
Intentional Networking: Opportunistic Exploitation of
Mobile Network Diversity

Brett D. Higgins∗, Azarias Reda∗, Timur Alperovich∗, Jason Flinn∗,

T. J. Giuli†, Brian Noble∗, and David Watson†

University of Michigan∗ Ford Motor Company†

ABSTRACT
Mobile devices face a diverse and dynamic set of networking op-
tions. Using those options to the fullest requires knowledge of
application intent. This paper describes Intentional Networking,
a simple but powerful mechanism for handling network diversity.
Applications supply a declarative label for network transmissions,
and the system matches transmissions to the most appropriate net-
work. The system may also defer and re-order opportunistic trans-
missions subject to application-supplied mutual exclusion and or-
dering constraints. We have modified three applications to use In-
tentional Networking: BlueFS, a distributed file system for per-
vasive computing, Mozilla’s Thunderbird e-mail client, and a ve-
hicular participatory sensing application. We evaluated the per-
formance of these applications using measurements obtained by
driving a vehicle through WiFi and cellular 3G network coverage.
Compared to an idealized solution that makes optimal use of all
aggregated available networks but that lacks knowledge of appli-
cation intent, Intentional Networking improves the latency of inter-
active messages from 48% to 13x, while adding no more than 7%
throughput overhead.

General Terms
Performance

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management—net-
work communication; D.4.8 [Operating Systems]: Performance

Keywords
Wireless network selection, application-aware networking

1. INTRODUCTION
Mobile devices face a diverse, dynamic array of networking op-

tions. Increasingly, these options have a wide variety of strengths
and weaknesses. As a result, there is no single “best choice” in
all cases, and such diversity of infrastructure is both a challenge

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’10, September 20–24, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0181-7/10/09 ...$10.00.

and an opportunity. The challenge lies in managing these changing
options to best meet each application’s needs, which themselves
vary with time. However, by doing so, we can provide significant
benefits to applications, exploiting multiple networks concurrently
and planning future transmissions intelligently. This is particularly
valuable for applications with a mix of on-demand and opportunis-
tic network activity—messages that still have value even if deferred
for a time.

Unfortunately, current approaches to this problem are insuffi-
cient. At one extreme, the operating system or a middleware layer
makes all routing and interface decisions on behalf of applications,
in a one-size-fits-all solution [6, 18]. However, because the entities
that make these decisions are ignorant of the intent of the appli-
cations that are using the network, they often miss opportunities
for optimization. Worse, in an effort to preserve current wired-
network semantics, persistent connections generally end up “stuck”
on wide-area (but low-performing) networks. At the other extreme,
the system makes applications aware of network changes by expos-
ing the low-level details directly to them [7, 34], and applications
must explicitly choose among the available options. This approach
is expressive, but neither simple nor elegant; managing multiple
wireless networks unnecessarily complicates the task of the appli-
cation writer.

Intentional Networking occupies the middle ground between
these two extremes. In our approach, the system manages most
of the messy details of discovering and characterizing available
network options. Applications provide hints about traffic seman-
tics using a small number of declarative labels to express intent.
For instance, a label might differentiate between foreground traffic
(e.g., a GUI-initiated request for which a user is waiting) and back-
ground traffic (e.g., an opportunistic message that need not happen
at any particular time). The system then matches network traffic to
available interfaces in an informed way.

Application data sent using different networks may arrive out of
order. Constraining data delivery to follow in-order TCP-style se-
mantics could dramatically limit the benefit seen by applications,
since short, interactive messages would queue behind all previ-
ous opportunistic transfers. Thus, Intentional Networking allows
applications to express relaxed ordering constraints for data de-
livery. The scheduling constraints for mobile network usage are
similar to synchronization primitives used by threads running on a
multi-processor. Based on this observation, we provide two primi-
tives: Isolated Reliable Ordered Bytestreams (IROBs), which pro-
vide the mutual exclusion synchronization of mutex locks, and or-
dering constraints, which provide the must-happen-before synchro-
nization of condition variables.

Finally, there are times when none of the currently available net-
work options are appropriate and network traffic is best deferred.

73

For this scenario, Intentional Networking supports a thunk model
of delayed execution in which the application registers a callback
function to be invoked when circumstances change so that it be-
comes appropriate to transmit data with the specified label. Thunks
let applications coalesce, rather than defer, redundant network mes-
sages; for instance, an e-mail client that periodically checks for new
mail can send only one such request when an appropriate network
becomes available.

The contribution of our work comes from defining simple and
powerful abstractions for exposing the presence of multiple wire-
less networks to applications. Our work does not define a new over-
the-wire protocol, but instead provides a portable, user-level im-
plementation that routes traffic over appropriate networks based on
application hints. We show that, for many applications, application-
aware network selection outperforms even idealized aggregation
strategies that lack knowledge of application intent.

We have modified two existing applications to use Intentional
Networking: BlueFS [32], a file system for pervasive computing,
and the Mozilla Thunderbird [27] open-source email client. We
have also created a new automotive participatory sensing applica-
tion that uses our API. We evaluated the performance of these appli-
cations using measurements obtained by driving a vehicle through
WiFi and cellular 3G network coverage. Compared to an ideal-
ized solution that makes optimal use of the aggregated available
networks but lacks knowledge of application intent, our results
show that Intentional Networking improves the latency of interac-
tive messages from 48% to 13x for our three applications, while
adding no more than 7% throughput overhead.

2. RELATED WORK
There is a large body of work that seeks to route network traffic

over multiple interfaces. Prior work largely falls into one of two
categories: application-oblivious, in which the network over which
data is sent is chosen based on system-wide goals such as maxi-
mizing throughput and without consideration of application intent,
and application-alone, in which each application must manage the
details of selecting among multiple networks on its own and the
system’s role is only to expose the details of possible options to the
application.

Virtual WiFi [7] is one application-alone solution. It virtualizes a
device’s wireless interface, fooling applications into believing the
device is connected simultaneously to different APs on different
channels. This is a step in the right direction, because devices
can now exploit all available connectivity in their vicinity. Un-
fortunately, Virtual WiFi places the burden of access point selec-
tion entirely on the application. In contrast, Intentional Networking
presents applications and users with a single unchanging network
interface that accepts declarative intent.

Application-oblivious systems are more numerous. FatVAP [18]
presents an infrastructure similar to that of Virtual WiFi, but oper-
ates only within a single layer of an overlay network, and is con-
cerned only with maximizing overall throughput, without concern
for other application-level preferences. Other systems attack the
bandwidth aggregation problem by designing new multi-path trans-
port protocols to replace TCP, such as R-MTP [24], pTCP [15],
mTCP [49], and SCTP [45]. SCTP also supports multi-streaming
of independent byte streams; in contrast, Intentional Networking
allows applications to specify ordering and atomicity constraints
over data sent to a destination computer. Multi-path transport has
also been built into the kernel socket-handling functions just above
the transport layer [39]. Chebrolu et al. [8] use a modified net-
work layer at the mobile host and at a remote proxy to hide the
use of multiple networks, and the resulting reordering of packets,

from the transport and application layers. Though all of the above
application-oblivious systems are simple for applications to use,
they only focus on throughput maximization and cannot take into
account other application-specific or request-specific goals such as
minimizing latency.

In contrast to application-oblivious and application-alone strate-
gies, Intentional Networking splits the burden of network selection
among applications and the system. Applications disclose qual-
itative hints about their intentions in using the network, and the
system reasons about how traffic labeled with those hints should be
mapped to specific networks based on their current characteristics.

Rather than target throughput maximization, Wiffler [3] oppor-
tunistically routes data over WiFi to minimize cellular usage. Oth-
ers [8, 38, 48] have argued that throughput maximization is not
the only goal of interest to mobile applications and users, and that
the ability to specify network usage policies on a per-application
basis would be useful. We differ from these prior works in two
ways. First, we argue that the application, not the user, should set
policies. Application network usage patterns may change quickly,
and the proper choice of policy changes likewise; it would place
too great a burden on the user to understand their applications’ be-
havior and constantly update the policies. Second, we propose,
implement, and evaluate a specific mechanism for applications to
set fine-grained policies by describing the intent of each network
message.

The push toward ubiquitous computing makes automatic service
discovery in new environments more important than ever [41]. Ex-
isting work, however, has focused more on enabling application-
level services [9, 13, 43] than on choosing and managing a diverse
set of network connections from an application’s point of view.

Several systems seek to allow clients of one wireless service
provider to access foreign wireless hotspots when roaming [5, 11,
25, 40] or between public and private networks [26]. Our work is
complementary, since users must find and associate to an access
point before negotiating such roaming agreements. This service
discovery is similarly critical for grassroots wireless collective ini-
tiatives [4, 35, 42].

Contact Networking [6] hides the differences between local
and remote communication from users. All communication ap-
pears to be local—like a direct Bluetooth connection between two
devices—even if infrastructure such as the Internet is actually in-
volved. Like us, the authors recognize that mobile devices typically
have several heterogeneous wireless radios at their disposal. Con-
tact Networking is also conscious of the properties of different link
layers. Their primary focus, however, is on neighbor discovery,
name resolution, and (ultimately) the preservation of application-
level sessions in the face of user mobility. Our work does find com-
mon ground with the idea that all network connectivity options are
not equivalent and the operating system should dynamically assign
data flows to the most appropriate link.

Zhao et al. [50] attack problems similar to those addressed by
Contact Networking. Their work lies firmly within the framework
of Mobile IP [37] as well. The user’s Home Agent is required to
arbitrate the routing of various data flows. Further, applications
must explicitly bind a data flow to a specific interface through their
����������	
��	 socket option. We propose a decentralized so-
lution and envision the operating system automatically assigning
flows to the optimal interface, aided at most by simple hints from
applications.

Much recent work has argued that the multiple network connec-
tivity options available to today’s mobile devices are a blessing, not
a curse. Johansson et al. [17], among others, show how Bluetooth
radios are often preferable to IEEE 802.11 for short-range, low-

74

power communication. Bahl et al. [2] illustrate scenarios where
multiple radios can help devices save energy, enhance their data
communication capacity, make wireless AP handoff more seam-
less, and better tolerate wireless link problems. Draves et al. [10]
show how overall throughput can be increased for multi-radio
nodes in mesh networks by dynamically choosing the “best” out-
bound link when forwarding a given packet. Stemm and Katz [44]
recognize the hierarchical nature of overlapping wireless networks.
Much like cache hierarchies in computer architecture, multiple
wireless networks commonly cover one spot, with the utility (e.g.,
bandwidth) of a network usually inversely proportional to its cov-
erage radius.

Labels are partially inspired by the use of hints to guide power
management decisions in STPM [1]. Both projects share the goal
of having applications disclose a minimal amount of information to
guide resource management decisions. Yet, the domains to which
these hints are applied are very different. STPM sets wireless
network power management modes, while Intentional Networking
changes the scheduling and routing of network messages.

3. DESIGN GOALS
We next list the major goals that drove the design and implemen-

tation of Intentional Networking.

3.1 Separate concerns
Our design is guided by the classic principle of separating policy

and mechanism. Applications are best situated to determine the ac-
tual intent in using the network, e.g., whether a particular message
is driven by interactive use or whether it is background traffic. This
intent represents the policy for how data should be transmitted.

On the other hand, the operating system or a middleware library
is best positioned to provide a common mechanism to implement
the specified policies. A common mechanism makes deploying
new applications that use multiple mobile networks considerably
easier since each application must only provide hints as to its in-
tent. The details of handling multiple heterogeneous and intermit-
tent mobile networks is encapsulated at lower layers of the sys-
tem. A common mechanism can also aggregate heterogeneous data
transmissions from multiple applications.

Thus, Intentional Networking is designed to have a separation of
concerns in which applications disclose policy decisions by label-
ing the data they transmit and a lower layer of the system imple-
ments the mechanism that enacts the policy by mapping data to the
networks that best match the labels at the time the data is transmit-
ted.

3.2 Be Qualitative
Our design is also guided by the classic principle of keeping the

interface as simple as possible, without unduly sacrificing expres-
siveness. This has resulted in a minimalist, qualitative interface.
For instance, we could have required each application to disclose
detailed quantitative specifications of the characteristics of the traf-
fic it expects to generate, as well as the quality of service that it
requires. However, such a complex interface would place a con-
siderable burden on the application programmer, that of carefully
tuning for each possible workload, making it unlikely that the ca-
sual developer would use our system.

This principle led to several decisions. Rather than use quantita-
tive specifications, applications express their intentions using only
qualitative attributes over the data; i.e., whether a transmission will
be small or large, and whether it is interactive or background traffic.
We do not mandate what constitutes “small” vs “large”. We allow
the application to use these labels as it sees fit. While we may

Properties Possible values
Interactivity Foreground vs. Background

Size Small vs. Large

Table 1: Intentional Networking label properties

eventually add more attributes to our labels as our experience with
the system grows, the current interface is sufficiently expressive to
handle several complex applications, as discussed in Section 6.

3.3 Embrace Concurrency and Failure
Our original goal for Intentional Networking was to provide a

single-socket abstraction that assigns labeled traffic to the most ap-
propriate networking option. However, single-socket semantics re-
quire data to be delivered in-order for TCP connections. Unfortu-
nately, this severely limits the set of optimizations possible when
using multiple networks simultaneously.

After several false starts, it became clear to us that going from
one to many networks is akin to the transition from single-threaded
programming to multi-threaded programming. Some interleavings
of execution orders are very useful and desirable, but others lead to
incorrect computations.

Just as concurrent systems include mechanisms to allow the pro-
grammer to rule out incorrect orderings, we added synchroniza-
tion abstractions to express both atomicity and happens-before con-
straints. These mechanisms are both simple and expressive, and
are familiar concepts to programmers with training in monitor-style
concurrency control.

In addition to expressing such ordering constraints, we also
needed mechanisms to deal with partial failure. There are times
when some traffic would be ill-served by any available transmis-
sion alternative. Therefore, we provided a callback mechanism—
similar to exceptions or continuations—to handle delayed transmis-
sions or disconnections.

4. ABSTRACTIONS AND INTERFACE
In this section, we describe the Intentional Networking ap-

plication interface. We first describe the basic abstractions in
the interface. Applications use labels to communicate their in-
tent. These are meaningful in the context of multi-sockets and
are expressed over message units called IROBs (Isolated Reliable
Ordered Bytestreams). IROBs provide atomicity (mutual exclu-
sion); applications may also specify ordering constraints among
IROBs. When operations must be deferred, applications may regis-
ter thunks to resume them. After describing these fundamental ab-
stractions, we show the Intentional Networking API in Section 4.6.

4.1 Labels
The label is the principal abstraction available to applications. It

is the mechanism by which applications declare the properties of
any particular network message. Labels are system-defined quali-
tative properties of the message. Our present implementation sup-
ports only four labels across two dimensions, interactivity and size,
as shown in Table 1. A message’s label is set to foreground if a
user-visible event is waiting for the response. A message is back-
ground if its timely delivery is not critical to correct behavior. For
example, many hints [46] need not be sent. The small label de-
scribes messages that are latency-dominated such as single-packet
RPCs, while the large label describes other messages such as those
containing multimedia data. We expect to add further dimensions
and label values as our experience with applications grows. Yet, the

75

eventual number of possible label values will remain small since
interface simplicity is one of our main design goals.

4.2 Multi-Sockets
Labels are used in conjunction with label-aware sockets. We call

such sockets multi-sockets. Intuitively, a multi-socket multiplexes
several different labels across a single virtual socket. For the most
part, multi-sockets behave exactly as normal ones do. However,
multi-socket send calls take a label that is used to assign packets
to the best possible interface. Note that the sender is always the
entity responsible for assigning labels, and as a consequence, ���
does not require a label. While we could imagine using one to
implement a filtered receive, we have not had to do so for any of
our applications so far.

A multi-socket is a single logical connection that dynamically in-
stantiates and uses actual TCP connections over one or more phys-
ical interfaces. Multi-sockets provide encapsulation: they hide the
presence of multiple network interfaces, routes, and connections
from applications. Multi-sockets also encapsulate transient discon-
nections caused by events such as passing through a wireless dead
zone. Applications specify only labels, which are used by the In-
tentional Networking traffic manager to choose the right network
over which to send data. Applications may optionally be notified
about network unavailability on a per-label, not per-network basis,
through the use of thunks, which are deferred execution environ-
ments that execute when an event occurs. Thunks are described in
more detail in Section 4.5.

Like TCP sockets, multi-sockets support a reliable delivery ab-
straction. However, multi-sockets relax TCP’s ordering constraints
by allowing bytes to be reordered subject to application-specified
mutual exclusion and ordering constraints, as described in the next
two sections.

4.3 IROBs
An IROB is the unit of network transmission to which labels are

applied. The multi-socket interface guarantees that each IROB is
received atomically; i.e., the bytes of the IROB are produced in
order without intervening bytes from other network transmissions.
However, individual IROBs may be reordered with respect to one
another. In other words, an IROB sent after a previously sent IROB
may be seen first by the application reading data from the receiving
multi-socket. Yet, bytes from the two IROBs will never be inter-
mingled. IROBs thus provide mutual exclusion in the same manner
that locks provide mutual exclusion for threads in a multithreaded
program.

4.4 Ordering constraints
Since some applications require ordering constraints between

IROBs, the multi-socket interface supports the declaration of such
constraints. Each multi-socket assigns a unique, monotonically in-
creasing identifier to each IROB. When creating a new IROB, the
application may specify the identifiers of any IROB that must be
received prior to receiving the one being created. Ordering con-
straints may only specify IROBs that have a lower unique identifier;
this guarantees that such constraints are deadlock free. Applica-
tions that desire the sequential byte stream of a TCP socket specify
that each IROB must be received after the one with the next lowest
identifier; our API provides default send calls with this behavior
for simplicity. However, many of our applications have looser con-
straints; for instance, the BlueFS file system client requires that
asynchronous writes be ordered sequentially with respect to one
another, but allows them to be arbitrarily ordered with respect to
all other RPC types. The ordering constraints in multi-sockets are

similar to those provided by condition variables for threads in a
multi-threaded program.

4.5 Thunks
It is possible that a labeled IROB may not have any “appropri-

ate” network available at the time it is sent. For example, consider
an opportunistic bulk transfer initiated when only a low-bandwidth
link is available. Such a transfer would preferably be done at a
later time, when a high-bandwidth link is encountered. Alterna-
tively, the mobile computer may be in a wireless dead-zone, with
no connectivity.

Naturally, we do not want applications to have to poll for such a
link. We also do not want applications to have to establish new con-
nections after short periods of transient disconnection. However, in
keeping with our design goals, we want to expose such events to
applications when appropriate.

In our interface, the operations that create IROBs take an op-
tional thunk argument, which is a function/argument pair that will
be used to inform the application about IROBs that cannot be im-
mediately sent due to the lack of an appropriate network. When an
IROB is deferred, the call that takes the thunk argument returns a
special return code. Later, when data with the specified label can
next be transferred, the library notifies the application by calling
the thunk function with the specified arguments. The ownership
of the argument’s resources passes with the thunk, and the handler
must take responsibility for them. Thunks may be canceled—for
example, if a subsequent ��� would invalidate a prior thunked
one.

Thunks are useful for applications that send periodic messages,
such as checking for new e-mail. Buffering redundant messages
during disconnected periods and sending them all later is clearly
undesirable. Instead, such applications register a thunk for the send
and are notified when an appropriate network is available. The
thunk handler sends only one polling request, thereby preserving
valuable network bandwidth.

4.6 API
Table 2 shows the most important functions in the Intentional

Networking API. The �������� call creates a new multi-socket,
and the ��������� call connects it to a remote endpoint, which is
specified in the same way as for the ������ system call. Thus, the
only difference between ��������� and the standard ������
system call is that the first argument is a multi-socket.

Typically, we modify an application by replacing the socket, con-
nect, listen, and accept calls with their ���� counterparts. Ap-
plications create a new IROB through ������������, passing
a label that describes the atomic message, as well as any or-
dering constraints. This function also takes an optional thunk
and data to be passed to the thunk function. The application
then calls ����������� to specify the data sent as part of the
IROB; typically, we perform a one-to-one replacement of ���
to ����������� calls. The application uses ���������� to
tell the library that no more data will be sent for the IROB. The
������ call is provided as a convenience; it creates a new IROB
that depends on all previous IROBs, specifies the data that com-
prises the IROB, and ends the IROB. If an application uses just
������ calls, it will provide the behavior of TCP with labels,
though no reordering will occur.

The ������ call returns a label. This is useful for server appli-
cations that wish to reply to a client request using the same label
provided by the client for the original request. For instance, an
IMAP server may wish to reply to client background requests with
a background label and reply to foreground requests with a fore-

76

Function Arguments and return values
��������� 	
� ������
� �����
� ��������� ��� ��������������
������������� 	
� �������������
� �����
� �������������
� ������
� ��������� ��� ���������
������������ 	
� ��������
� ����
� �������
� ����� ��� ������������
����������� 	
� ���������
������� 	
� �������������
� �������
� �������
� �����
� �����

� ������
� ��������� ��� ������������
������ 	
� �������������
� �������
� �������
� ����� ��� ����� ��� �������� ���

This figure shows the Intentional Networking API for creating and using multi-sockets. Besides the functions shown, multi-sockets also support
the traditional socket functions; e.g., �����, ������, and ����������.

Table 2: Intentional Networking API

ground label. Although not shown in Table 2, multi-sockets export
similar functions to those provided by traditional sockets such as
�����, �����, ����, and ���������.

4.7 Discussion
It is useful to consider what an application would need to provide

on its own to achieve application-aware functionality equivalent to
Intentional Networking. First, an application would need to dis-
cover new network options, open sockets for each network option,
and monitor the connection quality of each network in order to de-
cide which network to use for each transmission. To prioritize on-
demand traffic, the application might create multiple sockets per
network, then use a platform-specific method to prioritize traffic
from one socket over the other. The application would also need to
stripe traffic across connections to improve throughput, then man-
age the inevitable re-ordering of data that arises from such striping.
Finally, the application might poll to achieve the functionality of
thunks that allows traffic to be altered or dropped if an appropriate
network is not currently available.

In contrast, the Intentional Networking abstraction makes this
functionality the responsibility of the lower layer of the mobile
system, not the application. The application need only annotate
its traffic with the simple API in Table 2 to achieve the same func-
tionality. While strategies that ignore intent can be implemented
without application modification, our evaluation shows that such
application-oblivious strategies substantially underperform Inten-
tional Networking.

5. ARCHITECTURE
When we began our work, we faced a decision about whether

to implement Intentional Networking at user-level or in the kernel.
Good reasons exist for both choices. A kernel implementation can
improve performance by integrating tightly with the network stack.
However, we decided to implement our initial prototype at user
level to provide portability and simplify deployment. Given the
wide array of operating systems used by mobile computers and cell
phones, a user-level implementation is much easier to port to new
platforms. Further, many popular mobile platforms do not allow
kernel modifications at all. Even with a user-level implementation,
our prototype performs well, as shown in Section 7. Our imple-
mentation consists of a connection scout daemon that runs on the
mobile client, plus a library implementing the API.

5.1 Connection scout
The connection scout is a stand-alone user-level process, which

we have adapted from the implementation of Virgil [30]. It is re-
sponsible for discovering and evaluating the performance of the
networking options available at any given time. For each of the mo-
bile computer’s wireless network interfaces, the connection scout

periodically attempts to establish network connections. After a
connection is established, the scout measures the throughput and
latency of the connection through active probing. The multi-socket
library queries network availability and performance data from the
scout using a pipe.

We envision that the connection scout could eventually leverage
a lower layer that allows a mobile computer to simultaneously con-
nect to multiple access points via a single physical interface [7, 31]
by having the lower layer expose each access point as a separate
virtual interface.

5.2 Library
The Intentional Networking library exports the interface de-

scribed in Section 4.6. It is responsible for mapping IROBs to in-
terfaces based on their associated labels. For each multi-socket, the
library dynamically creates separate TCP sockets for each interface
over which it decides to send data. A multi-socket connection per-
sists until no TCP connection can be maintained using any network
interface (for example, if the mobile computer moves out of range
of a WiFi access point and no other network options are available)
or the multi-socket is closed.

We chose to use TCP primarily for simplicity. Since we are not
designing a new over-the-wire protocol, TCP’s reliability mecha-
nisms limit the amount of effort we must spend implementing or-
dered delivery of bytes within an IROB or retransmission of bytes
lost due to congestion in the network. For the purposes of our pro-
totype and evaluation, we have not found TCP to be a significant
source of overhead, but we imagine that a more highly tuned imple-
mentation of Intentional Networking would integrate more tightly
with the transport layer for optimal performance.

When an initial connection is established over the first TCP
socket, a mobile client sends its peer data that includes its avail-
able IP addresses and the estimated bandwidth and latency for each
one. It piggybacks updates to this information on Intentional Net-
working headers, as described below. With this information, either
peer may establish a new TCP connection when it expects that a
new connection would be best suited for data with a specific label.

The library maps labels to TCP connections using active and pas-
sive estimates of network bandwidth and latency. The connection
scout provides an initial active measurement of connection quality
when a new network option is discovered. As the library sends data
over the connection, it measures the response time for individual
transmissions to generate passive measurements. The connection
scout provides periodic active measurements that are used to assess
quality during periods where no data are transmitted and passive
measurements are unavailable. Active and passive measurements
are combined using a flip-flop filter [19] to derive a running esti-
mate of the current connection quality.

The library uses the following strategy to map labels to TCP con-

77

nections. Foreground data is given the highest priority. IROBs with
the ������� ��! �����" label are sent over the lowest latency
TCP connection. IROBs with the ������� ��! ����" label
are sent over the highest bandwidth connection. These may be the
same connection (e.g., if there is only one interface that currently
offers connectivity). The actual physical interface used for a spe-
cific label may change over time as estimates of link characteristics
vary. Background data is given lower priority than foreground data.

Background IROBs are striped over all networks that are not cur-
rently sending foreground data. Large, background IROBs are bro-
ken into smaller chunks, each of which may be sent over a dif-
ferent network. Our decision to stripe background, but not fore-
ground, IROBs is driven by the different goals of the two labels. A
foreground label demands low response time; unfortunately, strip-
ing can increase the latency for the last packet to arrive unless the
networking layer correctly predicts instantaneous latency for each
link. In contrast, the background label specifies data that is not
latency-sensitive; thus, a striping strategy that maximizes the uti-
lization of each link is ideal.

The library maintains a collection of IROBs that have been cre-
ated by the application. Each IROB contains data sent by the
application but not yet acknowledged by the peer library on the
other side of the multi-socket connection. This means that there
is some double-buffering with data contained in the kernel TCP
socket buffer; this double-buffering is one performance artifact of
a user-level implementation.

Each label has a linked list that indexes all IROBs with that label
in FIFO order. Each TCP connection has a list of the labels that it
currently is eligible to send; for instance, the lowest latency TCP
connection may send either background or foreground data. For
each connection, the library sorts the labels in order of preference,
i.e., with foreground labels preferred over background ones. When
the network is able to send data, the library pulls data from the
first IROB on the list associated with the label with highest prior-
ity. If no such IROB exists, it moves to the label with next highest
priority, and so on. The library encapsulates the IROB data with
a 32-byte Intentional-Networking-specific header that includes the
IROB identifier and its label, followed by the IROB’s ordering con-
straints. Additional information may be piggybacked in the header,
such as current estimates of network bandwidth and latency. The
library is not constrained to send all of an IROB’s bytes over a
connection at once; it may decide to break an IROB into smaller
chunks, each of which is sent with an individual header. As an
example, this allows the library to start sending IROB data before
the application has called ���������� to indicate the end of the
IROB. IROB chunks sent over multiple TCP connections are re-
assembled by the receiving library so that the bytes of each IROB
are delivered atomically and in order.

The receiving library acknowledges each IROB. The acknowl-
edgment is not constrained to travel over the same network over
which the chunk was received. This can be useful if, for example, a
TCP connection becomes unavailable after data has been received
but before the acknowledgment is sent. For efficiency, acknowl-
edgments are piggybacked on outgoing message headers if a mes-
sage is queued when the acknowledgments are generated. While
Intentional Networking generally relies on the underlying TCP ac-
knowledgments and retransmissions to provide reliability, some ad-
ditional work is required when a TCP connection breaks. In such
instances, the sending library polls the receiving library over a dif-
ferent TCP connection to learn the state of any unacknowledged
IROBs that were in flight when the connection was broken.

One challenge is that lower-priority messages (e.g., background
requests) may be sent over the same the same network as higher-

priority messages (e.g., foreground requests). If the library were
to send a large amount of background data, it might unnecessarily
delay the foreground data. While a kernel implementation could
prioritize one over another at the protocol level, a user-level im-
plementation must use other methods. We have chosen to adapt
the anticipatory scheduling algorithm [16] to solve this dilemma.
Since high-priority traffic is likely to exhibit temporal locality, we
bound the amount of data buffered in the kernel by a lower-priority
IROB to no more than the amount of data that can be sent within
50 ms if a high-priority IROB has recently been sent by the ap-
plication. This bound is increased up to a maximum of 1 second,
as long as no further high-priority IROBs are observed. Anticipa-
tory scheduling therefore optimizes for low latency for foreground
IROBs during periods when many such IROBs are sent, and for
high throughput for periods with few foreground IROBs.

The library that receives data guarantees that bytes are delivered
to the application in a manner that obeys the mutual exclusion and
ordering constraints specified by the sender. Once at least one byte
from an IROB has been received by an application, no other bytes
from another IROB are delivered until all bytes from the first IROB
have been delivered. For this reason, the library does not deliver
bytes from a low-priority IROB until it has received all of its bytes.
Further, the library buffers an IROB until its ordering constraints
are satisfied. For instance, if IROB 2 depends on IROB 1, but is
received first (because the two IROBs were transmitted over differ-
ent networks), the library buffers IROB 2 until after IROB 1 has
been received by the application. If two IROBs are eligible to be
received, the library delivers the higher-priority one first (e.g., a
foreground IROB will be received by the application before a back-
ground one). Within a label type, FIFO ordering is used to decide
which IROB to deliver.

If a TCP connection fails while IROBs are being transmitted,
any remaining data for those IROBs will be sent over the next most
appropriate connection. The library masks transient disconnections
unless all TCP connections fail simultaneously.

When multiple Intentional Networking applications execute con-
currently, the activities of all processes are coordinated through
shared memory variables and synchronization. We assume that
the links closest to the mobile computer are the bottleneck, and
that most of these are shared across all paths of interest. There-
fore, each library instance updates a shared variable containing the
amount of buffered but unsent data on each network that may send
foreground data. The total amount of such data across all processes
is not allowed to exceed the limit described above for the antic-
ipatory scheduling algorithm, guaranteeing good foreground per-
formance. If an application not modified to use Intentional Net-
working executes concurrently with one that does use Intentional
Networking, the applications use separate connections and do not
coordinate with each other. The Intentional Networking applica-
tion will adjust its estimates of network quality based on passive
observations during its execution, and hence will account for the
competing traffic in its decisions.

The Intentional Networking library handles connections between
two mobile computers with multiple interfaces by potentially es-
tablishing a connection per interface-pair. We do not describe this
scenario further as our applications to date have all involved com-
munication between a mobile client and a single-homed server.

6. APPLICATIONS
We have modified three applications to use Intentional Network-

ing: BlueFS, a distributed file system for mobile clients; Thunder-
bird, the Mozilla e-mail and news client; and a vehicular sensing
application of our own creation.

78

6.1 BlueFS
BlueFS [32] is an open-source, server-based distributed file sys-

tem with support for both traditional mobile computers such as lap-
tops and consumer devices such as cell phones [36]. A BlueFS
client interacts with a remote server through remote procedure call,
augmented with bulk-transfer capabilities. BlueFS inherits parts
of its design from previous mobile computing file systems such
as Coda [20]. BlueFS clients fetch file and directory informa-
tion on demand from a remote file server. Files are cached lo-
cally on the client. Modifications to file system data are propa-
gated asynchronously to the remote server in the background, in
the same manner as Coda’s weakly-connected mode [28]. Clients
also prefetch data from the server into their caches to improve per-
formance and support disconnected operation.

We adapted BlueFS to use Intentional Networking by modifying
its RPC stub generator to take three optional arguments: an Inten-
tional Networking label, ordering constraints, and a thunk. The
RPC package uses one socket to connect a client and server; we
changed this to be a multi-socket. We also modified the RPC pack-
age to create a new IROB for each RPC request and response mes-
sage with the label, ordering constraints, and thunk specified by the
BlueFS client.

We labeled RPCs that are used to prefetch data and
asynchronously write modifications back to the server as
�������� ��! ����". Other RPCs which fetch data on-demand
from the server were labeled as ������ ��; the vast majority of
these are ����� since BlueFS fetches data on a per-file-block basis.
While it is true that some demand fetches may be from applications
that are not interactive, the Posix API is insufficient to express this
to file systems. Therefore, the conservative approach of treating all
such requests as ������ �� seemed best.

Since the file server must see modifications in order, we used
Intentional Networking ordering constraints to specify that each
file modification IROB depends on the previous one of that type
(e.g., all such IROBs are delivered sequentially with respect to one
another). However, no constraints are expressed with respect to
IROBs of other types, so, for example, the library may reorder an
on-demand fetch IROB ahead of a modification IROB.

The server RPC library responds to each RPC with the same la-
bel used to send the original request. Since the RPC library already
uses a unique identifier for each RPC, matching requests and re-
sponses was trivial.

In total, we added or modified 400 lines of code in the RPC li-
brary to support Intentional Networking, as well as 134 lines of
code in BlueFS. For comparison, the original code base has over
44,000 lines of code.

6.2 Mozilla Thunderbird
We also used Intentional Networking to improve the interactive

performance of Thunderbird [27], Mozilla’s mail and news client.
For simplicity, we used an IMAP proxy to intercept traffic between
Thunderbird and an IMAP server. The proxy running on the mobile
computer prefetches e-mail contents and headers from the IMAP
server and stores them on the client’s local disk. We replaced the
proxy’s outgoing connection with a multi-socket and labeled the
IMAP messages. Prefetch requests and responses are labeled as
������� ��, while on-demand fetches triggered by the user via
the Thunderbird GUI are labeled as ������ ��. Requests are all
labeled as �����, while responses are labeled as ����� or ����,
depending on their actual size. Each response message from the
IMAP server is given the same ������� �� or ������ �� des-
ignation as the request that generated the message. Like the previ-
ous application, the IMAP protocol includes a unique identifier for

each request/response pair, making it trivial to match requests and
responses. Out of 2951 lines of proxy code, we added or changed
124 lines to support Intentional Networking.

6.3 Vehicular participatory sensing
Finally, we created a new application targeted at participatory

sensing for corporate vehicle fleets. This application is based on
specifications for a research/teaching platform developed by Ford
Motor Company. The application continuously collects data from
a vehicle’s internal networks and sensors at a data rate of approx-
imately 25 KB/s. Given ample network bandwidth, the raw data
are sent to a cloud server, where they are stored. Raw data can be
used for suggesting preventative maintenance, route optimization,
improving fuel economy, and other participatory sensing uses.

Since automotive hardware must last a minimum of 10 years and
cost reduction is key to profits, the vehicle is expected to have lim-
ited storage and computational resources. Therefore, raw data is
dropped if sufficient network resources are not available to transmit
it immediately. In addition to the raw data, a short 4 KB summary
of the data is included. By default, metadata summaries are sent
every second, though if bandwidth is insufficient, summaries are
generated over longer time periods, e.g., the last 10 seconds. Fi-
nally, the vehicle also transmits urgent updates when it encounters
anomalous conditions, such as information from the traction con-
trol system that indicates slippery road conditions or sudden brak-
ing. These updates can be used to warn other vehicles of difficult
driving situations such as ice, accidents, or unexpected traffic.

The Intentional Networking version of this application labels
metadata summaries as �������� ��! �����" IROBs and raw
data messages as �������� ��! ����" IROBs. Urgent updates
are ������� ��! �����" IROBs. We use ordering constraints
to ensure that each raw data IROB is received after the metadata
message that summarizes it. The application uses the thunk inter-
face to receive a callback if a background IROB cannot be imme-
diately sent. If the callback is not received before the next raw data
message is collected, the previous raw data message is dropped,
and the metadata summary is updated to average values over the
current time period and all previous ones since the last metadata
summary was sent.

We also created an additional version of the application that does
not use Intentional Networking. This version uses ���� to de-
termine when the socket buffer is full. Like the Intentional Net-
working version, this version omits sending raw data and aggre-
gates metadata when it is unable to transmit for more than a sec-
ond. Our vehicular sensing application has 2080 lines of code. We
added or changed 186 lines to support Intentional Networking.

7. EVALUATION
We evaluated Intentional Networking by measuring how much

it improves network performance for our three applications. Our
evaluation uses two different types of network connectivity scenar-
ios: synthetic network conditions that are used as microbenchmarks
and traces of actual network connectivity collected from a vehicular
testbed. In the latter case, the use of traces provides experimental
repeatability and allows a careful comparison among strategies.

7.1 Experimental Setup

7.1.1 Testbed
We ran all experiments on a testbed in which the client computer

is a Dell Precision 350 desktop with a 3.06 GHz Pentium 4 proces-
sor and 1 GB DRAM, running a Linux 2.6.22.14 kernel. All servers
run on a Dell Optiplex GX270 desktop with a 2.8 GHz Pentium 4

79

Scenario Network Bandwidth RTT Connectivity
Type (Mbps) (ms)

Crowded hotspot Low latency 0.6 20 Continuous
High bandwidth 2.0 400 Continuous

Intermittent Wide-area 0.3 400 Continuous
WiFi hotspots 3.0 60 Intermittent

Table 3: Synthetic network scenarios used in the evaluation

0

500

1000

1500

T
im

e
(s

ec
on

ds
)

Best b/w
Best lat
Aggregate
Int. n/w

0

200

400

600

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

Hotspot Intermittent Trace 1 Trace 2

Figure 1: Interactive latency for BlueFS

processor and 1 GB DRAM, running a Linux 2.6.18 kernel. These
computers are connected via local 100 Mbps Ethernet connections.
We emulate wireless network conditions by inserting delays using
the netem [22] network emulator and throttling throughput using
the Linux Advanced Routing and Traffic Control tools [21].

For Intentional Networking experiments, we modified the client
and server component of each application to use our API as de-
scribed in the previous section and linked each with the Intentional
Networking library. We also ran the connection scout on the client
computer. For other experiments, the applications are unmodified.
All reported values are the mean of 5 trials; graph error bars show
95% confidence intervals.

7.1.2 Synthetic Microbenchmarks
To better understand the behavior of Intentional Networking, we

created synthetic network traces that emulate the two network sce-
narios shown in Table 3. These synthetic traces are intended to
help us understand our system’s behavior in controlled scenarios
rather than precisely emulate actual network behavior. The first
scenario replicates the network conditions that would be seen by a
user with a high-bandwidth 3G network card sitting at a crowded
WiFi hotspot. The 3G network offers higher bandwidth than the
crowded AP, but it also inflicts significantly higher latency on net-
work packets. Thus, each network is superior for different types
of traffic. Empirically, we observed several instances of such sce-
narios in the network traces we collected, as described in the next
section.

The second scenario emulates a vehicular setting in which a low-
bandwidth, high-latency cellular network is continuously available.
Opportunistic WiFi connections that offer better bandwidth and la-
tency are intermittently available. We use empirical distributions
from the Cabernet project [12] to model the availability of WiFi
access points. The distribution of access point encounters has a
median of 4 seconds, a mean of 10 seconds, a 99th percentile of
250 seconds, and standard deviation of 0.4 seconds. The distribu-

0

500

1000

1500

T
im

e
(s

ec
on

ds
)

Best b/w
Best lat
Aggregate
Int. n/w

0

200

400

600

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

Hotspot Intermittent Trace 1 Trace 2

Figure 2: Background transfer time for BlueFS

tion of time between APs has a mean of 32 seconds and a median
of 126 seconds. Our traces show several instances in which WiFi
dominates 3G. However, the traces indicate that this is a simpli-
fied view: 3G may also dominate WiFi in many instances; one may
offer better uplink bandwidth and worse downlink bandwidth; etc.

7.1.3 Trace-driven evaluation
While the microbenchmarks above help us understand the be-

havior of our system, we were curious to see how well it would
perform in actual vehicular networking conditions. To generate re-
peatable experiments, we used a two-part process in which we first
drove a vehicle with WiFi and Sprint 3G network interfaces. We
continuously measured the downlink and uplink bandwidth and la-
tency available through each network interface through active prob-
ing to a server at the University of Michigan. We also noted when
each type of network was unavailable. The WiFi trace includes only
those public APs to which we could associate and establish connec-
tions. We collected the traces in Ann Arbor, MI and Ypsilanti, MI
at different times of the day. Trace 1 offers better 3G performance
overall but encounters fewer public APs. Its median 3G bandwidth
is 382 Kbps downlink and 57 Kbps uplink, with maximum band-
width of 1.3 Mbps downlink and 78 Kbps uplink. Trace 2 has more
WiFi access but poorer 3G performance. Its median 3G bandwidth
is 368 Kbps downlink and 40Kbps uplink, with maximum band-
width of 1.2 Mbps downlink and 74 Kbps uplink. Trace 1 has WiFi
coverage only 7% of the time, with a median session length of 11
seconds; the longest session was 72 seconds. Trace 2 has WiFi cov-
erage 27% of the time, with a median session length of 7 seconds;
the longest session was 131 seconds. In both traces, there are pe-
riods where each type of network dominates the other, and where
each type of network has better bandwidth but worse latency than
the other. Thus, the network conditions are much more variable
than in either of our microbenchmarks. These traces will be made
available on our project website and on Dartmouth’s CRAWDAD
archive.

80

0

10

20

30

40
T

im
e

(s
ec

on
ds

)

Best b/w
Best lat
Aggregate
Int. n/w

0

5

10

15

20

0

10

20

30

40

50

0

20

40

60

Hotspot Intermittent Trace 1 Trace 2

Figure 3: Average interactive delay for Thunderbird

In the second step, we used the traces to drive the emulator in
our testbed. Our traces lasted 138 and 36 minutes, respectively.
Because our experiments run for different durations, we use the first
portion of each trace for shorter experiments and loop the trace for
longer ones.

We chose to use traces rather than measure application perfor-
mance directly from the vehicle platform to provide repeatable
conditions for different network management scenarios. Changing
traffic conditions and external load on networks make it very diffi-
cult to achieve identical connectivity, even over multiple traversals
of the same route. This variability would likely preclude meaning-
ful comparisons across different trials.

7.1.4 Comparison strategies
For each application, we compare Intentional Networking with

three strategies. The first two strategies use only a single network
at a time but migrate connections to always use the best network
according to a specific criteria. The first of these strategies always
uses the network with the lowest round-trip time, while the second
uses the network with the best bandwidth. We idealize a zero-cost
migration by emulating a single virtual network connection that
always has the bandwidth and latency of the best current network
according to the selection criteria. For example, to create a virtual
“best-latency” trace with a single network, we determine whether
3G or WiFi offered the lowest latency for the first second of the
original trace, then use the recorded characteristics of that network
for the first second of our new trace. We repeat the process for
each second. Thus, these strategies show the maximum benefit that
could be achieved by a migration strategy if an oracle chooses the
best current connection and there is no migration cost.

We also compare Intentional Networking with an idealized ver-
sion of an aggregation protocol, such as MultiNet or FatVAP, that
multiplexes traffic over all available networks. We idealize ag-
gregation by emulating a single virtual network connection that
has bandwidth equal to the sum of the bandwidths of all networks
and latency equal to the minimum of the latencies of all networks.
This virtualized network is ideal in the sense that it offers better
connectivity than any protocol that aggregates the individual net-
works could actually achieve. It therefore offers an upper bound on
application-oblivious aggregation performance for each scenario.

7.2 Results

7.2.1 BlueFS
To evaluate BlueFS, we run a software development workload

that rebuilds the lighttpd (version 1.4.25) Web server source tree.

0

100

200

300

T
im

e
(s

ec
on

ds
)

Best b/w
Best lat
Aggregate
Int. n/w

0

50

100

0

100

200

300

0

100

200

300

Hotspot Intermittent Trace 1 Trace 2

Figure 4: Background transfer time for Thunderbird

Such “Andrew-style” benchmarks have long been used to test file
system performance [14]. Our particular benchmark deletes all ob-
ject files from the build directory and then runs ������ � and
��� to build lighttpd. The benchmark begins with a cold client
file cache, so all files are fetched from the server. We report the
total time taken to execute the benchmark (i.e., the interactive per-
formance), as well as the total time to finish propagating updates to
the server in the background.

Figure 1 shows the interactive latency for BlueFS (the time to
complete the software development benchmark). For the hotspot
scenario, the best bandwidth strategy always uses the 3G network.
The best latency strategy is an improvement because the workload
is dominated by small fetches of 4 KB blocks. The idealized ag-
gregation strategy works very well in this scenario because it is
given maximum benefit from the diverse latency and bandwidth
of each network. Yet, Intentional Networking still realizes a 14%
speedup compared to aggregation by prioritizing foreground over
background traffic. Intentional Networking improves interactive
latency by 3x compared to the best latency strategy and by 4x com-
pared to the best bandwidth strategy.

To verify that Intentional Networking does not unduly penal-
ize background traffic, we also measured the total time to finish
sending all background updates to the server, as shown in Fig-
ure 2. Interestingly, Intentional Networking transfers all data 9%
faster than the aggregation strategy in the hotspot scenario. At first,
this seems anomalous because our idealized aggregation strategy
should make maximum possible use of the networks. However,
because the benchmark includes computation that depends on fore-
ground transfers, compute episodes start earlier using Intentional
Networking. This means that background data is generated sooner
in the benchmark. Thus, Intentional Networking is able to use the
uplink bandwidth earlier in periods where the aggregation strategy
has no data to send. Where data dependencies exist, Intentional
Networking can use the network more efficiently than even an ide-
alized aggregation strategy that is unaware of application intent.

In the intermittent scenario, WiFi dominates 3G when it is avail-
able. Thus, the best bandwidth and best latency strategies both
choose WiFi when available. The aggregation strategy derives a
small additional benefit from also using 3G during these periods.
Intentional Networking, however, reduces interactive latency by
40%. The benefit compared to aggregation is larger in this sce-
nario because aggregation derives less benefit from its idealized
use of two networks to offset Intentional Networking’s benefit from
understanding application intent. Intentional Networking’s total
transfer time for all data is 1% better than the other strategies.

The performance of Intentional Networking for latency-sensitive

81

0.0

0.5

1.0

1.5
T

im
e

(s
ec

on
ds

)

Best b/w
Best lat
Aggregate
Int. n/w

0.0

0.5

1.0

0

2

4

6

8

10

0

2

4

6

8

10

Hotspot Intermittent Trace 1 Trace 2

Figure 5: Urgent update latency for Vehicular Sensing

data is even better for the measured vehicular scenarios. Across
the two traces, Intentional Networking improves interactive re-
sponse time by 5-8x compared to aggregation, while increasing
total background transfer time by only 1–7%. Compared to the
best-bandwidth and best-latency strategies, Intentional Networking
improves interactive latency by 7–8x and background transfer time
by 5–17%. Despite the increased variability of network quality, In-
tentional Networking identifies and uses the best network for each
type of traffic and thereby maximize benefit to the user.

7.2.2 Thunderbird
In our Thunderbird benchmark, a user reads e-mail after a period

of disconnection. The benchmark first fetches the e-mail headers of
100 messages, then downloads in the background the e-mail mes-
sages (with attachments), which range in size from 50 B to 256 KB.
While the caching proxy is downloading these messages, the user
selects 5 messages to read immediately based on the headers. We
report the average interactive delay to fetch the on-demand e-mails,
as well as the time to fetch all e-mails in the background.

Results for the Thunderbird e-mail benchmark are shown in Fig-
ures 3 and 4. In contrast to the previous benchmark, the migration
strategy that maximizes bandwidth is superior to the one that mini-
mizes latency because transfer times are dominated by several large
e-mails. Intentional Networking improves interactive latency com-
pared to aggregation by 5x in the hotspot scenario and by 8x in the
intermittent scenario. By reordering messages based on applica-
tion semantics, Intentional Networking is able to deliver superior
response time. Total background transfer time is 18% longer in the
hotspot scenario, but 1% longer in the intermittent scenario. Re-
sults compared to the migration strategies are even better, with In-
tentional Networking fetching the on-demand e-mails 8–23x faster,
while also improving total background transfers by up to 3x.

For the two vehicular measurements, Intentional Networking im-
proves interactive latency by 7–13x compared to the other strate-
gies. The time to transfer all e-mails is within 1–3% of the idealized
aggregation strategy and superior to both migration strategies.

7.2.3 Vehicular sensing
In our vehicular sensing benchmark, the vehicle uploads raw data

to a server when network bandwidth is available, as described in
Section 6.3. Our benchmark lasts for fifteen minutes. During that
time, we have three episodes of urgent data transmissions. Since
urgent messages are very often closely correlated in time, we send
five messages in a period of seven seconds during each episode. We
report the average response time for urgent events and the effective

0

20

40

60

T
hr

ou
gh

pu
t

(K
B

/s
)

Best b/w
Best lat
Aggregate
Int. n/w

0

5

10

15

20

0

2

4

6

0

2

4

6

Hotspot Intermittent Trace 1 Trace 2

Figure 6: Background throughput for Vehicular Sensing

throughput of bulk sensor data, calculated over the entire 15-minute
run time of the benchmark.

Figures 5 and 6 show results for the vehicular sensing applica-
tion. In the hotspot scenario, the aggregate bandwidth is sufficient
to prevent background data from interfering with urgent messages.
Thus, both Intentional Networking and the aggregation strategy
perform very well. The approximately 30 ms average latency for
urgent updates is equivalent within experimental error for the two
strategies. The aggregation strategy achieves the maximum back-
ground data rate of 29 KB/s (a 4 KB summary and 25 KB of raw
data per second), and Intentional Networking comes within 0.5%
of this rate. Intentional Networking sends foreground data over 4x
faster than the best-latency migration strategy.

In the intermittent scenario, Intentional Networking sends urgent
events 41% faster than the aggregation strategy and also achieves
25% greater bulk data throughput. The throughput improvement
comes from the use of thunks, which allow the Intentional Net-
working version to avoid polling and better schedule background
transmissions.

For the two vehicular traces, Intentional Networking improves
urgent event response time by 2–5x compared to the other strate-
gies. At the same time, Intentional Networking improves bulk sen-
sor data throughput by 1–6% compared to the idealized aggrega-
tion strategy and by up to 29% compared to the idealized migration
strategies.

7.2.4 Concurrent applications
Finally, we examined the effect of running multiple Intentional

Networking applications concurrently by splitting the vehicular
sensing application into two separate processes. The first process
sends only the urgent messages; the second process sends only the
raw sensor data. Figures 7 and 8 show results with two processes,
including the two-process version of the application for each of the
idealized strategies. The behavior of Intentional Networking with
two processes is very similar to that with one process, showing that
the cost of using shared memory to coordinate across multiple pro-
cesses is not significant. The application-oblivious strategies see
some benefits from multiple processes in the microbenchmark sce-
narios because the urgent updates and sensor data transmissions are
now concurrent, yet Intentional Networking performance remains
comparable to or better than the ideal strategies in all scenarios.

8. FUTURE WORK
Applications must currently be modified to use Intentional Net-

working. As discussed in Section 6, these modifications have not
been onerous. Nevertheless, to broaden the applicability of Inten-

82

0.0

0.5

1.0

1.5
T

im
e

(s
ec

on
ds

)

Best b/w
Best lat
Aggregate
Int. n/w

0.0

0.5

1.0

0

2

4

6

8

10

0

2

4

6

8

10

Hotspot Intermittent Trace 1 Trace 2

Figure 7: Urgent update latency, multi-app Vehicular Sensing

tional Networking, our future plans include providing mechanisms
to disclose hints on behalf of unmodified applications.

It may be possible to identify on-demand activity by intercept-
ing user actions and correlating them with network usage. We may
even be able to classify opportunistic behavior by observing UI up-
dates that do (or, importantly, do not) happen together with I/O
activity. Alternatively, we are planning to combine stack introspec-
tion techniques from the security community [47] with causal anal-
ysis techniques recently used to create high-performance file sys-
tems that provide strong persistence guarantees [33]. This scheme
tracks user and UI behavior through the operating system, identi-
fying the set of inputs that can possibly have influenced a set of
outputs. Of course, this set is possibly too large because it tracks
any relationships that might have been causal. We can prune the set
via offline analysis, either by observing many executions of simi-
lar code paths and eliminating candidate causal events that only
happen some of the time [23] or by using taint checking to profile
causality within a process [29].

Our current implementation also requires that both ends of a net-
work connection be modified to use Intentional Networking. When
one cannot modify the server, we believe the best solution is to run
a proxy in the cloud that converts Intentional Networking traffic
from the client to a single TCP connection to the server. The ap-
plication client can thus use Intentional Networking to manage the
wireless connection, which is where the majority of benefit from
network diversity is likely to be found.

9. CONCLUSION
Mobile nodes face a changing array of diverse networking op-

tions, each of which may harbor different strengths and weak-
nesses. As a result, it is rarely the case that any one networking
option is the best choice for all traffic generated by all applications.
By using the available options judiciously, an application may see
significant improvements in service. Unfortunately, simply expos-
ing the lower-level details of available networks, leaving everything
to the application, is unlikely to gain much traction.

Intentional Networking addresses this impasse. It provides a
simple, declarative interface for application to express the intent
behind each network message. The system matches presented net-
work traffic to the best available interface. If no available network
is suitable, the traffic is deferred until such a network becomes
available. Deferring some types of traffic but not others leads to
reordering. Intentional Networking provides mechanisms to ex-
press mutual exclusion and ordering constraints over their traffic
to match application constraints. Our results using vehicular wire-

0

20

40

60

T
hr

ou
gh

pu
t

(K
B

/s
)

Best b/w
Best lat
Aggregate
Int. n/w

0

5

10

15

20

0

2

4

6

0

2

4

6

Hotspot Intermittent Trace 1 Trace 2

Figure 8: Throughput, multi-app Vehicular Sensing

less measurements show that these strategies improve interactive
response time from 48% to 13x, while degrading throughput by no
more than 7%.

Acknowledgments
We thank the anonymous reviewers and our shepherd, Victor Bahl, for com-
ments that improved this paper. We used David A. Wheeler’s SLOCCount
to estimate the lines of code for our implementation. This work is is sup-
ported in part by NSF CAREER award CNS-0346686, NSF award CNS-
0509089, and the Ford Motor Company. The views and conclusions con-
tained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of
NSF, the University of Michigan, Ford, or the U.S. government.

10. REFERENCES
[1] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning

wireless network power management. In Proceedings of the 9th
Annual Conference on Mobile Computing and Networking (San
Diego, CA, September 2003), pp. 176–189.

[2] BAHL, P., ADYA, A., PADHYE, J., AND WOLMAN, A.
Reconsidering wireless systems with multiple radios. Computer
Communication Review 34, 5 (2004), 39–46.

[3] BALASUBRAMANIAN, A., MAHAJAN, R., AND

VENKATARAMANI, A. Augmenting mobile 3G using WiFi. In
Proceedings of the 8th International Conference on Mobile Systems,
Applications and Services (June 2010), pp. 123–136.

[4] Bay area wireless users group. ����!""###$�#��$���".
[5] BRUNATO, M., AND SEVERINA, D. WilmaGate: A new open access

gateway for hotspot management. In Proceedings of the 3rd ACM
International Workshop on Wireless Mobile Applications and
Services on WLAN Hotspots (WMASH) (Köln, Germany, September
2005), pp. 56–64.

[6] CARTER, C., KRAVETS, R., AND TOURRILHES, J. Contact
networking: a localized mobility system. In Proceedings of the 1st
International Conference on Mobile Systems, Applications and
Services (San Francisco, CA, May 2003), pp. 145–158.

[7] CHANDRA, R., AND BAHL, P. MultiNet: Connecting to multiple
IEEE 802.11 networks using a single wireless card. In Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (Hong Kong, March 2004), pp. 882–893.

[8] CHEBROLU, K., RAMAN, B., AND RAO, R. R. A network layer
approach to enable TCP over multiple interfaces. Wireless Networks
11, 5 (September 2005), 637–650.

[9] CZERWINSKI, S., ZHAO, B., HODES, T., JOSEPH, A., AND KATZ,
R. An architecture for a secure service discovery service. In
Proceedings of the 5th International Conference on Mobile
Computing and Networking (Seattle, WA, August 1999), pp. 24–35.

[10] DRAVES, R., PADHYE, J., AND ZILL, B. Routing in multi-radio,
multi-hop wireless mesh networks. In Proceedings of the 10th
International Conference on Mobile Computing and Networking
(Philadelphia, PA, September 2004), pp. 114–128.

83

[11] EFSTATHIOU, E. C., AND POLYZOS, G. C. A peer-to-peer approach
to wireless LAN roaming. In Proceedings of the 1st ACM
International Workshop on Wireless Mobile Applications and
Services on WLAN Hotspots (WMASH) (San Diego, CA, September
2003), pp. 10–18.

[12] ERIKSSON, J., BALAKRISHNAN, H., AND MADDEN, S. Cabernet:
Vehicular content delivery using WiFi. In Proceedings of the 14th
International Conference on Mobile Computing and Networking
(September 2008), pp. 199–210.

[13] FRIDAY, A., DAVIES, N., WALLBANK, N., CATTERALL, E., AND

PINK, S. Supporting service discovery, querying and interaction in
ubiquitous computing environments. Wireless Networks 10, 6
(November 2004), 631–641.

[14] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND WEST,
M. J. Scale and performance in a distributed file system. ACM
Transactions on Computer Systems 6, 1 (February 1988), 51–81.

[15] HSIEH, H. Y., AND SIVAKUMAR, R. A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile hosts. In
Proceedings of the 8th International Conference on Mobile
Computing and Networking (Atlanta, GA, September 2002),
pp. 83–94.

[16] IYER, S., AND DRUSCHEL, P. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous I/O. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (Banff, Canada, October 2001),
pp. 117–130.

[17] JOHANSSON, P., KAPOOR, R., KAZANTZIDIS, M., AND GERLA,
M. Personal area networks: Bluetooth or IEEE 802.11? International
Journal of Wireless Information Networks 9, 2 (April 2002), 89–103.

[18] KANDULA, S., LIN, K. C.-J., BADIRKHANLI, T., AND KATABI,
D. FatVAP: Aggregating AP backhaul capacity to maximize
throughput. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (San Francisco, CA,
April 2008), pp. 89–103.

[19] KIM, M., AND NOBLE, B. D. Mobile network estimation. In
Proceedings of the 7th International Conference on Mobile
Computing and Networking (July 2001), pp. 298–309.

[20] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected
operation in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

[21] LINUX ADVANCED ROUTING AND TRAFFIC CONTROL.
http://lartc.org/.

[22] THE LINUX FOUNDATION. netem.
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem.

[23] LU, S., PARK, S., HU, C., MA, X., JIANG, W., LI, Z., POPA,
R. A., AND ZHOU, Y. MUVI: Automatically inferring
multi-variable access correlations and detecting related semantic and
concurrency bugs. In Proceedings of the 21st ACM Symposium on
Operating Systems Principles (Stevenson, WA, October 2007).

[24] MAGALHAES, L., AND KRAVETS, R. Transport level mechanisms
for bandwidth aggregation on mobile hosts. IEEE International
Conference on Network Protocols (2001).

[25] MATSUNAGA, Y., MERINO, A. S., SUZUKI, T., AND KATZ, R.
Secure authentication system for public WLAN roaming. In
Proceedings of the 1st ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots (WMASH)
(San Diego, CA, 2003), pp. 113–121.

[26] MIU, A. K., AND BAHL, P. Dynamic host configuration for
managing mobility between public and private networks. In
Proceedings of the 3rd USENIX Symposium on Internet Technologies
and Systems (USITS) (San Francisco, CA, March 2001),
pp. 147–158.

[27] MOZILLA THUNDERBIRD.
http://www.mozillamessaging.com/en-US/thunderbird/.

[28] MUMMERT, L., EBLING, M., AND SATYANARAYANAN, M.
Exploiting weak connectivity in mobile file access. In Proceedings of
the 15th ACM Symposium on Operating Systems Principles (Copper
Mountain, CO, Dec. 1995).

[29] NEWSOME, J., AND SONG, D. Dynamic taint analysis: Automatic
detection, analysis, and signature generation of exploit attacks on

commodity software. In In Proceedings of the 12th Network and
Distributed Systems Security Symposium (February 2005).

[30] NICHOLSON, A. J., CHAWATHE, Y., CHEN, M. Y., NOBLE, B. D.,
AND WETHERALL, D. Improved access point selection. In
Proceedings of the 4th International Conference on Mobile Systems,
Applications and Services (Uppsala, Sweden, 2006), pp. 233–245.

[31] NICHOLSON, A. J., WOLCHOK, S., AND NOBLE, B. D. Juggler:
Virtual networks for fun and profit. IEEE Transactions on Mobile
Computing 9, 1 (January 2010), 31–43.

[32] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and storage
flexibility in the Blue File System. In Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (San
Francisco, CA, December 2004), pp. 363–378.

[33] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND

FLINN, J. Rethink the sync. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (Seattle, WA,
October 2006), pp. 1–14.

[34] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (Saint-Malo,
France, October 1997), pp. 276–287.

[35] NYCWireless. ����!""���#�������$���".
[36] PEEK, D., AND FLINN, J. EnsemBlue: Integrating distributed

storage and consumer electronics. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation
(Seattle, WA, November 2006), pp. 219–232.

[37] PERKINS, C. IP mobility support for IPv4. RFC 3344, August 2002.
[38] POPA, O. Multipath TCP on mobile phones. Master’s thesis,

Computer Laboratory, University of Cambridge, 2010.
[39] SAKAKIBARA, H., SAITO, M., AND TOKUDA, H. Design and

implementation of a socket-level bandwidth aggregation mechanism
for wireless networks. In WICON ’06: Proceedings of the 2nd Annual
International Workshop on Wireless Internet (Boston, MA, 2006).

[40] SALEM, N. B., HUBAUX, J.-P., AND JAKOBSSON, M.
Reputation-Based Wi-Fi Deployment Protocols and Security
Analysis. In Proceedings of the 2nd ACM International Workshop on
Wireless Mobile Applications and Services on WLAN Hotspots
(WMASH) (Philadelphia, PA, October 2004), pp. 29–40.

[41] SATYANARAYANAN, M. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications 8, 4 (August 2001),
10–17.

[42] SeattleWireless. ����!""������#�������$���".
[43] SNOEREN, A., BALAKRISHNAN, H., AND KAASHOEK, F.

Reconsidering Internet mobility. In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HotOS) (Schloss Elmau,
Germany, May 2001), pp. 41–46.

[44] STEMM, M., AND KATZ, R. H. Vertical handoffs in wireless overlay
networks. Mobile Networks and Applications 3, 4 (December 1998),
335–350.

[45] STEWART, R., XIE, Q., MORNEAULT, K., SHARP, C.,
SCHWARZBAUER, H., TAYLOR, T., RYTINA, I., KALLA, M.,
ZHANG, L., AND PAXZON, V. Stream control transmission protocol.
Tech. rep., IETF, June 2000.

[46] TERRY, D. B. Caching hints in distributed systems. IEEE
Transactions on Software Engineering 13, 1 (January 1987), 48–54.

[47] WALLACH, D. S., BALFANZ, D., DEAN, D., AND FELTEN, E. W.
Extensible security architectures for Java. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (Saint-Malo,
France, October 1997).

[48] ZAHARIA, M., AND KESHAV, S. Fast and optimal scheduling over
multiple network interfaces. Tech. Rep. CS-2007-36, University of
Waterloo, 2007.

[49] ZHANG, M., LAI, J., KRISHNAMURTHY, A., PETERSON, L., AND
WANG, R. A transport layer approach for improving end-to-end
performance and robustness using redundant paths. In Proceedings of
the USENIX Annual Technical Conference (Boston, MA, 2004).

[50] ZHAO, X., CASTELLUCCIA, C., AND BAKER, M. Flexible network
support for mobility. In Proceedings of the 4th International
Conference on Mobile Computing and Networking (Dallas, TX,
October 1998), pp. 145–156.

84

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

