Address spaces and memory management

Review of processes
* process = one or more threads in an address space
* thread: stream ofxecution
unit of concurreng
* address space: memory space that threads use
unit of data

Address space abstraction
* address space: all the data the process can use as it
Includes program code, stack, datgmsent

* hardware interce (plysical reality): one memory of
small size, shared between processes

« application inteidice (abstraction pvaded by OS): each
process has itsan memory as lage as the virtual
address space

lllusions pravided by address spaces

» addressndependencesamenumericaddresganbeused
in different address spaces (i.efeliént processes), ye
remain logically distinct

* virtual memory: an address space can kgelathan the
amount of plisical memory on the machine

* protection: one address spaces ttaocess data in
another address space (actually controlled sharing)

EECS 482

Uni-programming

1 process runs at a time (viz. one process occupies memory a

a time)

Always load process into the same spot in memory (and
resere some space for the OS)

fffff (high nmenory)
. operati ng system

runs. |

80000
ARARI

user process
00000 (I ow nenory)

Achievesaddressndependencby alwaysloadingprocessnto
same phsical memory location

[
Problems with uni-programming?

Peter M. Chen

Multi-programming and addresstrangation

Does this achiee the other address space abstractions?

Multi-programming: more than 1 process is in memory at a
time
* need to support address translation
* need to support protection

Musttranslateaddressessuedoy a processothey don't con-
flict with addresses issued by other processes

» static address translation: translate addresses before|e

cution (translation remains constant durirgaition)

» dynamic address translation: translate addresses durjng

execution (translation may change during@eution)

Is it possibleto runtwo processeatthesameime (botharein
memory) and pnade address independence with only
static address translation?

Achieving all the address space abstractions requires doing
some vork on eery memory reference

EECS 482 2 Peter M. Chen

Dynamic addresstrandation

Translate eery memory reference from virtual address to
physical address
» virtual address: an addressweal by the user process
(the abstraction praded by the OS)
* physical address: an addresswel by the pisical

memory

user translator physical

process virtual (MMU) physica-l memory
address address

Translation enforces protection

* one process caréven refer to another processiddress
space

Translation enables virtual memory
* a virtual address only needs to be iygpbal memory
when it's being accessed
» change translations on the fly adelént virtual
addresses occyphysical memory

Many ways to implement translator

Does dynamic address translation require hardwupport?

EECS 482

Addresstrandation

Lots of ways to implement the translat&emember big pic-
ture:

user translator physical
process yirtual (MMU) physica-l memory
address address
Tradeofs:

« flexibility (e.g. sharing, greth, virtual memory)
* size of translation data
* speed of translation

Peter M. Chen

Base & bounds

L oad each process into contiguous regions of physical mem-
ory, prevent each process from accessing data outside its
region

if (virtual address > bound) {

kill process (core dunp)
} else {

physi cal address = virtual address + base
}

Process hasillusion of running on its own dedicated machine,
with memory [0, bound)

physical
memory
physical memory size
base + bound
virtual
bound memory base
0 0

EECS 482

Thisissimilar to linker-loader, but also protect processes from
each other.

Aswith all tranglation data, only kernel can change base and
bounds

During context switch, must change all trandation data (base
and bounds registers)

What to do when address space grows?

Low hardware cost (2 registers, adder, comparator), low over-
head (add and compare on each memory reference)

Peter M. Chen

Hard for a single address space to bgdathan pisical
memory

But sumof all addresspacegsanbelargerthanphysicalmem-
ory
* swap an entire address space out to diskpsaddress
space for n@ process in

Cant share part of an address space between processes

physical
memory

data (P2)
virtual address
(process 2)

virtual address
(process 1)

virtual virtual
memory/ data (P1) memory
data \ data
code
code 0 code

EECS 482

External fragmentation
* processes come and goMed a mishmash ohailable
memory rgions

process 1 start:100 KB (phys. nem O0-99 KB)
process 2 start: 200 KB (phys. mem 100-299 KB)
process 3 start:300 KB (phys. nem 300-599 KB)
process 4 start:400 KB (phys. mem 600-999 KB)
process 3 exits (frees phys. nmem 300-599 KB)
process 5 start: 100 KB (phys. mem 300-399 KB)
process 1 exits (frees phys. nem 0-99 KB)
process 6 start: 300 KB

300 KB are free (400-599 KB; 0-99 KB), but

not conti guous

« this is called “gternal fragmentation”: asted memory
between allocated geons. Can &ste lots of memory

Allocation stratgies to minimize xternal fragmentation
* best fit: allocate the smallest memorgiom that can sat-
isfy the request (least amount ohsted space)
« firstfit: allocatethe memoryregionthatyoufind first that
can satisfy the request
* in worst case, must re-allocateésting memory rgions
(by copying them to another area)

Peter M. Chen

Hard to grov address space
» might have to mare to diferent rgion of ptysical mem-
ory (which is slav)
» whatpartsof theaddresspacemightgrow astheprocess
runs?

EECS 482 6 Peter M. Chen

Segmentation

Sement: a rgion of contiguous memory

Base & bounds used a singlgseent. Lets generalize this to
allow multiple sgments, described by a table of base &
bound pairs.

sggment # base bound description
0 4000 700 code sgment
1 0 500 data sgment
2 unused
3 2000 1000 stack sgment

In sgmentation, a virtual address ¢skthe form:
(virtual sgment #, diset)
» could specify virtual ggment # via the high bits of the
address, or via a speciagrster or implicit to the
instruction opcode

EECS 482 7

virtual
memory
fff Segment 3

stack

virtual
memory

4 SEgment 1

data

virtual
memory

o Sement

code

physical
memory
461t
code
4
2
stack
20
4
data

Peter M. Chen

Note that not all virtual addresses aaid

* e.g.novalid datain sggment2; novalid datain segmentl
above 4f

« valid means the ggon is part of the processvirtual
address space.Malid means this virtual address is illg
gal for theprocesdo accesgandwill causeacoredump
if accessed).

* possible to deliberately alloinvalid addresses to auto-
matically extendtheaddresspaceg(e.g.in Unix, access-
ing invalid stack address right almstack bound will
trap to the krnel and automatically increase the stach
size).

Protection: diferent sgments can hee different protection
* e.g.codecanberead-only(allows instructionfetch,load)
* e.g. data is read/write (alle fetch, load, store)
* in contrast, base&bounds/gs same protection to entir
address space

What must be changed on a comtgwitch?

7\

D

EECS 482

Pros and cons
+ works well for sparse address spaces (with hjgsgpf
invalid areas)

+ easy to share wholegraents without sharing entire
address space

- complex memory allocation

Can a single address space bgdathan pisical memory?

How to male memory allocation easy and allan address
space easily be Iger than pisical memory?

Peter M. Chen

Paging

Translation process

Allocate plysical memory in terms dixed-sizechunks of i f §Vi ”tua' Oga?e : f ihn"g: id) {
rap to au andl er
memory (palled pgges)' } el se {
» fixed unit mqbs it easier to aIIocate_ physi cal page # = pageTabl e[virtual page #|
« ary free plysical page can storeawuirtual page . physPageNum

}
Virtual address

« virtual page # (high bits of address, e.g. bits 31-12) | What must be changed on a coni®witch?
» offset (lav bits of address, e.g. bits 11-0 for 4 KB page)

A3 4

Translation data is the page table data

virtual page # physical page #

10
15
20

W[N|PF,| O

invalid

Each virtual page can be inysical memory or paged out to

invalid disk (just like sgments could be “sapped” out to disk)

1048575 invalid

EECS 482 9 Peter M. Chen

How does processor knothat virtual page is not in ghical
memory?

Like sgments, pages canveadifferent protections
* e.g. read, write,x@cute

EECS 482

Valid vs. resident

Residentmeansavirtual pageisin memory It is NOT anerror
for a program to access a non-resident page

Valid means a virtual page is not currentlyaifor the pro-
gram to access

Who males a virtual page resident/non-resident?

Who males a virtual pageakid/invalid?

Why would a process ant one of its virtual pages to be
invalid?

Peter M. Chen

Page size
Fixed vs. ariable size partitions

What happens if page size is small? « fixed size (pages) must be compromise (e.g. 4 or 8 KB).
Too small a size leads to adartranslation table, while

too laige a size leads to internal fragmentation

* variable size (sgments) can adapt to the needt, iv's
hard to pack theseaviable size partitions into ghical
memory (leading tox@¢ernal fragmentation)

What happens to paging if the virtual address space is sparse
(most of the address space igaild, with scatteredalid
regions)?

What happen# page size is really big?

Could we use a lge page sizeut let other processes use the

leftover space in the page? Paging pros and cons

+ simple memory allocation
+ can share lots of small pieces of an address space

Page size is typically a compromise, e.g. 4 KB or 8 KB
+ easy to gre the address space. Simply add a virtual

pageto thepagetable,andfind afreephysicalpageto hold
the virtual page before accessing it.

- big page tables

EECS 482 11 Peter M. Chen

Comparing basic translation schemes
 base&bound: unit of translation (andagping) is an
entire address space
* sggmentsunit of translation(andswapping)is asggment

(a few large, \ariable-sized saments per address space)

* page.unit of translation(landswapping/paging}s a page
(lots of small, fixed-sized pages per address space)

How to modify paging to takless space?

EECS 482 12

Multi-level translation

Standard page table is a simple array (omgeseof indirec-
tion). Multi-level translation changes this into a tree (mul-
tiple degrees of indirection).

E.g. two-level page table
* index into thelevel 1 pagetableusingvirtual addresdits
31-22
* index into thelevel 2 pagetableusingvirtual addresbits
21-12
* page diset: bits 11-0 (4 KB page)

What information is stored in thevie 1 page table?

What information is stored in theviel 2 page table?

Peter M. Chen

Thisisatwo-level tree

| evel

1

page table

| evel

2

page tabl es

0 } % 3
NUL L NUL L
y y
virtua virtual
address | physical address | physical
bits21- | page# bits21- | page#
12 12
0 10 0 30
1 15 1 4
2 20 2 8
3 2 3 3

How does this alow the trandation data to take |less space?

EECS 482

How to use share memory when using multi-level page tables?

What must be changed on a context switch?

Another alternative: use segments in place of the level-1 page
table. This uses pages on level 2 (i.e. break each segment

into pages)

Peter M. Chen

Pros and cons
+ space-dicient for sparse address spaces
+ easy memory allocation
+ lots of ways to share memory
- two extra lookups per memory reference

EECS 482

Trangation lookaside buffer (TL B)

Translation when using pagingvoives 1 or more additional
memory references. Moto speed up the translation pro-
cess?

TLB caches translation from virtual page # tyghbal page #
(TLB conceptually caches the entire page table eatgy
dirty bit, reference bit, protection)

If TLB contains the entry yote looking for can skip all the
translation steps akie

On TLB miss, figure out the translation by getting the gser’
page table entrytore in the TLB, then restart the instruc-
tion.

Does this change what happens on a costeitch?

Peter M. Chen

Replacement
LRU (least recently used)

One design dimension in virtual memory (angt aache) is * use past references to predict the future (temporal local-
which page to replace (i.eviet) when you need a free ity)
page « if a page hashbeen used for a long time, it probably
won’t be used agn for a long time
Goal is to reduce the number of pagelfs » this yields lov miss rate (similar to OPT)ubis hard to

implement gactly
Random replacement

* easy to implement,ub poor results

FIFO
* replace the page thatw brought into memory the long
est time ago
« unfortunatelythis can replace popular pages that are
brought into memory a long time ago (and used fre-
guently since then)

OPT
* replace the page thabw't be used for the longest time
* this yields the minimum number of missegt tequires

knowledge of the future * LRU is an approximation to OPTan we approximate

LRU to male it easier to implement without increasing
miss rate by too much? Basic idea is to replace an old
page (not necessarily the oldest page).

EECS 482 15 Peter M. Chen

Clock

Most MMUs maintain“referenced™bit for eachresidentpage,
which is set automatically when the page is referenced.
Reference bit can be cleared by OS.

Why is hardwaresupportneededo maintainthereferencebit?

How can you identify an “old” page?

Try to do this vark incrementally (rather than all at once)

A
F T B
E C
D

EECS 482 16

To find a page towct:

* look at page being pointed to by clock hand

* reference=0 means page has®@en accessed in a long
time (since last sweep), so this is your victim.

 reference=1 means page has been accessed since your
last sweep. What to do?

Can this infinite loop? What if it finds all pages referenced

since the last sweep?

New pages are put behind the clock hand, with reference=1

Peter M. Chen

Pageout

While evicted page is being written to disk, the page being

What to do with page whenstevicted? brought into memory mustait

» may be able to reduce totabrk by gving preference to
dirty pages (e.g. could/eet clean pages before dirty
pages)

« if system is idle, might spend time profitably by writing
back dirty pages

Why not write pages to disk owvery store?

EECS 482 17 Peter M. Chen

Page table contents

Data stored in the harcne page table

* residentoit: trueif thevirtual pageis in physicalmemory

* physical page # (if in pysical memory)

* dirty bit: set by MMU when page is written

* reference bit: set by MMU when page is read or writte

* protection bits (readable, writable): set by operating s
tem to control access to page. Clestky hardwre on
each access.

MMU (memory management unit) of the CPU is responsible

for checking if the page is resident, checking if the pag

protections allw this access, and setting the dirty/refer-

ence bits

« if page is resident and access isvaéld, then MMU
translates the virtual address into ggbal address
(usinginfo from the TLB andpagetable)andissueshe
physical memory address to the memory controller

« if page is not resident, or protection bits disaltbe
access, the MMU generates axeption (pagedult)

Operating system maintains additional information for eacl
virtual page
» disk block # (if on disk)
» which virtual pages arealid

2N

Do we really need hardare to maintain a “dirty” bit?

yS-

e

N

EECS 482

18

How to reduce # ofdults required to do this?

Do we really need hardwe to maintain a “reference” bit?

Peter M. Chen

Kerned vs. user mode

Who sets up the data used by translator?

Kernelis allowedto modify any memory(includingtranslation
tables)

How can lernel refer to translation table®anslation table is
not really in ag process address space. It is often in
physical (i.e. untranslated) memory
* kernel can issue untranslated addresses (i.e. bypass

translator)
* kernel can map ptsical memory into a portion of its
address space

How does machine kmothat the kernel is running?
* machine must kne to allow kernel to bypass translator
and to allev kernel to &ecute pwileged instructions
(e.g. halt, 1/0)
* needhardwaresupportiwo processomodegkerneland
user)

EECS 482 19

How have we handled the problem of protection a@f
« implement protection by translating all addresses. But
who can modify data used by translator?
« only kernel can modify translaterdata, bt hov does
processor knw if kernel is running?
» modebit distinguishebetweerkernelanduser But who
is alloved to modify mode bit?

the

Peter M. Chen

Switching from user process into lkernel

Sequence ofvents that tai place when C++ program calls

What causes a switch from a user process intoghek? cin

» C++ code calls cin

e cin is a standard library function that calls read()

 read() is a standard library function thateutes the
assembly-language instruction “syscall”, with parame-
ters (SYS_read, file numbesize) in rgisters or on the
stack

» whenprocessorexecutes'syscall” instruction, it traps
to the kernel at a pre-specified location

* kernel syscall handler reeess the trap, and calls therk
nel's read() function

Details of what happens when trapping ¢oriel
* set processor mode bit terkel
* save current rgisters (SPPC, general purposegisters)
* set SP to thedtnels stack
» change address spaces to temkls address space (by
changing some data used by the translator)
* jump to lernel exception handler

Does this lookdmiliar?

How does processor knoexception handles address?

EECS 482 20 Peter M. Chen

Passing aguments to system call (and getting retuatues)
e canstoreargumentsn registersor memory(accordingto
agreed-upon camention)
« if passalgumentssia memory whichaddresspacenolds
the aguments?

* how does lernel access ussraddress space?

* kernel cannot assumegaiments arealid. It must be
paranoid and check them all. Otherwise process cou
crash lernel with bogus guments.

EECS 482

21

Process creation

Steps in creating and starting a process
» allocate process control block
* read code from disk and store into memory
* initialize machine rgisters
* initialize translator data, e.g. page table and PTBR
* set processor mode bit to “user”
* jump to start of program

Need hardwre support for last ¥e steps
 otherwise processokecuting in user mode cdraccess
the kernel’s jump instruction

IdSwitching from lernel to user process (e.g. after a system call
completes) is the same as last 4 stepsabo

Peter M. Chen

Multi-process issues

How to allocate phsical memory between processes?
* resource allocation is an issue whesresharing a single
resource among multiple users (e.g. CPU scheduling
« often a tradedfbetween globally optimal (besverall
performance) andcafrness

Global vs. local replacement pafic

» global replacement: consider all pages equally when
looking for a page towict

* local replacement: only consider pages belonging to t
process needing awegage when looking for a page f
evict. But hav to set the # of pages assigned to a pro
cess?

* generally global has lver overall miss rate, it local is
more “fair”

Thrashing

What would happen with lots of big processes, all\aaiyi
using lots of virtual memory?

))

Usually performance dgades rapidly as you go fromviag
all programs fit in memory to not quite fitting in memory
This is called “thrashing”.

hé\verage access time = hit rate * hit time + miss rate * miss
time

* e.g. hit time = .0001 ms, miss time = 10 ms

» 100% hit rate: @erage access time is .0001 ms

* 99% hit rate:

D

* 90% hit rate:

Solutions to thrashing

« if a single process is aetily using more pages than can
fit, theres no solution—thafprocesgatleast)will thrash

« if problem is caused by the combination ofesal pro-
cesses, can allate thrashing by sapping all pages of
a process out to disk. That processyrun at all, loit
other processes will run mucaster Overall perfor-
mance improes.

EECS 482

22

Peter M. Chen

Working set

What's meant by a process “aaly using” a lot of virtual
pages?

Working set: all pages used in last T seconds (or T instruct
tions)
* larger working set ==> process needs morggdal
memory to run well (i.e.\aid thrashing)

Sum of all vorking sets should fit in memqrgtherwise sys-
tem will thrash

* only run a set of processes whos®king sets all fit in
memory (this is called a “balance set”)

How to pick T? What does lger T mean?

EECS 482 23

How to measure the size of a procesgrking set?

Peter M. Chen

Examples of process creation

Unix separates process creation into steps
 Unix fork: create a v process (with one thread).
Address space of me(child) process is eopy of the
parent process
» Unix exec: overlay the n& process address space with
the specified program and jump to its starting PC (th
loads the n& program)

E.g. parent processants to fork a child to do a task. yAn
problem with haing the n&v process be arxact copy of
the parent?

EECS 482

24

Why does Unix fork cop the pareng entire address space,

just to thrav it out and start with the meaddress space?

« Unix providesthesemantic of copying theparentsentire
address spaceybdoes nophysically copy the data
until needed

* separating fork andkec gves maximum fheibility for
the parent process to pass information to the child

« common special case: fork amnprocess that runs the
same code as parent.

Alternative: Windows creates ve processes with a single call
(CreateProcess)
 Unix’s approach ges the flgibility of sharing arbitrary
data with child process
» Window’'s approachallows theprogramto sharethemost
common data via parameters

Peter M. Chen

| mplementing a shell

Shellprovidestheuserinterface(sh,csh,tcsh,bashzsh,etc.).
Windows Explorer is similar

* lookslik e partof the operatingsystemput we now know

enough to write a shell as a standard user program

How to write a shell?

EECS 482 25 Peter M. Chen

