Li = 1, Uh = 2, 3, 4,
respectively.

In each round of simulation, we measure the capability
of evading adversaries’ routers using the ratio of selecting
adversaries’ routers. This ratio is calculated by using the
number of people who select adversaries’ routers in each
round to divide the total number of people. A smaller ratio
means a better capability of evading adversaries’ routers.

Fig. 10(a) and (b) show the cumulative distribution
function (CDF) of the ratio of selecting adversaries’ routers
in our simulations. It can be seen that SGor outperforms
trust-based onion routing in both the New Orleans dataset
[19] and the anonymous dataset [20]. In particular, SGor
with parameters Uh = 2 and Li = 1 has more than 10 times
improvement for evading adversaries’ routers. When the
parameter Uh is increased to 4, the improvement extends
to around 1000 times.
5.3. Evaluating the capability of defeating inference attacks

We evaluate an honest onion router’s capability of
defeating inference attacks by investigating the number
of users who can select this router. A network (SGor or
trust-based onion routing) has a better capability of resist-
ing inference attacks if more honest onion routers can be
selected by more users.

Let Deg(vj) be the number of people who can select
the onion routers deployed by vj. In trust-based onion
routing, a person vi can select another person vj’s routers
if and only if vi has local trust in vj (i.e., vi ? vj exists in
G). Hence, Deg(vj) is the in-degree of the node vj in the
trust graph G. While in SGor, vi can select vj’s routers
in two cases. One is Uij P Uh if vi ? vj exists. The other
is vi can propagate global trust to vj using the adaptive
trust propagation algorithm described in Sections 4.2
and 4.3.

We use Deg(vj) as a measure to compare the capability
of defeating inference attacks between SGor and trust-
based onion routing. A larger Deg(vj) indicates a better
capability of defeating inference attacks. We consider SGor
with parameters Li = 2, 3 and Uh = 2. We also choose Ri as a
value which is large enough to guarantee SGor can
propagate trust to Li = 2 or 3. Our evaluation adopts the
two real-world datasets listed in Table 2 and considers
all the people to be as vj one by one.
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Fig. 11 shows the CDF of Deg(vj) for SGor and trust-
based onion routing in our evaluation. Compared to
trust-based onion routing, SGor with Uh = 2 and Li = 1 suf-
fers a distribution with more slightly small Deg(vj) s be-
cause Uh = 2 filters trust edges whose group trust is
smaller than 2. This slight degradation does not make a sig-
nificant impact on the capability of defeating inference at-
tacks, because these removed trust edges are likely to be
incorrect trust assignments. When Li is increased to 2, SGor
reaches a distribution with more large Deg(vj) s than trust-
based onion routing. The value of Deg(vj) is further in-
creased when Li grows up to 3 in SGor. These results show
that SGor with a larger Li can have a better capability of
defeating inference attacks. By referring back to Fig. 9,
we note that SGor with Uh P 2 and Li 6 5 retains a better
capability of evading adversaries’ routers than trust-based
onion routing. As a result, SGor apparently demonstrates a
better capability of defeating inference attacks and evading
adversaries’ routers simultaneously.

5.4. Comparing SGor with other global trust-based schemes

Although Sections 5.2 and 5.3 have proved SGor’s better
performance of protecting anonymity than trust-based
routing approaches that utilize local trust [1–3,15], we
need to further compare SGor with prior studies which also
apply global trust to onion routing. In the literature, there
are two projects, Drac [17] and Pisces [18], that fall into
this category. However, since Pisces has been proved to
have better capability of protecting anonymity than Drac
[18], we only compare SGor with Pisces because Pisces rep-
resents the state-of-the-art techniques using global trust.

To have a fair comparison between SGor and Pisces, we
propose the use of deanonymization expectation to mea-
sure the anonymity each user can obtain from the two
schemes. This measure takes both the capabilities of evad-
ing adversaries’ routers and defeating inference attacks
into account.

Let Ei be the person vi’s deanonymization expectation. Ei

can be calculated as Ei ¼
P

v j2zi
Pij � Eij. Where zi is the set

of persons whose router can be selected by vi. Pij is the
probability that the person vi uses to select the person
vj’s router. It is determined by different trust-based routing
algorithms. Eij is the average probability that vi can be
deanonymized due to the selection of vj’s router. We have
Eij = P(AjjLi) � 1 + (1 � P(AjjLi)) � P(vijvj) � l. The constant 1 in
P(AjjLi) � 1 is the probability that vi can be deanonymized
when vj is an adversary. This probability equals to 1 be-
cause the adversary vj can launch correlation-like attacks
to deanonymize vi directly. P(vijvj) represents the probabil-
ity that adversaries can guess vi by observing vj’s router
(i.e., inference attacks) when vj is not an adversary. l is
the probability that adversaries can observe routers in
onion circuits. We choose a small l = 0.01 in our evalua-
tion, because adversaries can only observe routers by
exploiting adversaries’ routers or web servers (see Sec-
tion 3.3), but the web servers adversaries can control are
relatively few and users rarely select adversaries’ routers
for onion routing after using trust-based algorithm (see
Fig. 8). Li which is the number of hops vi can propagate
trust in SGor equals to the number of random walk steps
in Pisces. Apparently, a smaller Ei indicates a better capa-
bility of protecting anonymity.

In our experiments, we compare SGor and Pisces by
considering the setting of k = 0.1 and b = 0.5. We choose
Uh = 2 for SGor. Moreover, we consider Li = 2 and Li = 3 in
our comparison. That is, SGor propagates trust through 2
or 3-hop trust path while Pisces launches 2 or 3-step
metropolis–hastings random walks on top of the New Or-
leans dataset [19] and the Anonymous dataset [20], respec-
tively. Although we cannot guarantee the random walk can
globally converge within Li = 2 or Li = 3 steps (it depends on
whether the graph is fast-mixing), Pisces employs metrop-
olis–hastings algorithm to guarantee the reach probability
of each router during the random walk is approximately
uniform distributed [18].

Fig. 12 shows the results of our comparison. Apparently,
SGor achieves a better capability in protecting anonymity
(in terms of a smaller deanonymizaiton expectation Ei).
SGor outperforms Pisces because SGor employs group trust
to rate limit trust propagation. This idea can effectively
prevent adversaries from compromising global trust in
trust propagation.

5.5. Evaluating the leakage of a priori trust relationships

Since SGor is designed to run in a fully decentralized
manner, it is not required to leak a priori trust
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relationships to any third parties, such as a centralized ser-
ver. However, as the calculation of group trust is based on
mutual friends information, people’s friends could expose
some of their trust edges to a third person who computes
group trust. For example, if vi has two robust trust paths
to vj, one is vi ? vj and the other is vi ? vk ? vj, to calculate
Uij, vk’s trust edge vk ? vj could be leaked to vi. As a result,
SGor could leak some of people’s trust relationships to
other people.

We measure the trust relationships leaked to a third
person in terms of the fraction of leaked trust edges. The
fraction can be calculated by using the number of trust
edges that are leaked to an individual third person during
group trust calculation to divide the total number of trust
edges in SGor’s trust graph. A larger fraction indicates a lar-
ger amount of trust edges leaked.

Fig. 13 shows the CDF of the fraction of trust relation-
ships that are leaked to each third person who computes
group trust. It can be seen that the leaked fraction is negli-
gible (less than 0.0002). Although a large number of adver-
saries could collude with each others (i.e., Sybil attacks),
they cannot effectively enlarge the fraction of leaked trust
relationships, because adversaries should compromise
trust with two honest people to leak these two people’s
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trust relationship through group trust computation. How-
ever, it is very difficult for adversaries to compromise trust
with a large number of honest people. Previous Sybil de-
fences (e.g., SybilLimit [34]) are usually designed based
on this observation. As a result, the adversaries who per-
form inference attacks cannot benefit a lot from the decen-
tralized design of SGor when they collect a priori trust
relationships.

5.6. Evaluating SGor’s overheads

To support trust graph based onion routing, SGor intro-
duces overheads because it performs additional storage
and communication in the trust graph layer. In this section,
we evaluate these overheads in terms of storage in Sec-
tion 5.6.1, communication round trips in Section 5.6.2,
and additional traffic in Section 5.6.3. The results confirm
that SGor only induces very few overheads due to its
decentralized design.

5.6.1. Storage overheads
Benefit from the decentralized design, SGor is not re-

quired to deploy a centralized server to manage the entire
trust graph. Instead, each person in SGor has a trust table
to store his own local trust assignments, i.e., trust edges
from this person to this person’s friends (see Section 3.5.2).
As a result, the storage overheads introduced by SGor are
due to the additional storage space required by the trust
table.

We evaluate the storage overheads by investigating the
number of trust edges stored in each person’s trust table.
Fig. 14(a) and (b) plot the CDF of this number for the peo-
ple in datasets [19,20], respectively. It can be seen that
most of people (around 80%) have less than 20 trust edges
stored in their trust table. Compared to the total number of
trust edges in these two datasets (as shown in Table 2, the
total number of trust edges is 231,035 in dataset [19] and
305,711 in dataset [20]), the number of trust edges stored
in each person’s trust table is relatively small. As a result,
SGor introduces a few storage overheads for each person.

5.6.2. Communication overheads
As described in Section 4.3, onion routing users need to

run a trust graph based algorithm to discover honest
routers in SGor. This algorithm induces additional
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communications among people (through people’s user-
agents) in the trust graph layer.

We evaluate SGor’s communication overheads in terms
of communication round trips. A communication round
trip is the time delay of a bi-directional communication be-
tween two people in the trust graph layer. Since SGor oper-
ates in a fully decentralized manner, most communications
between different two people can be performed in parallel.
According to SGor’s decentralized algorithms (see Sections
4.1.3 and 4.3), the number of additional communication
round trips introduced by SGor can be calculated by sum-
ming up one and a half round trips (for group trust compu-
tation) and the length of the longest trust path through
which SGor propagates global trust (i.e., Li + 1.5). These
additional communication round trips are only determined
by the parameter Li and cannot be affected by the size of
trust graph. Since Li + 1.5 is a very small value compared
with the size of a trust graph, SGor introduces a few com-
munication overheads even if it adopts a large scale trust
graph.

We investigate the number of parallel communications
when people run trust graph based router selection algo-
rithm in SGor. This number indicates the benefits that SGor
can obtain from the decentralized design to reduce com-
munication overheads. A larger number of parallel com-
munications means more efficiency benefits.

Fig. 15 shows the CDFs of the number of parallel com-
munications during different number of communication
round trips. In this evaluation, people are simulated to
run decentralized ticket distribution algorithm to discover
honest routers on top of the datasets [19,20]. We consider
Uh = 2 and Li = 3. It can be seen that more communication
round trips could result in more parallel communications.
This is the reason why a large scale trust graph does not
introduce a serious communication overhead in SGor.

5.6.3. Additional traffic
In contrast to the additional communications, SGor also

introduces additional traffic to the network. This overhead
is caused by group trust aggregation and adaptive global
trust propagation.

When SGor aggregates group trust using the decentral-
ized token-based algorithm (see Section 4.1.3), we mea-
sure the additional traffic in terms of the number of
tokens transmitted in each trust edge. When a person
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tored in each person’s trust table in SGor.
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Fig. 15. The CDFs of the number of parallel communications during different number of communication round trips in SGor with Uh = 2 and Li = 3.
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Fig. 16. The CDFs of additional traffic introduced by group trust aggregation (in terms of the number of tokens per trust edge) in SGor.
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Fig. 17. The CDFs of additional traffic introduced by global trust propagation (in terms of the number of traffic units transmitted in each trust edge) in SGor
when Uh = 2 and Li = 3.
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calculates group trust for his friends, two kinds of trust
edges are involved. One includes the edges from this per-
son to his friends, and the other includes the edges from
this person’s friends to the friends of this person’s friends.
The tokens can be distributed through the first kind of
edges at first, and then further forwarded via the second
kind of edges. At last, appropriate tokens can be sent back
to the initial user through the first kind of edges again. The
number of tokens transmitted in each trust edge is com-
puted by using the number of tokens transmitted on the
fly to divide the number of trust edges involved.

Fig. 16 illustrates the CDF of the average number of to-
kens transmitted in each trust edge. Apparently, the addi-
tional traffic introduced by group trust calculation is not



Table A.3
Statistics in six syntactic graphs.

Dataset # of Nodes # of Edges Avg. degree Graph density

Syntactic Graph r 1000 4975 4.98 5 � 10�3

Syntactic Graph s 1000 10,879 10.9 1.1 � 10�2

Syntactic Graph t 1000 51,975 52.0 5.2 � 10�2

Syntactic Graph u 1000 97,900 98.0 9.8 � 10�2

Syntactic Graph v 2000 9975 5.00 2.5 � 10�3

Syntactic Graph w 2000 106,975 53.5 2.7 � 10�2

1 2 4 5
0

0.2

0.4

0.6

0.8

P 
(Φ

ij)

2 4 6 8 10
0

0.2

0.4

0.6

Φij

10 30 410

0.05

0.1

0.15

20 60 80
0

0.02

0.04

1 2 4 5
0

0.2

0.4

0.6

0.8

10 30 41
0

0.1

0.2

Φij
P 

(Φ
ij)

P 
(Φ

ij)

Φij Φij

P 
(Φ

ij)

P 
(Φ

ij)

Φij

P 
(Φ

ij)
(a) Syntactic Graph (b) Syntactic Graph

(c) Syntactic Graph (d) Syntactic Graph

(e) Syntactic Graph (f) Syntactic Graph

Φij
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large because no more than 2 tokens per trust edge are in-
serted into the network. However, there is an interesting
observation that the New Orleans dataset introduces less
additional traffic than the Anonymous dataset, although
the group trust in the former dataset is statistically larger
than that in the latter dataset. The reason of this observa-
tion is because a large number of people in the Anonymous
dataset have none friends even if they are friends of other
people. These people cannot induce the second kind of
trust edges during group trust calculation, hence resulting
a small number of trust edges when we compute the num-
ber of tokens per trust edge.

Besides group trust aggregation, the adaptive global
trust propagation also injects additional traffic into the
network. We measure this kind of additional traffic in
terms of traffic units that are conveyed in each trust edge.
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We use traffic unit as the measure, because global trust
propagation could induce three different kinds of addi-
tional traffic. As described in Section 4.3, our global trust
propagation algorithm consists of a tickets forwarding, a
regressive checking mechanism for evading duplicated
ticket distribution and a router collection. Each tickets for-
warding injects one unit of additional traffic as it only for-
wards the number of remaining tickets through trust
edges. For the regressive checking mechanism, the check-
ing request and the checking response consume one traffic
unit each. For the router collection, each router transmit-
ted in the trust edge induces one additional traffic unit.

Fig. 17 shows the CDFs of the number of traffic units
transmitted in each trust edge during global trust propa-
gation in SGor when Uh = 2 and Li = 3. It can be seen that
the additional traffic is relatively small (no more than 7
traffic units are transmitted in each trust edge). Moreover,
although the probabilistic router discovery mechanism is
originally proposed to mitigate the chances of router
exposure during trust propagation, our result confirms
that this mechanism is also effective in reducing addi-
tional traffic compared with the flooding-based router
discovery.
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6. Discussion and future work

Although SGor successfully mitigates key limitations in
trust-based onion routing, there is still room for further
improvement:

First, if the trust graph that SGor adopts cannot provide
enough robust trust paths to form group trust, SGor would
degenerate into the traditional trust-based onion routing.
For example, only 69.7% people in the interaction graph
from the dataset [19] have friends who can receive group
trust larger than Uh = 2. In this case, the other 30.3% people
can only use SGor as the traditional trust-based onion rout-
ing. Enlarging the population of SGor is an interesting fu-
ture work.

Second, since we only evaluate SGor with indepen-
dent and identically distributed adversaries in this pa-
per, we leave a future work to assess SGor using other
adversary distributions. For example, to show SGor’s
effectiveness in the presence of practical adversaries,
we need to sample adversary distributions from real-
world datasets.

Third, we design SGor by considering a stable trust
graph. However, users are usually dynamic because they
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could join and leave SGor frequently. We argue that users’
trust relationships are more stable. Instead, their dynamics
are usually in the form of frequent online and offline. To
address this issue, we suggest users to run their user-
agents in an uninterrupted service, such as a virtual ma-
chine in EC2 or PlanetLab. If some users fail to run their
agents in uninterrupted service, the resulted trust graph
is incomplete. The incomplete graph could cause live users
missing to discover some live honest routers. To address
this problem, a possible solution is to fetch the missing
part of trust graph in a centralized service. But this solution
affects SGor’s decentralized scalability. As a result, there is
a tradeoff between scalability and graph completeness, and
this tradeoff can be made differently, depending on the
system’s objectives.

Fourth, as described in Section 3.2, SGor is designed
based on an assumption that all the trust edges in the trust
graph are independent. Although we argue that trust edges
in an interaction graph are more independent, we also
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Fig. A.20. The probability P(AjjL
encourage SGor to build up a customized trust network.
In this trust network, onion routing users and routers’
owners are enabled to evaluate the trustworthiness of each
other independently.

Fifth, we acknowledge that SGor, like all existing trust-
based routing systems (e.g., Drac and Pisces), is still subject
to social engineering attacks to some extent. For example,
if adversaries can launch social engineering attacks to de-
fraud some honest people who have low security aware-
ness, they could arbitrarily act to make impact to these
victims in our proposed scheme. Fortunately, due to three
reasons, this impact is relatively small: r The trust levels
that adversaries receive through social engineering attacks
are usually low. s Mutual friends based group trust can
mitigate this attack. t Our proposed adaptive trust propa-
gation algorithm has the capability of limiting the influ-
ence of this attack. However, we also agree this is a
weakness of current SGor and expect countermeasures in
the future.
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Table A.4
The selection of Li given a Uh for SGor to guarantee P(AjjLi) < P(AjjUij = 1) in different Syntactic Graphs.

Dataset Avg. degree Graph density Uh Li

Syntactic Graph r 4.98 5 � 10�3 Uh = 2 Li 6 2
Uh = 3 Li 6 26
Uh = 4 Li up to 50

Syntactic Graph s 10.9 1.1 � 10�2 Uh = 2 Li 6 5
Uh = 3 Li up to 50
Uh = 4 Li up to 50

Syntactic Graph t 52.0 5.2 � 10�2 Uh = 2 Li 6 14
Uh = 3 Li up to 50
Uh = 4 Li up to 50

Syntactic Graph u 98.0 9.8 � 10�2 Uh = 2 Li 6 33
Uh = 3 Li up to 50
Uh = 4 Li up to 50

Syntactic Graph v 5.00 2.5 � 10�3 Uh = 2 Li 6 1
Uh = 3 Li 6 14
Uh = 4 Li up to 50

Syntactic Graph w 53.5 2.7 � 10�2 Uh = 2 Li 6 11
Uh = 3 Li up to 50
Uh = 4 Li up to 50

P. Zhou et al. / Computer Networks 57 (2013) 3522–3544 3543
7. Conclusions

In this paper, we explore new trust features from trust
graph and show promising solutions to address the funda-
mental challenges in state-of-the-art trust-based onion
routing. Although we consider only the group trust and
global trust in our prototype design, we expect future re-
search can benefit from our research principle and discover
more useful trust features to further improve the protec-
tion of anonymity in onion routing networks.
Appendix A. Syntactic graph based analysis

Our syntactic graph based analysis is presented here to
investigate how graph properties (e.g., average degree and
density) affect the parameter (e.g., Uh and Li) selection in
SGor. In particular, we generate syntactic graphs by calling
the function barabasi_albert_graph () in NetworkX
[35]. This function returns a random scale-free graph based
on a Barabási-Albert preferential attachment model [36].
The trust graphs following this model are widely observed
in nature and human-made systems, which include social
networks.

We have generated six syntactic graphs with different
sizes, average degrees and graph densities. Table A.3 sum-
marizes the statistics of these six graphs.

We show the group trust (i.e., P(Uij)) distributions of
these six graphs in Fig. A.18(a)–(f). By analyzing these fig-
ures as well as consulting Table A.3, we confirm that a lar-
ger average degree or a higher graph density results in a
larger value of P(Uij). Moreover, compared with graph den-
sity, the average degree is more appropriate for indicating
the group trust distribution. For example, although the
density of syntactic graph v is roughly a half of the density
in the graph r, their group trust distributions are similar
because they have roughly the same average degree.

Based on the group trust distributions, we also plot the
probability P(AjjUij) with different Uij in four settings of k
and b in Fig. A.19(a)–(f). These figures show the P(AjjUij)
consistently decreases when Uij increases. Moreover, the
P(AjjUij) can reach a smaller value in the graph which has
higher average degree and graph density.

To investigate how graph properties (i.e., average de-
grees and graph densities) affect the global trust propaga-
tion, we show P(AjjLi) in these six graphs in Fig. A.20(a)–(f).
In these figures, the P(AjjUij = 1) represents how likely vj is
an adversary if vi has local trust in vj. If P(AjjLi) < P(Aj-

jUij = 1), that means the people who receive global trust
through a trust path consisting of Li trust edges are less
likely to be adversaries than the people who receive local
trust. As a result, when SGor can achieve P(AjjLi) < P(Aj-

jUij = 1) using appropriate Li and Uh, the trust propagation
could not degrade the capability of resisting adversaries.

To maintain the capability of resisting adversaries dur-
ing trust propagation, we summarize appropriate Li

according to different Uh in SGor for these six syntactic
graphs in Table A.4. Apparently, the graph with larger aver-
age degree and higher density supports a larger Li for trust
propagation without reducing the capability of evading
adversaries.
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