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Abstract
Glass box software model checking incorporates novel tech-
niques to identify similarities in the state space of a model
checker and safely prune large numbers of redundant states
without explicitly checking them. It is significantly more ef-
ficient than other software model checking approaches for
checking certain kinds of programs and program properties.

This paper presents PIPAL, a system for modular glass box
software model checking. Extending glass box software
model checking to perform modular checking is important to
further improve its scalability. It is nontrivial because unlike
traditional software model checkers such as Java PathFinder
(JPF) and CMC, a glass box software model checker does
not check every state separately—instead, it checks a large
set of states together in each step. We present a solution and
demonstrate PIPAL’s effectiveness on a variety of programs.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.1
[Logics and Meanings of Programs]: Specifying, Verifying,
and Reasoning about Programs

General Terms Algorithms, Reliability, Verification

Keywords Pipal, Software Model Checking

1. Introduction
Model checking is a formal verification technique that ex-
haustively tests a circuit/program on all possible inputs (usu-
ally up to a given size) and on all possible nondeterministic
schedules. For hardware, model checkers have successfully
verified fairly complex finite state control circuits with up
to a few hundred bits of state information; but not circuits
in general that have large data paths or memories. Similarly,
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for software, model checkers have primarily verified control-
oriented programs with respect to temporal properties; but
not much work has been done to verify data-oriented pro-
grams with respect to complex data-dependent properties.

Thus, while there is much research on software model check-
ers [1, 3–5, 7, 13, 16, 21, 39, 48] and on state space reduction
techniques for software model checkers such as partial or-
der reduction [15, 16] and tools based on predicate abstrac-
tion [19] such as Slam [1], Blast [21], or Magic [4], none of
these techniques seem to be effective in reducing the state
space of data-oriented programs. For example, predicate ab-
straction relies on alias analysis that is often too imprecise.

In recent previous work [8, 43], we introduced glass box
software model checking to address this problem. Our
checker incorporates novel techniques to identify similari-
ties in the state space of a model checker and safely prune
large numbers of redundant states without explicitly check-
ing them. Thus, while traditional software model checkers
such as Java PathFinder (JPF) [48] and CMC [39] sepa-
rately check every reachable state within a state space, our
glass box checker checks a (usually very large) set of similar
states in each step. This leads to several orders of magnitude
speedups [8] over previous model checking approaches.

This paper presents PIPAL, a system for modular glass box
software model checking, to further improve the scalabil-
ity of glass box software model checking. In a modular
checking approach program modules are replaced with ab-
stract implementations, which are functionally equivalent
but vastly simplified versions of the modules. The problem
of checking a program then reduces to two tasks: checking
that each program module behaves the same as its abstract
implementation, and checking the program with its program
modules replaced by their abstract implementations [6].

Extending traditional model checking to perform modular
checking is trivial. For example, Java PathFinder (JPF) [48]
or CMC [39] can check that a program module and an
abstract implementation behave the same on every sequence
of inputs (within some finite bounds) by simply checking
every reachable state (within those bounds).

However, it is nontrivial to extend glass box model checking
to perform modular checking, while maintaining the signif-

4



icant performance advantage of glass box model checking
over traditional model checking. In particular, it is nontrivial
to extend the previous work on glass box checking [8, 43] to
check that a module and an abstract implementation behave
the same on every sequence of inputs (within some finite
bounds). This is because, unlike traditional model checkers
such as Java PathFinder or CMC, our model checker does
not check every reachable state separately. Instead it checks
a (usually very large) set of similar states in each single step.
This paper presents a technique to solve this problem.

Note that like most model checking techniques [3, 13, 16,
39, 48], our system PIPAL (in effect) exhaustively checks all
states in a state space within some finite bounds. While this
does not guarantee that the program is bug free because there
could be bugs in larger unchecked states, in practice, almost
all bugs are exposed by small program states. This conjec-
ture, known as the small scope hypothesis, has been experi-
mentally verified in several domains [27, 35, 42]. Thus, ex-
haustively checking all states within some finite bounds gen-
erates a high degree of confidence that the program is correct
(with respect to the properties being checked).

Compared to PIPAL, formal verification techniques that use
theorem provers [2, 29, 40] are fully sound. However, these
techniques require significant human effort (in the form of
loop invariants or guidance to interactive theorem provers).
For example, an unbalanced binary search tree implemented
in Java can be checked using PIPAL with less than 20 lines of
extra Java code, implementing an abstraction function and a
representation invariant. In fact, it is considered a good pro-
gramming practice [34] to write these functions anyway, in
which case PIPAL requires no extra human effort. However,
checking a similar program using a theorem prover such as
Coq [2] requires more than 1000 lines of extra human effort.

Compared to PIPAL, other model checking techniques are
more automatic because they do not require abstraction
functions and representation invariants. However, PIPAL is
significantly more efficient than other model checkers for
checking certain kinds of programs and program properties.

We present PIPAL as a middle ground between automatic
model checkers and program verifiers based on theorem
provers that require much more extensive human effort.

We tested PIPAL on a variety of programs. Our experiments
indicate that the modular model checking technique is far
more efficient than checking programs as a unit. We also
compared PIPAL to Blast [21], JPF [48], and Korat [3] and
found that PIPAL is significantly more efficient when check-
ing data-oriented programs and data-dependent properties.

The rest of this paper is organized as follows. Section 2 il-
lustrates our approach with an example. Sections 3 describes
our modular model checking approach. Section 4 presents a
formal description. Section 5 contains experimental results.
Section 6 discusses related work and Section 7 concludes.
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Figure 1. Glass box checking against an abstraction. PIPAL
checks that the outputs of executing the same operation on
s1 and a1 are the same and the states a2 and a2′ are equal.

2. Example
Consider checking the Java program in Figure 2. This pro-
gram tracks the frequency of integers received by its count
method, storing the most frequent in its most frequent i
field. It internally uses a map data structure, implemented as
a binary search tree shown in Figure 4. Thus the program
has two modules: IntCounter and SearchTree. PIPAL’s
modular approach checks each of these independently.

2.1 Abstraction

PIPAL first checks SearchTree against an abstract map
implementation, and then uses the abstract map to check
IntCounter. The abstract map must implement the Map in-
terface, which includes the operations insert and get. (For
simplicity, this example omits other Map operations such
as delete.) Figure 5 shows an AbstractMap implemen-
tation. It stores map entries in an unsorted list and uses a
simple linear search algorithm to implement the map oper-
ations. AbstractMap is not an optimized implementation,
but its simplicity makes it ideal as an abstraction for efficient
software model checking. Using AbstractMap in place of
SearchTree significantly improves PIPAL’s performance.
In fact, AbstractMap can be used in place of any data struc-
ture that implements the Map interface, including complex
data structures such as hash tables and red-black trees.

Note that AbstractMap uses a construct called PipalList.
This is simply a linked list provided by PIPAL that is use-
ful in many abstract implementations. Using PipalList en-
ables PIPAL to arrange the list internally to achieve opti-
mal performance during model checking. From the program-
mer’s perspective, it is just a linked list data structure.
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1 class IntCounter {
2 Map map = new SearchTree();
3 int max_frequency = 0;
4 int most_frequent_i = 0;
5
6 public void count(int i) {
7 Integer frequency = (Integer)map.get(i);
8 if (frequency == null) frequency = new Integer(0);
9 map.insert(i, new Integer(frequency+1));

10
11 if (frequency >= max_frequency) {
12 max_frequency = frequency;
13 most_frequent_i = i;
14 }
15 }
16
17 public int get_most_frequent_i() {
18 return most_frequent_i;
19 }
20
21 public int get_max_frequency() {
22 return max_frequency;
23 }
24 }

Figure 2. IntCounter internally using a SearchTree.

2.2 Checking the Abstraction

PIPAL checks that SearchTree behaves the same as Ab-
stractMap. To do this it (in effect) exhaustively checks
every valid state of SearchTree within some given finite
bounds against an equivalent state of AbstractMap. Fig-
ure 1 illustrates how PIPAL checks that SearchTree and
AbstractMap have the same behavior. PIPAL runs the same
operation on a SearchTree state s1 and its abstraction a1
to obtain states s2 and a2 respectively. PIPAL then checks
that (1) the abstraction of s2 is equal to a2, and (2) the re-
turn values are same. PIPAL invokes the abstraction function
to generate the abstractions of states s1 and s2. The abstrac-
tion function for SearchTree is in Figure 4. The method for
testing equality of two AbstractMaps is shown in Figure 5.

Given a bound of 3 on the height of the tree, Figure 3(a)
shows some possible states of SearchTree. PIPAL gener-
ates states of AbstractMap by calling an abstraction func-
tion. It creates a PipalList and passes it as an argument to
the constructor of AbstractMap. PIPAL provides methods
for generating PipalLists from several data structures, to
make it convenient to implement abstraction functions. Be-
hind the scenes, PIPAL constructs a list long enough to hold
the largest possible tree within the given bounds. Figure 3(b)
shows the result of generating a few lists from trees. The list
nodes in gray correspond to tree nodes that are not reachable.
This arrangement facilitates the performance of the model
checking algorithm described in Section 3.

Consider checking an insert operation on state t1 in Fig-
ure 3(a). After the operation, the resulting state is t1’. PI-
PAL detects that the insert operation touches only a small
number of tree nodes along a tree path. These nodes are
highlighted in the figure. Thus, if these nodes remain un-
changed, the insert operation will behave similarly (e.g.,
on trees t2 and t3). PIPAL then determines that once it
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Figure 3. (3a) Three search trees (code in Figure 4), before
an after an insert operation. The tree path touched by the
operation is highlighted in each case. Note that the tree path
is the same in all three cases. Once PIPAL checks the insert
operation on tree t1, it determines that it is redundant to
check the same insert operation on trees t2 and t3. (3b)
The corresponding abstract maps (code in Figure 5). The list
nodes in gray correspond to tree nodes that are not reachable.

checks the insert operation on tree t1, it is redundant to
check the same insert operation on trees t2, t3, and the
exponentially many trees where the highlighted nodes re-
main the same. PIPAL safely prunes those trees from its
search space, while still achieving complete coverage within
the bounded domain. Thus, for this example, PIPAL only ex-
plicitly checks each operation once on each unique tree path
rather than each unique tree. This leads to significant reduc-
tion in the size of the search space. PIPAL’s symbolic anal-
ysis (c.f. Section 3.6) and static analysis (c.f. Section 3.7)
techniques ensure that the presence of the abstract map does
not increase the number of states that are explicitly checked.

2.3 Checking Using the Abstraction

Once PIPAL establishes that AbstractMap and Search-
Tree have the same behavior, it uses AbstractMap in-
stead of SearchTree to simplify the checking of Int-
Counter. For example, consider checking the invariant of
IntCounter, that most frequent i and max frequency
correspond to the most frequent integer in the map and
its frequency, respectively. When checking IntCounter,
PIPAL substitutes SearchTree with AbstractMap. Oth-
erwise, the checking proceeds as above. PIPAL repeat-
edly generates valid states of IntCounter (including its
AbstractMap), identifies similar states, checks the similar
states in a single step, and prunes them from its search space.
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1 class SearchTree implements Map {
2 static class Node implements PipalList.ListNodeSource {
3 int key;
4 Object value;
5 @Tree Node left;
6 @Tree Node right;
7
8 Node(int key, Object value) {
9 this.key = key;

10 this.value = value;
11 }
12
13 AbstractMap.Node abstraction() {
14 return new AbstractMap.Node(key, value);
15 }
16 }
17
18 @Tree Node root;
19
20 Object get(int key) {
21 Node n = root;
22 while (n != null) {
23 if (n.key == key)
24 return n.value;
25 else if (key < n.key)
26 n = n.left;
27 else
28 n = n.right;
29 }
30 return null;
31 }
32
33 void insert(int key, Object value) {
34 Node n = root;
35 Node parent = null;
36 while (n != null) {
37 if (n.key == key) {
38 n.value = value;
39 return;
40 } else if (key < n.key) {
41 parent = n;
42 n = n.left;
43 } else {
44 parent = n;
45 n = n.right;
46 }
47 }
48
49 n = new Node(key, value);
50 if (parent == null)
51 root = n;
52 else if (key < parent.key)
53 parent.left = n;
54 else
55 parent.right = n;
56 }
57
58 @Declarative
59 boolean repOk() {
60 return isOrdered(root, null, null);
61 }
62
63 @Declarative
64 static boolean isOrdered(Node n, Node low, Node high) {
65 if (n == null) return true;
66 if (low != null && low.key >= n.key) return false;
67 if (high != null && high.key <= n.key) return false;
68 if !(isOrdered(n.left, low, n )) return false;
69 if !(isOrdered(n.right, n, high)) return false;
70 return true;
71 }
72
73 AbstractMap abstraction() {
74 return new AbstractMap(Pipal.ListFromTree_BF(root));
75
76 // ListFromTree_BF returns a PipalList corresponding
77 // to a breadth first traversal of the tree.
78 }
79 }

Figure 4. A simple search tree implementation.

1 class AbstractMap implements Map {
2 static class Node {
3 Object key;
4 Object value;
5
6 Node(Object key, Object value) {
7 this.key = key;
8 this.value = value;
9 }
10
11 @Declarative
12 boolean equalTo(Node n) {
13 return n.key.equals(key) && n.value == value;
14 }
15 }
16
17 PipalList list;
18
19 AbstractMap(PipalList l) {
20 list = l;
21 }
22
23 Object get(Object key) {
24 PipalList.Node pnode = list.head();
25
26 while (pnode != null) {
27 Node n = (Node)pnode.data();
28 if (n.key.equals(key)) {
29 return n.value;
30 } else {
31 pnode = pnode.next();
32 }
33 }
34 }
35
36 void insert(Object key, Object value) {
37 PipalList.Node pnode = list.head();
38
39 while (pnode != null) {
40 Node n = (Node)pnode.data();
41 if (n.key.equals(key)) {
42 n.value = value;
43 return;
44 } else {
45 pnode = pnode.next;
46 }
47 }
48
49 list.add(new Node(key, value));
50 }
51
52 @Declarative
53 public boolean equalTo(AbstractMap m) {
54 return list.equalTo(m.list);
55 }
56 }

Figure 5. An abstract map implementation.

Using AbstractMap instead of SearchTree has several
advantages. First, our state space reduction techniques are
more effective on AbstractMap. In Figure 3, a1, a2, and a3
are part of a larger set of similar states than t1, t2, and t3
(w.r.t. the insert operation). Second, AbstractMap has a
smaller state space to begin with. SearchTree encodes the
shape of the tree in addition to key value pairs. More com-
plex data structures such as red-black trees have even larger
state spaces. Third, AbstractMap has a simpler invariant
which translates to smaller formulas (c.f. Section 3.9).

3. Approach
This section presents PIPAL’s modular checking approach.
Section 4 contains a formal description of our approach.
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Field Domain
root {null, n0}
n0.left {null, n1}
n0.right {null, n2}
n1.left {null, n3}
n1.right {null, n4}
n2.left {null, n5}
n2.right {null, n6}
n0.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n1.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n2.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n3.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n4.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n5.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n6.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
n0.value {a, b, c, d}
n1.value {a, b, c, d}
n2.value {a, b, c, d}
n3.value {a, b, c, d}
n4.value {a, b, c, d}
n5.value {a, b, c, d}
n6.value {a, b, c, d}
method {get, insert}
get.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
insert.key {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
insert.value {a, b, c, d}

n3 n4 n5 n6

n1 n2

n0

Figure 6. Search space for the binary tree in Figure 4 with
tree height at most 3 and at most 10 keys and 4 values.

3.1 Specification

Given a program module M, programmers must first define
an abstraction A which is functionally equivalent to M but is
presumably simpler than M. However, note that an abstrac-
tion needs to be defined only once per interface and can be
shared by all program modules that implement the same in-
terface. For example, the AbstractMap defined in Figure 5
can be shared by all implementations of the Map interface in-
cluding those that implement the map using an unbalanced
binary tree (as in Figure 4), using a balanced binary tree such
as a red-black tree, using a hash table, or using a linked list.
Every abstraction must also define an equalTo method to
check if two instances of the abstraction are equivalent.

To check a program module M against an abstraction A, pro-
grammers must specify the invariant of M, an abstraction
function that given an instance of M returns an equivalent
instance of A, and finite bounds on the size of instances of
M. For example, to check the binary search tree implemen-
tation in Figure 4 against the abstract map in Figure 5, pro-
grammers only need to specify the representation invariant
of the search tree (repOk in Figure 4), the abstraction func-
tion (abstraction in Figure 4), and finite bounds on the
size of the search trees (similarly to [8]). PIPAL then checks
that within the given bounded domain, the behavior of M is
functionally equivalent to that of A on every sequence of in-
puts. Functional equivalence is defined in Section 3.10.

Field Value Field Value
root n0 root n0
n0.left n1 n0.left n1
n0.right n2 n0.right null
n1.left n3 n1.left n3
n1.right null n1.right null
n2.left null n2.left
n2.right n6 n2.right
n0.key 5 n0.key 6
n1.key 2 n1.key 7
n2.key 7 n2.key
n3.key 0 n3.key 4
n4.key n4.key
n5.key n5.key
n6.key 9 n6.key
n0.value a n0.value b
n1.value d n1.value d
n2.value a n2.value
n3.value b n3.value c
n4.value n4.value
n5.value n5.value
n6.value d n6.value
method insert method insert
get.key get.key
insert.key 3 insert.key 3
insert.value a insert.value a

Figure 7. Two elements of the search space in Figure 6. The
first element represents insert(3,a) on an ordered tree.
The second element represents the same operation, but on an
unordered tree. Values of unreachable fields are left blank.

The current implementation of PIPAL checks Java programs.
However, our underlying checking technique is general and
can be used to check programs in other languages as well.

Note that in Figures 4 and 5, the methods repOk and
equalTo are annotated as Declarative. Declarative meth-
ods are described in Section 3.9. Declarative methods use
only a subset of Java and do not contain side effects. PIPAL
translates declarative methods into boolean formulas for ef-
ficient model checking. PIPAL requires that the repOk and
equalTo methods always be declarative. Finally, the Tree
annotations in Figure 4 denote that the Nodes form a tree,
similarly to [8]. Such annotations reduce PIPAL’s search
space because it does not have to check non-tree structures.

3.2 Search Space

Traditional software model checkers [1, 4, 7, 16, 21, 39,
48] explore a state space by starting from the initial state
and systematically generating and checking every successor
state. But this approach does not work (c.f. [8, 43]) for
software model checkers that use the glass box technique.
Instead, PIPAL organizes its search space as follows.

Consider checking the binary search tree implementation in
Figure 4 against the abstract map in Figure 5. Suppose PIPAL
must check all trees of tree height at most 3, with at most
10 different possible keys and at most 4 different possible
values. The corresponding search space is shown in Figure 6.
The tree may have any shape within its height bound because
the pointers between nodes may be null. Every element
in this search space represents an operation on a binary
tree. Figure 7 shows two elements of this search space.
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1 void search( BoundedSearchSpace B ) {

2 S = Set of all valid elements in B

3 while ( S 6= ∅ ) {

4 s = Any element in S

5 Check the desired property on s

6 S′ = Elements similar to s

7 Check the property on all elements in S′

8 if ( any s′ ∈ S′ fails the check ) {

9 Print bug trace s′

10 }

11 S = S - S′

12 }

13 }

Figure 8. Pseudo-code for the glass box search algorithm.

The first element represents the operation insert(3,a) on
an ordered tree. The second element represents the same
operation on an unordered tree, because key 7 in node n1
is greater than key 6 in node n0. The search space thus may
include elements that violate the representation invariant.

3.3 Search Algorithm

Figure 8 presents the pseudo-code for the glass box search
algorithm. Given a bounded search space B PIPAL first ini-
tializes the search space S to all valid states in B. For ex-
ample, given the bounded search space B in Figure 6, PIPAL
first initializes the search space S to all states in B on which
repOk returns true. In Lines 3-12, PIPAL iterates until the
search space S is exhausted. In each iteration, it selects an
unchecked state s from S and checks the desired property
on it. For example, when checking the binary search tree in
Figure 4 against the abstract map in Figure 5, Pipal checks
that: executing the operation on s preserves its representa-
tion invariant, the outputs of executing the operation on s
and its abstraction are the same, and the abstraction of the fi-
nal state is equal to the final state of executing the operation
on the abstraction (c.f. Figure 1). In Line 6 it discovers a set
S′ of states similar to s using its dynamic analysis described
in Section 3.6. In Line 7 it checks the entire set of states S′

using its static analysis described in Section 3.7. If any of
the states fails the check, PIPAL prints an explicit bug trace.
Finally, PIPAL removes all the checked states S′ from S. The
following sections describe the above steps in detail.

3.4 Search Space Representation

In the above algorithm, PIPAL performs several operations
on the search space, including choosing an unchecked ele-
ment (Line 4 in Figure 8), constructing a subset (Line 6),
checking the subset (Line 7), and pruning the subset from the
search space (Line 11). Consider checking the binary search
tree in Figure 4 on trees with at most n nodes. The size of the
search space is exponential in n. However, our model check-
ing algorithm described below completes the search in time
polynomial in n. Thus, if we are not careful and choose an

Line Symbolic Value of Concrete Value of
Branch Condition Branch Condition

36 root6=null true
37 n0.key=key false
40 key<n0.key true
36 n0.left 6=null true
37 n1.key=key false
40 key<n1.key false
36 n1.right 6=null false
50 false false
52 key<n1.key false

Figure 9. Symbolic and concrete values of the branch
conditions encountered during the execution of the
insert(3,a) operation on the first element in Figure 7. The
symbolic values are used to generate the path constraint.

explicit representation of the search space, then search space
management itself would take exponential time and negate
the benefits of our search space reduction techniques. We
avoid this by choosing a compact representation. We repre-
sent the search space as a finite propositional logic formula
(boolean formula). We use an incremental SAT solver Mini-
Sat [14] to perform the various search space operations.

For example, consider the search space in Figure 6. PIPAL
encodes the value of each field using dlog ne boolean vari-
ables, where n is the size of the domain of the field. So PIPAL
encodes n0.key with four boolean variables and n1.right
with one boolean variable. A formula over these bits rep-
resents a set of states. For example, the following formula
represents the set of all trees of height one: root = n0
∧ n0.left = null ∧ n0.right = null. PIPAL invokes
the SAT solver to provide a satisfying assignment to the vari-
ables of the formula and then decodes it into a concrete state.
Line 3 in Figure 8, checking if a set is empty, and Line 4,
choosing an element of a non-empty set, may be expensive
operations because they invoke the SAT solver. Line 11 in
Figure 8, subtracting one set (S′) from another (the search
space S), takes linear time (w.r.t. size of S′) because it only
injects clauses (in S′) into the incremental SAT solver.

3.5 Search Space Initialization

In Line 2 of Figure 8, given a bounded search space B, PIPAL
first initializes the search space S to the set of all valid states
in B. For example, given the bounded search space B in Fig-
ure 6, PIPAL first initializes the search space S to all states in
B on which repOk returns true. This requires constructing a
boolean formula that represents all states that satisfy repOk.
PIPAL accomplishes this by translating the repOk method
and the all the methods that repOk transitively invokes into
such a boolean formula, given the finite bounds. For exam-
ple, translating the repOk method of the binary search tree in
Figure 4 with a tree height of at most of two produces the fol-
lowing boolean formula: root = null ∨ ((n0.left =
null ∨ (n1.key < n0.key)) ∧ (n0.right = null
∨ (n2.key > n0.key))). Section 3.9 describes how PI-
PAL translates such declarative methods into formulas.
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Construct Restrictions Exception
Conditions

i<j i>j i<=j i>=j
i+j i-j
+i -i ~i
i&j i|j i^j
x==y x!=y
!a
a||b a&&b b is effect free
if c return x else return y c,x,y are effect free
x=e e is effect free
x.m(..) m is declarative x6=null
x.f x6=null
x[i] x6=null ∧

i in bounds

Figure 10. Java constructs that PIPAL executes symboli-
cally without generating path constraints (except for ex-
ception condition). The restrictions indicate the conditions
under which PIPAL executes these constructs symbolically
without generating path constraints. The exception condi-
tions are constraints that are added to the path constraint
when no exception is thrown during the concrete execution.

3.6 Dynamic Analysis

Given an element of the search space, the purpose of the
dynamic analysis (Line 6 in Figure 8) is to identify a set of
similar states that can all be checked efficiently in a single
step by the static analysis described in Section 3.7.

Consider checking the binary search tree implementation in
Figure 4 against the abstract map in Figure 5. Suppose we
are given the first element in Figure 7. PIPAL first constructs
the state, say s1, corresponding to the given element. Pipal
then runs the corresponding insert(3,a) operation on the
state s1 to obtain the state s2. As shown in Figure 1, PIPAL
also runs the abstraction function (the method abstraction
in Figure 4) on the states s1 and s2 to obtain the states a1
and a2′ respectively, runs the same insert(3,a) operation
on the state a1 to obtain the state a2, and checks if a2 and
a2′ are equal (using the method equalTo in Figure 5).

As Pipal concretely executes methods (insert, abstrac-
tion, and equalTo) in the above example, it also symboli-
cally executes them [33] to build a path constraint. The sym-
bolic execution tracks formulas representing the values of
variables and fields. The path constraint is a formula that de-
scribes the states in the search space that follow the same
path through the program as the current concrete execu-
tion. For example, in the above concrete execution, the first
branch point is on Line 36 (in Figure 4), with branch condi-
tion n != null. At this program point, n has the concrete
value of n0 and the symbolic value of root. The symbolic
value of the branch condition is thus root 6= null. This
symbolic value is saved. The concrete value of the branch
condition is true, so the control flow proceeds into the
while loop. The next branch in the concrete execution is
on Line 37, testing n.key == key. This symbolically eval-
uates to n0.key = key, concretely to false. Execution

Field Symbolic Value
list l0
l0.reachable root6=null
l1.reachable root6=null ∧ n0.left 6=null
l2.reachable root6=null ∧ n0.right 6=null
l3.reachable root6=null ∧ n0.left 6=null ∧ n1.left 6=null
l4.reachable root6=null ∧ n0.left 6=null ∧ n1.right 6=null
l5.reachable root6=null ∧ n0.right 6=null ∧ n2.left 6=null
l6.reachable root6=null ∧ n0.right 6=null ∧ n2.right 6=null
l0.key n0.key
l1.key n1.key
l2.key n2.key
l3.key n3.key
l4.key n4.key
l5.key n5.key
l6.key n6.key
l0.value n0.value
l1.value n1.value
l2.value n2.value
l3.value n3.value
l4.value n4.value
l5.value n5.value
l6.value n6.value
method (SearchTree.)method
get.key (SearchTree.)get.key
insert.key (SearchTree.)insert.key
insert.value (SearchTree.)insert.value

Figure 11. Symbolic state of the abstract map in Figure 5
generated by symbolically executing the abstraction function
(abstraction in Figure 4) on the first element in Figure 7.

continues in this way. Figure 9 summarizes all branch condi-
tions encountered during execution of the insert method.

PIPAL generates the path constraint by taking the conjunc-
tion of the symbolic branch conditions. (The false branch
conditions are first negated.) All states satisfying the path
constraint are considered similar to each other (Line 6 in
Figure 8). In the binary tree example, the insert method
does not find key in the tree, so it inserts a new node. The
path constraint asserts that root and n0.left are not null,
but n1.right is null. The parameter key must be less than
n0.key and greater than n1.key. (The path constraint also
asserts that the method being checked is insert).

In general, path constraints are not just branch conditions
but include values used in instructions that PIPAL cannot ef-
ficiently execute symbolically. This includes parameters to
external code and receiver objects of field assignments. In
addition, instructions that may result in runtime exceptions
also generate path constraints. Figure 10 summarizes Java
constructs that PIPAL executes symbolically without gener-
ating path constraints (except for exception condition).

Note from Figure 10 that Pipal executes calls to declara-
tive methods symbolically. Declarative methods do not con-
tain side effects. Given a declarative method and the current
symbolic program state, PIPAL generates a symbolic return
value of the declarative method by translating the declarative
method (and the methods it transitively invokes) into a for-
mula (c.f. Section 3.9). The advantage of using declarative
methods for writing specifications is that branches in declar-
ative methods then do not generate any path constraints. This
allows PIPAL to identify a larger set of similar states.
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Field Domain
o1.value {null, o1, o2, o3}
o2.value {null, o1, o2, o3}
o3.value {null, o1, o2, o3}
method {foo}
foo.p1 {o1, o2, o3}
foo.p2 {o1, o2, o3}
foo.p3 {o1, o2, o3}

Figure 12. Search space for checking a method foo with
three formal parameters p1, p2, and p3 that can each be one
of three objects o1, o2, and o3.

3.7 Static Analysis

The dynamic analysis above identifies a set S′ of similar
states (Line 6 in Figure 8) that follow the same program path
during execution. But the fact that the code works correctly
on one of the states does not necessarily imply that it works
correctly on all of them. For example, a buggy get method
of a binary tree might correctly traverse the tree, but return
the value of the node’s parent instead of the value of the node
itself. By chance PIPAL might have chosen a state where
the two values are the same. That particular state would not
expose the bug, but most of the similar states would. The
purpose of the static analysis is to check that the code works
correctly on all the states in S′ (Line 7 in Figure 8).

Consider checking the binary search tree implementation in
Figure 4 against the abstract map in Figure 5. To check that
the code works correctly on all the states S′ that follow the
same program path, Pipal constructs the formula: S′ → R ∧
O ∧ A. Recall Figure 1 for notation. R asserts that for every
state s1 in S′, s2.repOk(). O asserts that the outputs of
executing the operation on s1 and a1 are the same. A asserts
that a2.equalTo(a2′). PIPAL uses a SAT solver to find a
counterexample to this formula, or establish that none exists.
If it finds a counterexample, PIPAL decodes it into a concrete
state and presents it as an explicit bug trace.

To generate the formulas A and R, PIPAL symbolically exe-
cutes the operations and abstraction functions as described in
Section 3.6. After symbolic execution, every field and vari-
able contains a symbolic value that is represented by a for-
mula. For example, Figure 11 shows the symbolic state of
the abstract map in Figure 5 generated by symbolically exe-
cuting the abstraction function (the method abstraction in
Figure 4) on the first element in Figure 7. Section 4 formally
describes our symbolic execution technique.

Note that the above abstraction function calls the method
ListFromTree BF, which creates a PipalList sufficiently
long to hold the largest possible tree within the given bounds.
It does so without generating path constraints to make model
checking efficient. It adds a reachable bit to each node
of PipalList that is set if the corresponding tree node is
reachable. PIPAL provides similar methods for conveniently
generating PipalLists from several data structures.

Field Value Field Value
o1.value null o1.value null
o2.value null o2.value null
o2.value null o3.value null
method foo method foo
foo.p1 o1 foo.p1 o2
foo.p2 o2 foo.p2 o1
foo.p3 o3 foo.p3 o3

Figure 13. Two isomorphic elements of the search space in
Figure 12. The two elements are isomorphic because o1 and
o2 are equivalent memory locations.

3.8 Isomorphism Analysis

Consider checking a method foo with three formal parame-
ters p1, p2, and p3. Figure 12 presents an example of such
a search space, where each method parameter can be one of
three objects o1, o2, and o3. Consider the two elements of
the above search space in Figure 13. These two elements are
isomorphic because o1 and o2 are equivalent memory loca-
tions. Therefore, once PIPAL checks the first element, it is re-
dundant to check the second element. PIPAL avoids checking
isomorphic elements as follows. Consider the first element
of the search space in Figure 13. Suppose the method foo
reads only p1 and p2 and the analyses in the previous sec-
tions conclude that all states where (p1=o1 ∧ p2=o2) can be
pruned. The isomorphism analysis then determines that all
states that satisfy the following formula can also be safely
pruned: (p1 ∈ {o2,o3} ∨ (p1=o1 ∧ p2 ∈ {o3})).
In general, given a program state s, PIPAL constructs such
a formula Is denoting the set of states isomorphic to s as
follows. Recall from Section 3.6 that the symbolic execution
on s builds a path constraint formula, say Ps. Suppose dur-
ing symbolic execution PIPAL encounters a fresh object o
by following a field f that points to o. Suppose the path con-
straint built so far is P′s. The isomorphism analysis includes
in Is all states that satisfy (P′s ∧ f=o′), for every o′ in the
domain of the field f that is another fresh object. PIPAL then
prunes all the states denoted by Is from the search space.

Note that some software model checkers also prune iso-
morphic program states using heap canonicalization [24,
37]. The difference is that in heap canonicalization, once a
checker visits a state, it canonicalizes the state and checks if
the state has been previously visited. In contrast, once PIPAL
checks a state s, it computes a compact formula Is denoting
a (often exponentially large) set of states isomorphic to s,
and prunes Is from the search space. PIPAL never visits the
(often exponentially many) states in the set Is.

3.9 Declarative Methods and Translation

The above search algorithm relies on efficiently translating
declarative methods into formulas. The efficiency must not
only be in the speed of translation, but also in the compact-
ness of the final formula so that it can be efficiently solved by
a SAT solver. To achieve this, we restrict declarative meth-
ods to use a subset of Java and be free of side effects.
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Declarative methods in PIPAL have the @Declarative an-
notation. A declarative method may not contain object cre-
ations, assignments, loops, or exception handlers, and may
only call declarative methods. Declarative methods may be
overridden only by other declarative methods. Note that
declarative methods can contain recursion, so our declarative
subset of Java is Turing complete. Our experience indicates
that declarative methods are sufficiently expressive to write
program specifications (such as invariants and assertions).

The translation process is somewhat similar to that of
AAL [32]. However, because our declarative methods do
not contain side effects, the formulas for declarative methods
that we generate are considerably simpler than the formulas
for regular Java methods that AAL generates. We translate
our declarative variant of Java directly into propositional
logic, unlike AAL which first translates Java into Alloy [26]
and then translates Alloy into propositional logic. Section 4
formally describes our translation process.

Non-declarative methods may call declarative methods. If
PIPAL encounters a declarative method during symbolic ex-
ecution, it symbolically executes the declarative method by
translating it into a formula on the current symbolic state.
Branches in declarative methods thus do not generate path
constraints. Therefore, making methods declarative enables
the checking and pruning of a larger set of states in each it-
eration of the loop in Figure 8. This is particularly useful for
methods that depend on a large part of the state, such as a
method that returns the number of nodes in a tree.

The above algorithm translates the same declarative method
several times. For example, consider checking the code
in Figure 4. During search space initialization (c.f. Sec-
tion 3.5), the above algorithm translates the invocation of
the isOrdered method on each tree node. Subsequently,
during each iteration of the loop in Figure 8, it again trans-
lates the invocation of the isOrdered method on each tree
node. However, note that each operation on the tree, such as
an insert operation, changes only a small part of the tree.
Thus, most invocations of the isOrdered method on the
same tree node return the same formula. To speed up transla-
tion, PIPAL caches the formulas generated by translating the
declarative methods during search space initialization. The
cache stores a different formula per combination of param-
eters passed to a declarative method. PIPAL also maintains
a list of fields that each cache entry depends on. If any of
these fields changes during an operation, that cache entry is
temporarily disabled, requiring the declarative method to be
translated again on the changed state. Sometimes a declar-
ative method is called with the same parameters multiple
times per iteration (of the loop in Figure 8). If the cache
entry is disabled or does not exist, the method must be trans-
lated every time. To avoid that, PIPAL uses a temporary
cache. When a declarative method is called, PIPAL looks up
the method and its parameters in the main cache. If the cache
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Figure 14. Operations on a module and its abstraction.

misses (because the entry is disabled or was never created)
then PIPAL tries the temporary cache. If that misses then
PIPAL translates the method and stores the result in the tem-
porary cache. After every iteration, the temporary cache is
cleared and all main cache entries are enabled. This caching
system improves the performance of PIPAL considerably.

3.10 Checking Functional Equivalence

A module M is said to be functionally equivalent to an ab-
straction A if starting from an initial state of the module and
the corresponding state of the abstraction, every sequence of
operations on M and A produce the same outputs.

To check the functional equivalence between a module M
and an abstraction A within some given finite bounds, PIPAL
checks the following two properties in those finite bounds.

The first property that PIPAL checks is as follows. See Fig-
ure 14 for notation. PIPAL checks that for every valid state
s1 of the module, that is, on every state s1 on which repOk
returns true: s2.repOk(), the outputs of executing the op-
eration on s1 and a1 are the same, and a2.equalTo(a2′).

The second property that PIPAL checks is as follows. See
Figure 14 for notation. PIPAL checks that for every pair of
states a2 and a2′ of the abstraction that are equal, that is, for
every pair of states a2 and a2′ such that a2.equalTo(a2′):
the outputs of executing the same operation on a2 and a2′

are the same and the resulting states a3 and a3′ are equal,
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cn : class name
m : method name
f : field name
x : variable name

P ::= cd

cd ::= class cn extends C {fd md}
C ::= cn | Object
T ::= C | boolean
fd ::= T f ;
md ::= T m(vd) {e}
vd ::= T x

e ::= e ; e
| e.f
| e.f = e
| if e then e else e
| while e do e
| new C
| e.m(e)
| x
| this
| null
| true
| false
| e && e
| e || e
| !e
| e == e

Figure 15. Syntax of a simple Java-like language. We write
cd as shorthand for cd1 cd2 ... cdn (with the commas), write
vd as shorthand for vd1, vd2, ..., vdn (without the commas),
etc., similar to the notation in [23].

that is, a3.equalTo(a3′). Checking this property checks
that the equalTo method of the abstraction is implemented
correctly with respect to the other methods in the abstraction.

The above two properties together imply functional equiva-
lence, assuming that every initial state of the module satisfies
repOk. Consider a sequence of two operations on a module
state s1. See Figure 14 again for notation. Property 1 asserts
that the outputs of executing the first operation on s1 and
a1 are the same and that the outputs of executing the sec-
ond operation on s2 and a2′ are the same. Property 1 also
asserts that a2.equalTo(a2′). Property 2 then asserts that
the outputs of executing the second operation on a2 and a2′

are the same. Thus, together these properties assert that the
outputs of executing the sequence of two operations on s1
and a1 are the same. Extending this argument to a sequence
of operations of arbitrary length proves that the above two
properties together imply functional equivalence.

md ::= @Declarative T m(vd) {de}

de ::= if de then de else de
| de.f
| de.m(de)
| x
| this
| null
| true
| false
| de && de
| de || de
| !de
| de == de

Figure 16. Syntax of a declarative subset of the language in
Figure 15, showing the syntax of declarative methods.

Pipal checks the above two properties efficiently using the
search algorithm described in the above sections. To check
the first property using the search algorithm in Figure 8, PI-
PAL creates a bounded search space B consisting of all in-
stances of the module within the given finite bounds. An el-
ement s of this search space is valid if s.repOk() returns
true. To check the second property PIPAL creates a bounded
search space B consisting of all pairs instances of the abstrac-
tion within the given finite bounds. An element (a, a′) of
this search space is valid if a.equalTo(a′). This is why PI-
PAL requires repOk and equalTo to be declarative methods,
so that they can be efficiently translated into boolean formu-
las during search space initialization (c.f. Section 3.5).

4. Formal Description
This section formalizes parts of PIPAL’s dynamic and static
analyses for the simple Java-like language in Figure 15. This
language resembles Featherweight Java [23] but it also in-
cludes imperative constructs such as assignments to a mu-
table heap. This section assumes that programs in this lan-
guage have been type checked so that all field accesses and
method calls are valid, except when accessed through a null
pointer. Null pointer dereferencing is fatal in this language.

4.1 Symbolic Values and Symbolic State

Consider the simple Java-like language of Figure 15. The
concrete values of this language include the expressions
true, false, null, and any object allocated on the heap.
We define a symbolic value as a set of elements of the form
c → α, where c is a boolean formula and α is a concrete
value. Informally, the formula c is a condition that must hold
for the corresponding concrete value to be α. For a given
symbolic value, we require that all conditions c are mutually
exclusive, and that all concrete values α are distinct. As a
notational convenience, we use {α} as an abbreviation for
the singleton set {true → α}, which is a symbolic value
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RC-SEQ

〈H, P, e0〉 −→ 〈H′, P ′, e′0〉
〈H, P, e0 ; e1〉 −→ 〈H′, P ′, e′0 ; e1〉

RC-FIELD-READ
〈H, P, e0〉 −→ 〈H′, P ′, e′0〉

〈H, P, e0.f〉 −→ 〈H′, P ′, e′0.f〉

RC-FIELD-WRITE
〈H, P, e0〉 −→ 〈H′, P ′, e′0〉

〈H, P, e0.f = e1〉 −→ 〈H′, P ′, e′0.f = e1〉

RC-FIELD-WRITE-2
〈H, P, e1〉 −→ 〈H′, P ′, e′1〉

〈H, P, v0.f = e1〉 −→ 〈H′, P ′, v0.f = e′1〉

RC-IF
〈H, P, e0〉 −→ 〈H′, P ′, e′0〉

〈H, P, if e0 then e1 else e2〉 −→ 〈H′, P ′, if e′0 then e1 else e2〉

RC-CALL
〈H, P, e0〉 −→ 〈H′, P ′, e′0〉

〈H, P, e0.m(e)〉 −→ 〈H′, P ′, e′0.m(e)〉

RC-CALL-2
〈H, P, ei〉 −→ 〈H′, P ′, e′i〉

〈H, P, v.m(v0, . . . , vi−1, ei, . . . )〉 −→ 〈H′, P ′, v.m(v0, . . . , vi−1, e′i, . . . )〉

RC-OP
〈H, P, e0〉 −→ 〈H′, P ′, e′0〉

〈H, P, e0 && e1〉 −→ 〈H′, P ′, e′0 && e1〉
〈H, P, e0 || e1〉 −→ 〈H′, P ′, e′0 || e1〉

〈H, P, !e0〉 −→ 〈H′, P ′, !e′0〉
〈H, P, e0 == e1〉 −→ 〈H′, P ′, e′0 == e1〉
〈H, P, v == e0〉 −→ 〈H′, P ′, v == e′0〉

Figure 17. Congruence reduction rules of symbolic execution for the simple Java-like language in Figure 15.

that represents a single concrete value α. Furthermore, we
use {c → true} as an abbreviation for the set {c →
true,¬c → false}, which is a boolean symbolic value
whose boolean concrete value corresponds to the formula c.
For a symbolic value v and a concrete value α, let v = α
denote c if (c→ α) ∈ v and false otherwise.

Consider an assignment Φ of truth values to boolean vari-
ables. During symbolic execution, such an assignment Φ is
generated by a SAT solver (in Line 4 of Figure 8). Then, let
Φ(c) denote the truth value of the boolean formula c under
Φ. For a symbolic value v, let Φ(v) denote α if Φ(v = α).

We define a symbolic state as a triple 〈H, P, e〉, where H is
the heap, P is the current path constraint, and e is the current
expression to evaluate. The heap H maps objects and fields
to symbolic values. Let H(f, α) denote the symbolic value
of the field f of the object α in H . Let H[(f, α)← v] denote
a heap identical to H except that it maps the field f of the
object α to v. To facilitate dynamic semantics, we extend the
expression syntax of Figure 15 to include symbolic values:

e ::= . . . | v

Initially, the symbolic state is 〈H0, true, {α0}.m(v)〉, where
H0 is the initial heap of the finite search space, α0 is the main

object, m is a method to be run, and v are symbolic values
of arguments to m. The initial heap H0 contains symbolic
values for each field of each object. Each symbolic value
v = {c → β} defines a domain of n concrete values β (c.f.
Figure 6). The formulas c are each in terms of dlog ne fresh
boolean variables that mutually define a binary index into β.

4.2 Symbolic Execution

Figures 17 and 18 define the small-step operational seman-
tics of symbolic execution. The reductions in Figure 17 are
congruence rules for evaluating subexpressions. The reduc-
tions in Figure 18 define the rules for symbolic execution.

The rules describe how expressions evaluate to symbolic val-
ues, and how expressions change the heap and the path con-
straint. For example, the rule R-FIELD-READ evaluates
expressions of the form v.f , where v = {c → α} is a sym-
bolic value and f is a field. For each non-null αi ∈ α, the
symbolic value H(f, αi) is the result of accessing field f
through the object αi. The result v′ combines all such sym-
bolic values into one result. The rule requires that Φ(v), the
concrete evaluation of v, is not null. If Φ(v) is null, then
no evaluation rule applies. The evaluation reaches an error
because of null pointer dereferencing. Otherwise, if Φ(v) is
not null, then this fact is added to the path constraint.
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R-SEQ

〈H, P, v ; e〉 −→ 〈H, P, e〉

R-FIELD-READ
v = {c→ α}

v′ = {d→ β | d =
W{ci ∧ dj | (dj → β) ∈ H(f, αi)}}

Φ(v) 6= null

〈H, P, v.f〉 −→ 〈H, P ∧ ¬(v = null), v′〉

R-FIELD-WRITE
Φ(v0) = α α 6= null

〈H, P, v0.f = v1〉 −→ 〈H[(f, α)← v1], P ∧ (v0 = α), v1〉

R-IF-T
Φ(v) = true

〈H, P, if v then e1 else e2〉 −→ 〈H, P ∧ (v = true), e1〉

R-IF-F
Φ(v) = false

〈H, P, if v then e1 else e2〉 −→ 〈H, P ∧ (v = false), e2〉

R-WHILE
〈H, P, while e0 do e1〉 −→ 〈H, P, if e0 then e1 ; while e0 do e1 else {false}〉

R-NEW

α is a fresh object of class C with fields f.

〈H, P, new C〉 −→ 〈H[(f, α)← {null}], P, {α}〉

R-CALL
Φ(v) = α α 6= null mbody(m, α) = x.e

〈H, P, v.m(v)〉 −→ 〈H, P ∧ (v = α), e[v/x, v/this]〉

R-EQUALS

v0 = {c→ α} v1 = {d→ β}
v′ = {W{ci ∧ di | αi = βi} → true}
〈H, P, v0 == v1〉 −→ 〈H, P, v′〉

R-AND-T
Φ(v) = true

〈H, P, v && e〉 −→ 〈H, P ∧ (v = true), e〉

R-AND-F
Φ(v) = false

〈H, P, v && e〉 −→ 〈H, P ∧ (v = false), {false}〉

R-OR-T
Φ(v) = true

〈H, P, v || e〉 −→ 〈H, P ∧ (v = true), {true}〉

R-OR-F
Φ(v) = false

〈H, P, v || e〉 −→ 〈H, P ∧ (v = false), e〉

R-NOT
v = {c→ true}

v′ = {¬c→ true}
〈H, P, !v〉 −→ 〈H, P, v′〉

Figure 18. Small-step operational semantics of symbolic execution. The symbolic state includes a heap H , a path constraint
P , and an expression e. An assignment Φ is assumed to be available for converting symbolic values v into concrete values α.
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RD-FIELD-READ
H ` de ⇓ (v, E) v = {c→ α}

v′ = {d→ β | d =
W{ci ∧ dj | (dj → β) ∈ H(f, αi)}}

H ` de.f ⇓ (v′, E ∨ v = null)

RD-IF

H ` de0 ⇓ ({b→ true}, E0) H ` de1 ⇓ ({c→ α}, E1) H ` de2 ⇓ ({d→ β}, E2)
v = {g → γ | g =

W{b ∧ ci | αi = γ} ∨W{¬b ∧ di | βi = γ}}
E = E0 ∨ (b ∧ E1) ∨ (¬b ∧ E2)

H ` if de0 then de1 else de2 ⇓ (v, E)

RD-CALL
H ` de ⇓ ({c→ α}, E) mbody(m, α) = x.de0 α 6= null

∀i : H ` dei ⇓ (vi, Ei)
H ` de0[v/x, {α}/this] ⇓ (v′, E′)

H ` de.m(de) ⇓ (v′, E ∨WE ∨ E′)

RD-CALL-NULL
H ` de ⇓ ({c→ null}, E)

H ` de.m(de) ⇓ ({null}, true)

RD-CALL-MULTI
H ` de ⇓ ({c→ α, c→ α}, E)

H ` if {c→ true} then {α}.m(de) else {c→ α}.m(de) ⇓ (v′, E′)
H ` de.m(de) ⇓ (v′, E ∨ E′)

RD-EQUALS

H ` de0 ⇓ ({c→ α}, E0) H ` de1 ⇓ ({d→ β}, E1)
v = {W{ci ∧ di | αi = βi} → true}

H ` de0 == de1 ⇓ (v, E0 ∨ E1)

RD-AND
H ` de0 ⇓ ({c→ true}, E0) H ` de1 ⇓ ({d→ true}, E1)

v = {c ∧ d→ true}
H ` de0 && de1 ⇓ (v, E0 ∨ (c ∧ E1))

RD-OR
H ` de0 ⇓ ({c→ true}, E0) H ` de1 ⇓ ({d→ true}, E1)

v = {c ∨ d→ true}
H ` de0 || de1 ⇓ (v, E0 ∨ (¬c ∧ E1))

RD-NOT
H ` de ⇓ ({c→ true}, E)

v = {¬c→ true}
H ` !de ⇓ (v, E)

Figure 19. Big-step operational semantics of declarative methods, used in their translation to formulas. Given a heap H an
expression e evaluates to a value v with an error condition E. E holds true for concrete states that encounter an error.

The rule R-CALL performs method calls by inlining a
method’s body at the call site and substituting formal pa-
rameters with their actual symbolic values. The function
mbody(m,α) denotes x.e, where e is the body of the
method m of object α and x is the list of formal method
parameters. We use e[v/x] to denote the expression e with
all instances of variable x replaced with symbolic value v.

The rules R-IF-T and R-IF-F for the if expressions de-
pend on the concrete value of the branch condition v. If the
concrete value is true, then v = true is added to the path
constraint. If the concrete value is false, then v = false
is added to the path constraint. Similarly, the rules for the
operators && and || generate path constraints.

The reason the rules for the if expressions and the && and ||
operators generate path constraints is that these expressions

and operators short circuit and their operands might have
side effects. For example, (true && e) evaluates e but
(false && e) does not and e might have side effects.

However, if the operands of if expressions and the && and
|| operators do not have any side effects then they can be
executed symbolically without generating path constraints.
We describe this process in Section 4.4.

4.3 Translation of Declarative Methods

Figure 16 presents a declarative subset of the language
in Figure 15, showing the syntax of declarative methods.
Declarative methods may not contain object creations, as-
signments, or loops and may only call declarative methods.

Figure 19 presents the big-step operational semantics of
declarative methods that are used to translate them into for-
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mulas. Declarative methods do not have assignments or ob-
ject creations, so they do not modify the heap H . Unlike
non-declarative methods, the semantics of declarative meth-
ods do not depend on concrete values, so they do not need an
assignment Φ. Furthermore, branches in declarative meth-
ods do not generate path constraints, so the semantics of
declarative methods do not use a path constraint. As with
the non-declarative expressions above, we extend the syntax
of declarative expressions to include symbolic values:

de ::= . . . | v
Judgments are of the form H ` e ⇓ (v,E), indicating that

under heap H , an expression e evaluates to a value v with
an error condition E. The error condition E is a formula that
holds true for concrete states that encounter an error.

The result of calling a declarative method is a symbolic
value and error condition (v, E). In the case of boolean
methods (such as repOk and equalTo), v is of the form
{c→ true}where c∧¬E holds for states where the method
successfully returns true. Thus, this process translates a
boolean declarative method into a formula c that describes
the conditions under which the method returns true.

4.4 Symbolic Execution of Declarative Expressions

Recall from Figure 18 that the symbolic execution of the
short circuiting operators && and || generates path con-
straints because of the possibility of side effects. However,
the operands of these operators often do not have side ef-
fects. In such cases, PIPAL executes these operators symbol-
ically without generating path constraints. The same applies
to if statements. In general, in addition to calls to declar-
ative methods, Pipal symbolically executes declarative ex-
pressions without generating path constraints (except for the
exception condition) according to the following rule:

R-DECL
e has declarative syntax

H ` e ⇓ (v, E)
Φ(E) = false

〈H, P, e〉 −→ 〈H, P ∧ ¬E, v〉

A simple static analysis determines if an expression has
declarative syntax. By requiring Φ(E) to be false, the above
rule only applies when no errors are encountered. PIPAL
updates the path constraint to reflect this requirement.

5. Experimental Results
This section presents our experimental results.

We implemented PIPAL as described in this paper. We ex-
tended the Polyglot [41] compiler to automatically instru-
ment program modules to perform our dynamic analysis. We
used MiniSat [14] as our incremental SAT solver to perform
our static analysis. We ran all our experiments on a Linux
Fedora Core 8 machine with a Pentium 4 3.4 GHz processor
and 1 GB memory using IcedTea Java 1.7.0.

We tested modules that implement the Map and Set inter-
faces from the Java Collections Framework. We created two
abstract implementations, AbsMap and AbsSet and tested
several modules for conformance to these implementations.
Our AbsMap implementation is similar to AbstractMap
from Figure 5. We tested the Map interface on the methods
put, remove, get, isEmpty, and clear and the Set in-
terface on the methods add, remove, contains, isEmpty,
and clear. All the Java Collections Framework modules are
from the source code of the Java SE 6 JDK. Although Java
generics do not pose any difficulties to our technique, Poly-
glot compiler does not fully support them. So we removed
them from the source. We tested the following modules:

• TreeMap, which implements the Map interface using a
red-black tree, which is a balanced binary tree.

• TreeSet, which implements the Set interface using an
underlying TreeMap

• HashMap, which implements the Map interface using a
hash table.

• HashSet, which implements the Set interface using an
underlying HashMap

We used PIPAL to exhaustively check module states up to
a maximum of n nodes, with at most n different possible
keys and eight different possible values. We checked the
functional equivalence (c.f. Section 3.10) between the above
modules and their abstractions. For comparison, we also
checked these properties using JPF [48], KORAT [3], and
BLAST [21]. We timed out all experiments after an hour.

The results of these experiments are in Figure 20. PIPAL
exhaustively checked all TreeMaps with up to 63 nodes in
under 15 minutes and all HashMaps with up to 64 nodes in
under 40 minutes. The other checkers did not scale nearly as
well. In particular BLAST could find no new predicates and
aborted its analysis. This illustrates the ineffectiveness of
most other techniques in checking these kinds of properties.

Next, we tested the effectiveness of replacing the maps with
the abstract map. We checked the following programs:

• TreeSet and HashSet. Since they use a Map internally,
they can be checked modularly. We again checked func-
tional equivalence between these modules and AbsSet.

• IntCounter from Figure 2, implemented with a Tree-
Map. We checked that the fields most frequent i and
max frequency are consistent with the state of the map.

• A two-layer cache, DualCache, similar to the one de-
scribed in Section 3.9, implemented using two TreeMaps.
One map is the permanent map and the other is the tem-
porary map. DualCache has some internal consistency
constraints, such as the property that no key can be in
both maps at once. We checked the following operations:
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Module Max Number Time (s)
of Nodes JPF KORAT BLAST PIPAL

1 1.218 0.608 aborted 0.188
2 5.556 0.613 0.244
3 memory out 0.676 0.392
4 0.732 0.485
5 1.251 0.670
6 4.721 0.751
7 23.547 0.985
8 2202.231 1.124

TreeMap 9 timeout 1.491
10 1.670
11 2.303
12 2.555
13 3.142
14 3.435
15 4.571
... ...
31 40.405
63 787.411
1 0.674 0.465 aborted 0.176
2 6.514 0.497 0.227
3 memory out 0.539 0.258
4 0.810 0.305
5 0.735 0.373
6 0.819 0.422
7 0.997 0.494
8 3.077 0.599
9 18.972 0.675

HashMap 10 150.932 0.780
11 1203.986 0.953
12 timeout 1.162
13 1.356
14 1.708
15 2.143
16 2.879
... ...
32 75.139
64 2004.723
1 0.537 0.638 aborted 0.195
2 0.950 0.648 0.246
3 26.816 0.693 0.393
4 memory out 1.020 0.489
5 0.699 0.651
6 0.876 0.752
7 0.943 0.961
8 2.773 1.090

TreeSet 9 8.208 1.473
10 24.921 1.665
11 74.966 2.238
12 221.719 2.493
13 615.524 3.065
14 1706.41 3.399
15 timeout 4.481
... ...
31 39.789
63 796.955
1 0.728 0.520 aborted 0.171
2 0.781 0.511 0.221
3 6.574 0.716 0.248
4 memory out 0.570 0.299
5 0.567 0.363
6 0.623 0.414
7 0.701 0.478
8 1.878 0.579
9 3.357 0.644

HashSet 10 9.440 0.773
11 29.485 0.948
12 82.642 1.068
13 238.420 1.344
14 593.045 1.608
15 952.317 2.029
16 timeout 2.816
... ...
32 68.011
64 2543.034

Figure 20. Results of checking modules against abstractions. PIPAL checks TreeMaps of up to 63 nodes in under 15 minutes.
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lookup : Looks up a value in the cache. If the value
is not present, it computes it and adds it to the cache.

remove : Removes a value from the cache, if it exists.

enableTemporary : Causes future cache additions to
go to the temporary map.

disableTemporary : Clears the temporary map and
causes future cache additions to go to permanent map.

promote : Removes a value from the temporary map
and adds it to the permanent map.

demote : Removes a value from the permanent map
and adds it to the temporary map.

We used PIPAL to check the given implementations of these
programs. We then replaced the maps with abstract maps and
checked the programs again with PIPAL. We checked maps
with at most n nodes. We checked IntCounter with at most
n integers and frequencies ranging from 0 to 7. We checked
DualCache with at most n keys and at most eight values.

The results of these experiments are in Figure 21. Check-
ing these programs with AbsMap is significantly faster than
checking them with a TreeMap or a HashMap.

6. Related Work
This section presents related work on software model check-
ing. Model checking is a formal verification technique that
exhaustively tests a circuit/program on all possible inputs
(sometimes up to a given size) and on all possible nondeter-
ministic schedules. There has been much research on model
checking of software. Verisoft [16] is a stateless model
checker for C programs. Java PathFinder (JPF) [31, 48] is a
stateful model checker for Java programs. XRT [20] checks
Microsoft CIL programs. Bandera [7] and JCAT [9] trans-
late Java programs into the input language of model checkers
like SPIN [22] and SMV [36]. Bogor [13] is an extensible
framework for building software model checkers. CMC [39]
is a stateful model checker for C programs that has been
used to test large software including the Linux implemen-
tation of TCP/IP and the ext3 file system. Chess [38] and
CalFuzzer [28] help find and reproduce concurrency bugs.

For hardware, model checkers have been successfully used
to verify fairly complex finite state control circuits with up to
a few hundred bits of state information; but not circuits that
have large data paths or memories. Similarly, for software,
model checkers have been primarily used to verify control-
oriented programs with respect to temporal properties; but
not much work has been done to verify data-oriented pro-
grams with respect to complex data-dependent properties.

Thus, most of the research on reducing the state space of a
software model checker has focused on checking temporal
properties of programs. Tools such as Slam [1], Blast [21],
and Magic [4] use heuristics to construct and check an ab-
straction of a program (usually predicate abstraction [19]).

Max Time (s)
Module Number Original Modules Replaced with

of Nodes Program Abstract Implementations
1 0.195 0.122
2 0.246 0.153
3 0.393 0.167
4 0.489 0.185
5 0.651 0.207
6 0.752 0.246

TreeSet 7 0.961 0.251
... ... ...
15 4.481 0.429
31 39.789 0.991
63 796.955 3.388

127 timeout 16.690
255 184.827
511 425.328

1 0.171 0.106
2 0.221 0.141
3 0.248 0.153
4 0.299 0.169
5 0.363 0.193
6 0.414 0.218

HashSet 7 0.478 0.238
... ... ...
15 2.029 0.412
16 2.816 0.451
32 68.011 0.989
64 2543.034 3.464

128 timeout 17.071
256 91.629
512 754.426

1 0.198 0.113
2 0.279 0.154
3 0.469 0.164
4 0.579 0.184
5 0.815 0.214

IntCounter 6 0.918 0.251
7 1.182 0.267
... ... ...
15 5.591 0.539
31 41.500 1.867
63 632.488 10.794

127 timeout 93.276
255 946.091

1 0.203 0.222
2 0.283 0.323
3 0.503 0.327
4 0.589 0.511
5 0.828 0.654

DualCache 6 0.950 0.548
7 1.207 0.529
... ... ...
15 5.765 1.015
31 53.434 4.057
63 723.267 26.192

127 timeout 215.521
255 2180.506

Figure 21. Experimental results of checking programs that
use a map internally. Replacing the map with an abstract
implementation speeds up the checking considerably.

Abstractions that are too coarse generate false positives,
which are then used to refine the abstraction and redo the
checking. This technique is known as Counter Example
Guided Abstraction and Refinement or CEGAR. There are
also many static [16] and dynamic [15] partial order reduc-
tion systems for concurrent programs. There are many other
symmetry-based reduction techniques as well (e.g., [25]).
However, none of the above techniques seem to be effec-
tive in reducing the state space of a model checker when
checking complex data-dependent properties of programs.
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Our experiments comparing the performance of PIPAL to
other model checkers support this observation.

Tools such as Alloy [26, 30] and Korat [3] systematically
generate all test inputs that satisfy a given precondition.
A version of JPF [31] uses lazy initialization of fields to
essentially simulate the Korat algorithm. Kiasan [10] uses
a lazier initialization. However, these tools generate and test
every valid state within the given finite bounds (or portion of
state that is used, in case of Kiasan) and so do not achieve as
much state space reduction as PIPAL. In particular, unlike the
above systems, our static analysis allows us to prune a very
large number of states in a single step using a SAT solver.

Tools such as CUTE [17, 44], Whispec [45], and a version of
JPF [47] use constraint solvers to obtain good branch cover-
age (or good path coverage on paths up to a given length)
for testing data structures. However, this approach could
miss bugs even on small sized data structures. For exam-
ple, a buggy tree insertion method that does not rebalance
the tree might work correctly on a test case that exercises a
certain program path, but fail on a different unchecked test
case that exercises the same program path because the sec-
ond test case makes the tree unbalanced. Therefore, it seems
to us that this approach is more suitable for checking control-
dependent properties rather than data-dependent properties.

Jalloy [46], Miniatur [12], and Forge [11] translate a Java
program and its specifications into a boolean formula and
check it with a SAT solver. In our experience with a similar
approach, translating general Java code usually leads to large
formulas that take a lot of time to solve with a SAT solver.
Our technique of translating declarative methods and using
symbolic execution for general Java code is more efficient.

This paper uses and extends our previous work on glass box
software model checking. Our previous work focused on es-
tablishing data structure invariants [8] and type soundness
[43]. The work on data structure invariants could only effi-
ciently check local properties of data structures, which relate
a node to its immediate neighbors. The work on type sound-
ness improved on this by allowing nonlocal properties to be
efficiently checked as well and applied it to the checking
of type soundness. This paper extends our previous work to
support modular glass box checking. It also presents a for-
mal description of our dynamic and static analyses.

7. Conclusions
We present PIPAL, a system for modular glass box software
model checking. A glass box software model checker does
not check every state separately but instead checks a large
set of states together in each step. A dynamic analysis dis-
covers a set of similar states, and a static analysis checks all
of them efficiently in a single step using a SAT solver. PI-
PAL first checks a program module against an abstract imple-
mentation, establishing functional equivalence. PIPAL then
replaces the program module with the abstract implemen-

tation when checking other program modules. Our experi-
mental results indicate that the modular glass box software
model checking approach is effective and it significantly out-
performs the earlier non-modular glass box software model
checking approach. A comparison of PIPAL to other state
of the art software model checkers demonstrates that PIPAL
is significantly more efficient in checking data-oriented pro-
grams with respect to complex data-dependent properties.
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