
EECS 482 1 Peter M. Chen

Networks and distributed computing

Hardware reality
• lots of different manufacturers of NICs
• network card has a fixed MAC address, e.g.

00:01:03:1C:8A:2E
• send packet to MAC address (max size 1500 bytes)
• packetsmaybereordered,corrupted,dropped,duplicated
• anyone can sniff the packets from the network

What abstractions does the OS provide for network communi-
cation?

Distributedcomputing(notcoveredmuchin EECS482):mak-
ing multiple computers look more like a single computer
• distributed shared memory: make multiple memories

look like 1 memory
• remote procedure call, process migration, parallelizing

compilers: make multiple CPUs look like one CPU
• distributed file systems: make disks on multiple comput-

ers look like one file system

EECS 482 2 Peter M. Chen

Abstractions and protocol layers

Why build up abstractions in layers?

Routing

Hardware interface: deliver to neighbor computer on LAN

Application interface: deliver to final destination through sev-
eral hops

Provided by the IP (Internet Protocol) layer

Messages on LAN (e.g. Ethernet) are sent via the physical ID
of the network interface card (e.g. 0:a0:c9:95:f5:58)

NFS HTTP e-mail ssh

RPC

UDP TCP

IP

Ethernet ATM ppp

computer 1 computer 2

computer 3

Ethernet switch

EECS 482 3 Peter M. Chen

Internet is composed of lots of connected LANs

How does computer on Ethernet D know how to get to Ether-
net H? Should it send to C, F, or I?

This is hard because Internet has no centralized state

Routing is difficult for large systems, and for systems that
change rapidly. Internet is both large and dynamic.

Basic idea: routers propagate information to each other and
hope the global picture converges before its out of date
(take EECS 489 for more details)

Try running “traceroute www.usatoday.com”

Symbolic naming

Low-level interface: destination specified by MAC address,
e.g. 00:01:03:1C:8A:2E

Middle-level interface:destinationspecifiedby IP address,e.g.
141.213.8.32

High-level interface: name destination by hostname (e.g.
life.eecs.umich.edu)

Translation from IP address to MAC address is provided by
ARP protocol (address resolution protocol)

How does computer 1 know computer 2’s Ethernet (MAC)
address?
• start with the IP address for the computer (e.g.

141.213.8.32)
• use ARP (Address Resolution Protocol) to get the map-

ping from IP address to MAC address
• to find out mapping from IP address to MAC address

(e.g. 141.213.8.32 maps to 0:a0:c9:95:f5:58), ARP
broadcasts to all computers on the LAN

• cache the mapping for next time

Use broadcast when all else fails (but this doesn’t scale well)

A B

C

D E

F GI

H

EECS 482 4 Peter M. Chen

Translation from hostname to IP address is provided by DNS
(domain name system)

Used to be done with one central server
• central server has to learn about all changes
• central server has to answer all lookups

Split up thedatainto ahierarchicaldatabase(eachDNSserver
stores part of the database). Hierarchy allows local man-
agement (so everybody doesn’t notify one central server
whenever theirhostnamechanges),andspreadsthelookup
work across multiple servers

Example: translating www.eecs.umich.edu
• start with the (well-known) IP address of the root name

server (A.ROOT-SERVERS.NET, 198.41.0.4)
• ask root name server for IP address of the edu name

server (also A.ROOT-SERVERS.NET, 198.41.0.4)
• ask edu name server for the IP address of the umich.edu

name server (dns.itd.umich.edu, 141.211.144.15)
• ask umich.edu name server for the IP address of

eecs.umich.edu name server (zip.eecs.umich.edu,
141.213.4.4)

• ask eecs.umich.edu name server for the IP address of
www.eecs.umich.edu: 141.213.4.18

Message size

Hardware interface: physical network type limits size of a
message (e.g. Ethernet maximum packet size is 1500
bytes)

Application interface: can send larger message (e.g. IP maxi-
mum packet size is 64 KB)

IP layer can fragment a packet when it’s larger than the next
hop’s MTU (maximum transmission unit), then re-assem-
ble it at the destination

EECS 482 5 Peter M. Chen

Sockets and ports

Hardwareinterface:machine-to-machinecommunication(one
network endpoint per machine)

Applicationinterface:process-to-processcommunication(one
or more network endpoints per process)

A process can ask the OS to create a “socket”, which will be
one endpoint of a network connection
• thread is like a virtual processor
• address space is like a virtual memory
• an endpoint (socket) is like a virtual network interface

card

Each socket on a computer has a unique “port” number
• a process can associate a specific port number with a

socket using thebind call
• when sending to a socket, the destination port number is

included in each message. This allows the destination
machine to know which process (and which socket in
that process) should receive the message.

TheOSto multiplex severalnetwork connectionsontoasingle
physical card

UDP(userdatagramprotocol)providesthisprocess-to-process
abstraction on top of IP

TCP (transmission control protocol) is also built on IP
• provides additional abstractions beyond UDP: ordered,

reliable, byte streams

process A process B

socket 3socket 2socket 1

Operating System

Network
Interface
Card

EECS 482 6 Peter M. Chen

Ordered messages

Hardware interface: networks can re-order messages that IP
layer sends out
• e.g. Send: A, B. Arrive: B, A

Applicationinterface:all messagesarereceivedin theorderin
which they were sent

How to provide ordered messages?

To have a notion of order, we must first have the notion of a
network “connection”(soweknow thatmultiplemessages
are related)
• with TCP, processopensaconnection(usingconnect),

then sends a sequence of messages, then closes the con-
nection

• sequence # is specific to a socket-to-socket connection

Reliable messages

Hardware interface: networks can drop, duplicate, or corrupt
messages

Application interface: each message is delivered exactly once
(without corruption)

How to fix a dropped message?

How does sender know a message has been dropped?

EECS 482 7 Peter M. Chen

Duplicatemessagesareeasyto detect(look at thesequence#)
and fix (just drop the duplicate)

To detect corrupted messages, add some redundant informa-
tion, e.g. checksum
• if message is corrupted, simply drop it. This transforms

the problem of a corrupted message into the problem of
adroppedmessage,andwealreadyknow how to handle
that).

Byte streams

Hardware interface: send information over network in distinct
messages

Application interface: send data in a continuous stream (simi-
lar to reading/writing a file)

TCP provides byte streams instead of distinct messages

Sendersendsmessagesof arbitrarysizethatarecombinedinto
a single stream

TCP layer breaks up the stream into fragments, sends them as
distinctmessages,thenreassemblesthematthedestination
into a byte stream for the receiver. In contrast, UDP pre-
serves the message boundary between sender and receiver.

E.g.
• sender sends 100 bytes, then sends another 100 bytes
• TCP receive may return 1-200 bytes

If receiver wants to receive a certain number of bytes, it must
loop around the receive call

How to know # of bytes to receive?

EECS 482 8 Peter M. Chen

Why build distributed applications?

Performance:aggregateperformanceof many machinescanbe
higher than the performance of a single fast machine

Co-location: locate different computers near local resources
• examples of local resources: people, sensors, actuators

Reliability: can provide continuous service, even if one com-
puter is down

Building distributed applications

Send/receive as communication primitive
• how did we communicate between threads running on a

single computer?

• this doesn’t work for threads running across different
computers (distributed applications)

• to communicate, must send/receive messages

Send/receive as synchronization primitives
• what hardware primitives did we build on top of to syn-

chronize between threads on a single machine?

• these don’t work for synchronizing between multiple
machines

• we’ll usesend/receiveastheatomicprimitivesthatallow
us to synchronize distributed applications

EECS 482 9 Peter M. Chen

Send and receive are atomic
• two sends to the same machine don’t get intermingled

(the messages stay distinct)
• a process calling receive can’t interrupt the act of receiv-

ing from the network—can’t receive just a portion of a
message (all or nothing)

What is really enforcing the atomic action for send/receive?

Client-server

Lots of different ways for multiple computers to cooperate on
a single distributed application. One of the most common
is client-server.

File server example
• server stores the files (e.g. AFS server)
• clientsarecomputersthatruntheapplicationsandaskfor

file data from the file servers.
• when client wants to read a file, it sends a request to the

server, thenwaitsfor aresponse(which includesthefile
data)

• when client wants to write a file, it sends request to the
file server (which includes the new data for the file),
thenwaitsfor a responsethatacknowledgesthesuccess-
ful write operation

Producer-consumer with client-server
• server manages state associated with coke machine
• clients computers can call client_produce() or

client_consume(), which sends a request to the server
and returns when the request is done

• client_produce()blocksat theserver if thecokemachine
is full; client_consume() blocks at the server if the coke
machine is empty

EECS 482 10 Peter M. Chen

client_produce() {
send produce request message to server
wait for response
}

client_consume() {
send consume message to server
wait for response
}

server() {
receive request (from any producer or any

client)
if (request is from a producer) {

put coke in machine
} else {

take coke out of machine
}
send response

}

Problems with this code?

How to fix the code?

server() {
receive request (from any producer or any

client)
if (request is from a producer) {

fork a thread that calls server_produce()
} else {

fork a thread that calls server_consume()
}

}

server_produce() {
lock
while (machine is full) {

wait
}
put coke in machine
send response to producer client
unlock

}

server_consume() {
lock
while (machine is empty) {

wait
}
take coke out of machine
send response to consumer client
unlock

}

EECS 482 11 Peter M. Chen

This creates a new thread for each request. How to lower the
overhead of creating threads?

There are other ways of solving the problem (but threads are
the cleanest, because each thread just has to keep track of
one thing at a time (and it can be blocking, as long as it
doesn’t hold a lock)
• polling (using select())
• signals (using SIGIO)

RPC

We’ve been using send/receive. E.g. client sends request to
server, server receives request, then sends response mes-
sage to client
• this exposes the distributed nature of the system to the

programmer
• we’d like to make building a distributed application as

similar as possible to building a centralized application

Whatelsein programmingis likemakinga requestto aserver
and getting a response?

EECS 482 12 Peter M. Chen

How to make a message send/receive look like a function call
to both the client and server?
• client wants sending of the request to the server to look

like calling a function, and wants the reply from the
server to look like returning from the function call

• server wants to receive a request from the client in the
same way as getting called by a function, and wants to
send the response to the client just like returning to the
caller

Stubfunctionsonclientandservercanprovide thisabstraction

client

server

client
stub

server
stub

call

return

call

return

send

receivesend

receive

EECS 482 13 Peter M. Chen

Client stub

Server stub

Note that client makes a normal function call, server function
is called like a normal function

RPC is the mechanism behind CORBA and COM

Producer consumer using RPC

This uses datagrams (like UDP) and assumes messages are
reliable

Client stub is named produce()
int produce(int n) {

int status;
send(sock, &n, sizeof(n));
recv(sock, &status, sizeof(status));
return(status);

}

Server stub can be named anything
produce_stub() {

int n;
int status;
recv(sock, &n, sizeof(n));
status = produce(n); /* call “produce”

function on server */
send(sock, &status, sizeof(status));

}

Client and server stubs can be generated automatically. What
information do you need to generate the stub?

EECS 482 14 Peter M. Chen

Problems with RPC

RPC tries to make request/response to remote server look like
a function call, but some differences remain

Hard to pass pointers and global variables
• what happens if you pass a pointer to the remote server

and the server de-references it?

• one way to fix this is to also send the data being pointed
to, thenchangethepointerson theserver to point to the
remote copy of the data, then copy the data back to the
client when the server is finished

Data might have different representations on different
machines
• solve by agreeing to some conventional format

Different failure modes can occur in RPC than a normal func-
tion call
• e.g. server fails but client stays up

Structuring a concurrent system

1 multi-threaded process on 1 computer

1 multi-threaded process on each of several computers

send

receive

EECS 482 15 Peter M. Chen

Candividecooperatingthreadsonasinglecomputerinto sepa-
rate processes (i.e. different address spaces), then use mes-
sages to communicate between these processes instead of
shared memory

Why might you do this?

One operating system design technique (microkernels) sepa-

ratesout thekernelinto differentserverprocesses(eachin
its own address space), then uses messages to communi-
cate
• this way, one part of the kernel doesn’t have to trust the

others to not trash its memory

several multi-threaded processes on 1 computer

send

receive

