Networks and distributed computing

Hardware reality
* lots of diferent manudcturers of NICs
* network card has a fed MAC address, e.g.
00:01:03:1C:8A:2E
» send packt to MAC address (max size 1500 bytes)
* paclketsmaybereorderedcorrupteddroppedduplicated
* aryone can snifthe paclets from the netark

What abstractions does the OSwpde for netvork communi-
cation?

EECS 482

Distributedcomputing(not coveredmuchin EECS482): mak-

ing multiple computers look more &ka single computer

« distributed shared memory: maknultiple memories
look like 1 memory

» remote procedure call, process migration, parallelizing
compilers: mag& multiple CPUs look li& one CPU

« distributed file systems: makdisks on multiple comput-
ers look like one file system

Peter M. Chen

Abstractions and protocol layers

NFS HTTP e-mail ssh
RPC
UDP TCP

/i)\
Ethernet ATM ppp

Why build up abstractions in layers?

EECS 482

Routing

Hardware interlce: deler to neighbor computer on LAN

Application interfice: deler to final destination throughwse
eral hops

Provided by the IP (Internet Protocol) layer

Messages on LAN (e.g. Ethernet) are sent via tlysipal ID
of the netvark interface card (e.g. 0:a0:¢9:95:f5:58)

computer 1 computer 2

Ethernet switch

computer 3

Peter M. Chen

Internet is composed of lots of connected LANS

A\ /B
C

SN
AVAN
AN

How does computer on Ethernet D knbow to get to Ether-
net H? Should it send to C, &1 1?

This is hard because Internet has no centralized state

Routing is dificult for large systems, and for systems that
change rapidlylnternet is both lge and dynamic.

Basic idea: routers propaig information to each other and
hope the global picture ceerges before its out of date
(take EECS 489 for more details)

Try running “traceroute wwwsatodayom”

EECS 482

Symbolic haming

Low-level interface: destination specified by NlAaddress,

e.g. 00:01:03:1C:8A:2E

Middle-level interface:destinatiorspecifiecby IP addresse.g.

141.213.8.32

High-level interface: name destination by hostname (e.g.

life.eecs.umich.edu)

Translation from IP address to MAaddress is pvaded by

ARP protocol (address resolution protocol)

How does computer 1 kmocomputer 2 Ethernet (M)

address?

« start with the IP address for the computer (e.g.
141.213.8.32)

» use ARP (Address Resolution Protocol) to get the map-
ping from IP address to M&address

* to find out mapping from IP address to MAddress
(e.g. 141.213.8.32 maps to 0:a0:¢9:95:f5:58), ARP
broadcasts to all computers on the LAN

 cache the mapping for xigtime

Use broadcast when all els®l$ (kut this doesrt’scale well)

Peter M. Chen

M essage size

Translation from hostname to IP address ivipled by DNS

. Hardware interbce: plysical netvork type limits size of a
(domain name system) Pl yp

message (e.g. Ethernet maximum gadize is 1500

Used to be done with one central szrv bytes)

* central sergr has to learn about all changes

Application interfice: can send lger message (e.g. IP maxi-
» central sergr has to answer all lookups PP lge ge (e.g

mum packt size is 64 KB)

Split upthedatainto a hierarchicadatabas¢eachDNS sener
stores part of the database). Hiergralows local man-
agement (sowerybody doesi’'notify one central seer
wheneertheirhostnamehanges)andspreadshelookup
work across multiple seevs

IP layer can fragment a paatkwhen its laiger than the ne
hop’s MTU (maximum transmission unit), then re-assem-
ble it at the destination

Example: translating wwwecs.umich.edu

« start with the (well-knen) IP address of the root name
sener (A.ROOT-SER/ERS.NET 198.41.0.4)

» ask root name segv for IP address of the edu name
sener (also A.RDOT-SER/ERS.NET 198.41.0.4)

» ask edu name sewvfor the IP address of the umich.edu
name serer (dns.itd.umich.edu, 141.211.144.15)

» ask umich.edu name senfor the IP address of
eecs.umich.edu name ser\zip.eecs.umich.edu,
141.213.4.4)

» ask eecs.umich.edu name sgrfor the IP address of
www.eecs.umich.edu: 141.213.4.18

EECS 482 4 Peter M. Chen

Sockets and ports

TheOSto multiplex severalnetwork connection®ntoasingle
Hardwareinterface:machine-to-machineommunicatior(one physical card

network endpoint per machine) process A process B
Applicationinterface:process-to-proces®mmunicatior{one
PP P P d soclet 1|[soclet 2 soclet 3

or more netwrk endpoints per process)

A process can ask the OS to create a “st¢ckvhich will be
one endpomt of a netwk connection Operating System
* thread is lile a virtual processor
 address space is éla virtual memory
 an endpoint (so&k) is like a virtual netwrk interface

card Network
Interface
Each sockt on a computer has a unique “port” number Card

* a process can associate a specific port number with a
soclet using théi nd call

» when sending 10 a soek the destination port number i3 UDP (userdatagranprotocol)providesthis process-to-process
included in each message. This atathe destination :
abstraction on top of IP

machine to kne which process (and which satkn

that process) should reeeithe message. TCP (transmission control protocol) is alaglbon IP

* provides additional abstractionsymend UDP: ordered,
reliable, byte streams

EECS 482 5 Peter M. Chen

Ordered messages

Hardware interlce: netwrks can re-order messages that IP
layer sends out
*e.g. Send: A,B. Awe: B, A

Applicationinterface:all messagearerecevedin theorderin
which they were sent

How to provide ordered messages?

To have a notion of ordemwe must first hae the notion of a
network “connection”(sowe know thatmultiple messages
are related)

» with TCR, proces®pensaconnection(usingconnect),
then sends a sequence of messages, then closes th
nection

* sequence # is specific to a secko-soclet connection

Reliable messages

Hardware interace: netwrks can drop, duplicate, or corrupt
messages

Application interfice: each message is deted a&actly once
(without corruption)

How to fix a dropped message?

How does sender kmoa message has been dropped?

e con-

EECS 482

6 Peter M. Chen

Byte streams

Duplicatemessageareeasyto detect(look atthe sequence)

and fix (just drop the duplicate) Hardware interice: send informatiorver netvork in distinct

_ messages
To detect corrupted messages, add some redundant informa-

tion, e.g. checksum Application interfice: send data in a continuous stream (simi-
- if message is corrupted, simply drop it. This transforms |ar to reading/writing a file)

the problem of a corrupted message into the problem of

adroppedmnessageandwe alreadyknow how to handle | TCP prwides byte streams instead of distinct messages

that).
Sendesendanessagesf arbitrarysizethatarecombinednto

a single stream

TCP layer breaks up the stream into fragments, sends them as
distinctmessageshenreassemblethematthedestination
into a byte stream for the regei. In contrast, UDP pre-
senes the message boundary between sender anderecei

E.Q.
 sender sends 100 bytes, then sends another 100 bytes
» TCP receie may return 1-200 bytes

If receiver wants to recee a certain number of bytes, it must
loop around the reoce call

How to knaw # of bytes to recee?

EECS 482 7 Peter M. Chen

Why build distributed applications? Building distributed applications

Performanceaggrgateperformancef mary machinesanbe | Send/recele as communication primie
higher than the performance of a singlstfmachine » how did we communicate between threads running on a

single computer?
Co-location: locate dieérent computers near local resources

» examples of local resources: people, sensors, actuatars

Reliability: can preide continuous serviceyen if one com-

puter is devn « this doesrt' work for threads running acrossfeifent

computers (distristed applications)
» to communicate, must send/ra@messages

Send/recefe as synchronization primrgs
» what hardware primitves did we hild on top of to syn-
chronize between threads on a single machine?

« these dort'work for synchronizing between multiple
machines

» we'll usesend/recefe astheatomicprimitivesthatallow
us to synchronize distnibed applications

EECS 482 8 Peter M. Chen

Send and recee are atomic
* two sends to the same machine dget intermingled
(the messages stay distinct)
* a process calling reaa cant interrupt the act of recei
ing from the netwrk—cant receve just a portion of a
message (all or nothing)

What is really enforcing the atomic action for send/nex2i

EECS 482

Client-server

Lots of different ways for multiple computers to cooperate on
a single distribted application. One of the most common
Is client-server.

File sener exkample

* sener stores the files (e.g. AFS seny

« clientsarecomputerghatruntheapplicationsandaskfor
file data from the file seers.

» when client vants to read a file, it sends a request to the
sener, thenwaitsfor aresponséwhichincludesthefile
data)

» when client vants to write a file, it sends request to the
file sener (which includes the medata for the file),
thenwaitsfor aresponse¢hatacknaviedgeshesuccess-
ful write operation

Producerconsumer with client-seev

* serner manages state associated withecolachine

» clients computers can call client_produce() or
client_consume(), which sends a request to theeserv
and returns when the request is done

« client_produce(plocksatthesenerif the coke machine
is full; client_consume() blocks at the servf the cole
machine is empty

Peter M. Chen

client _produce() {
send produce request nessage to server
wait for response

}

client_consune() {
send consune nessage to server
wait for response

}

server() {

recei ve request (from any producer or any
client)

if (request is froma producer) {
put coke in machine

} else {
t ake coke out of machine

}

send response

}

Problems with this code?

How to fix the code?

EECS 482

10

server () {
recei ve request (from any producer or any
client)
if (request is froma producer) {
fork a thread that calls server produce()
} else {
fork a thread that calls server_consune()

}
}
server produce() {
| ock
while (machine is full) {
wai t
}
put coke in machine
send response to producer client
unl ock
}
server _consune() {
| ock
while (machine is enpty) {
wai t
}
t ake coke out of machine
send response to consuner client
unl ock
}

Peter M. Chen

This creates a methread for each request. Wao lowver the
overhead of creating threads?

There are other ays of solving the problembthreads are
the cleanest, because each thread just hasefotkack of

one thing at a time (and it can be blocking, as long as it

doesnt hold a lock)
« polling (using select())
« signals (using SIGIO)

EECS 482

11

RPC

We've been using send/regei E.g. client sends request to
sener, serer receves request, then sends response mes-
sage to client
* this exposes the distriied nature of the system to the

programmer
» we'd like to male kuilding a distriluted application as
similar as possible touiding a centralized application

Whatelsein programmings like makingarequesto asener
and getting a response?

Peter M. Chen

How to male a message send/raeelook like a function call | Stubfunctionson clientandsener canprovide this abstraction
to both the client and sesx?
* client wants sending of the request to the seto look

:) ; call
like calling a function, and ants the reply from the . > client
:) : client
sener to look like returning from the function call - stub
* sener wants to receee a request from the client in the return A
same vay as getting called by a function, andnis to receve send
send the response to the client juse likturning to the
caller
send receve
return Y
sener = sener
- stub
call

EECS 482 12 Peter M. Chen

Producer consumer using RPC

Client stub
This uses datagrams (like UDP) and assumes messages are
reliable
Client stub is named produce()
int produce(int n) {
int status;
send(sock, &n, sizeof(n));
recv(sock, &status, sizeof(status));
return(status);
}
Server stub Server stub can be named anything
produce_stub() {
int n;
int status;

recv(sock, &n, sizeof(n));
status = produce(n); /* call “produce”

function on server */
send(sock, &status, sizeof(status));

}

Client and server stubs can be generated automatically. What
information do you need to generate the stub?

Note that client makes a normal function call, server function
is caled like a normal function

RPC is the mechanism behind CORBA and COM

EECS 482 13 Peter M. Chen

Problemswith RPC

RPC tries to mak request/response to remote setwok like
a function call, bt some diferences remain

Hard to pass pointers and globalmbles
» what happens if you pass a pointer to the remoteisery
and the semr de-references it?

» one vay to fix this is to also send the data being point
to, thenchangethe pointersonthesenerto pointto the
remote cop of the data, then cgghe data back to the
client when the seer is finished

Data might hae different representations on feifent
machines
* solve by agreeing to some a@ntional format

Different faillure modes can occur in RPC than a normal fut
tion call
* e.g. serer fails kut client stays up

Structuring a concurrent system

1 multi-threaded process on 1 computer

1 multi-threaded process on each afesal computers

ed

EECS 482 14

send

receve

Peter M. Chen

Candivide cooperatinghreadson a singlecomputernto sepa- ratesout the kernelinto differentsener processegeachin
rate processes (i.e. lifent address spaces), then use mes- its ovn address space), then uses messages to communi-
sages to communicate between these processes instead of cate
shared memory * this way, one part of thedrnel doesrt’have to trust the
others to not trash its memory

several multi-threaded processes on 1 computer

send
—

-
receve

Why might you do this?

One operating system design technique (menokls) sepa-

EECS 482 15 Peter M. Chen

