
ACM Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), October 2008

Efficient Software Model Checking of Soundness of Type Systems

Michael Roberson Melanie Harries Paul T. Darga Chandrasekhar Boyapati
Electrical Engineering and Computer Science Department

University of Michigan, Ann Arbor, MI 48109
{roberme,melagnew,pdarga,bchandra}@eecs.umich.edu

Abstract
This paper presents novel techniques for checking the
soundness of a type system automatically using a software
model checker. Our idea is to systematically generate ev-
ery type correct intermediate program state (within some fi-
nite bounds), execute the program one step forward if pos-
sible using its small step operational semantics, and then
check that the resulting intermediate program state is also
type correct—but do so efficiently by detecting similarities
in this search space and pruning away large portions of the
search space. Thus, given only a specification of type cor-
rectness and the small step operational semantics for a lan-
guage, our system automatically checks type soundness by
checking that the progress and preservation theorems hold
for the language (albeit for program states of at most some
finite size). Our preliminary experimental results on several
languages—including a language of integer and boolean ex-
pressions, a simple imperative programming language, an
object-oriented language which is a subset of Java, and a
language with ownership types—indicate that our approach
is feasible and that our search space pruning techniques do
indeed significantly reduce what is otherwise an extremely
large search space. Our paper thus makes contributions both
in the area of checking soundness of type systems, and in the
area of reducing the state space of a software model checker.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory; F.3.1
[Logics and Meanings of Programs]: Specifying and Verify-
ing and Reasoning about Programs
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1. Introduction

Type systems provide significant software engineering ben-
efits. Types can enforce a wide variety of program invari-
ants at compile time and catch programming errors early
in the software development process. Types serve as docu-
mentation that lives with the code and is checked through-
out the evolution of code. Types also require little program-
ming overhead and type checking is fast and scalable. For
these reasons, type systems are the most successful and
widely used formal methods for detecting programming er-
rors. Types are written, read, and checked routinely as part
of the software development process. However, the type sys-
tems in languages such as Java, C#, ML, or Haskell have lim-
ited descriptive power and only perform compliance check-
ing of certain simple program properties. But it is clear that a
lot more is possible. There is therefore plenty of research in-
terest in developing new type systems for preventing various
kinds of programming errors [8, 17, 28, 45, 46, 54].

A formal proof of type soundness lends credibility that a
type system does indeed prevent the errors it claims to pre-
vent, and is a crucial part of type system design. At present,
type soundness proofs are mostly done on paper, if at all.
These proofs are usually long, tedious, and consequently er-
ror prone. There is therefore a growing interest in machine
checkable proofs of soundness [2]. However, both the above
approaches—proofs on paper (e.g., [20]) or machine check-
able proofs (e.g., [47])—require significant manual effort.

This paper presents an alternate approach for checking type
soundness automatically using a software model checker.
Our idea is to systematically generate every type correct in-
termediate program state (within some finite bounds), exe-
cute the program one small step forward if possible using
its small step operational semantics, and then check that the
resulting intermediate program state is also type correct—
but do so efficiently by detecting similarities in this search
space and pruning away large portions of the search space.
Thus, given only a specification of type correctness and the
small step operational semantics for a language, our system
automatically checks type soundness by checking that the
progress and preservation theorems [50, 56] hold for the lan-
guage (albeit for program states of at most some finite size).
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Our experimental results on several languages—including
the language of integer and boolean expressions from [50,
Chapters 3 & 8], a typed version of the imperative lan-
guage IMP from [55, Chapter 2], an object-oriented lan-
guage which is a subset of Java, and a language with own-
ership types [1, 6, 13]—indicate that our approach is fea-
sible and that our search space pruning techniques do in-
deed significantly reduce what is otherwise an extremely
large search space. This paper thus offers a promising ap-
proach for checking type soundness automatically, thereby
enabling the design of novel type systems. In particular, this
can enormously help programming language designers in
debugging their language specifications. Currently there is
no other technology around to automate this task effectively.

Note that checking the progress and preservation theorems
on all programs states up to a finite size does not prove that
the type system is sound, because the theorems might not
hold on larger unchecked program states. However, in prac-
tice, we expect that all type system errors will be revealed by
small sized program states. This conjecture, known as the
small scope hypothesis [35], has been experimentally ver-
ified in several domains. Our preliminary experiments us-
ing mutation testing [49, 41] suggest that the conjecture also
holds for checking type soundness. We also examined all the
type soundness errors we came across in literature and found
that in each case, there is a small program state that exposes
the error. Thus, exhaustively checking type soundness on all
programs states up to a finite size does at least generate a
high degree of confidence that the type system is sound.

This paper also makes contributions in improving the state
of art in software model checking [3, 4, 11, 14, 15, 21, 24,
53, 29, 44]. Model checking is a formal verification tech-
nique that exhaustively tests a circuit/program on all possible
inputs (sometimes up to a given size) to handle input non-
determinism and on all possible nondeterministic schedules
to handle scheduling nondeterminism. For hardware, model
checkers have been successfully used to verify fairly com-
plex finite state control circuits with up to a few hundred
bits of state information; but not circuits in general that have
large data paths or memories. Similarly, for software, model
checkers have been primarily used to verify control-oriented
programs (with scheduling nondeterminism) with respect to
temporal properties; but not much work has been done to
verify data-oriented programs (with input nondeterminism)
with respect to complex data-dependent properties.

Thus, while there is much research on state space reduc-
tion techniques for software model checkers such as partial
order reduction [23, 24] and tools based on predicate ab-
straction [26] such as Slam [3], Blast [29], or Magic [11],
none of these techniques seem to be effective in reducing the
state space when checking the soundness of a type system—
where one must deal with input nondeterminism (to check
every input program state) and data-dependent properties

(type correctness properties that depend on input program
states). In fact, because of input nondeterminism, it is diffi-
cult to even formulate the problem of automatically checking
type soundness in the context of most model checkers.

This paper describes techniques for efficiently checking type
soundness automatically using a software model checker by
significantly reducing the state space of the model checker.
It thus contributes to improving the state of art in software
model checking. This paper builds on our recent previous
work on model checking properties of data structures [16].
This paper improves on the techniques presented in [16] and
applies them to checking soundness of type systems.

The rest of this paper is organized as follows. Section 2 illus-
trates our approach with an example. Section 3 describes our
software model checker for checking of soundness type sys-
tems. Section 4 presents our experimental results. Section 5
discusses related work and Section 6 concludes.

2. Example
This section illustrates our approach with an example. Con-
sider the language of integer and boolean expressions in [50,
Chapters 3 & 8]. The syntax of the language is shown in
Figure 1. The small step operational semantics and the type
checking rules for this language are in [50]. To check type
soundness, our system systematically generates and checks
the progress and preservation theorems on every type correct
program state within some finite bounds.

Figure 2 shows three abstract syntax trees (ASTs) t1, t2,
and t3. AST t1 represents the term ‘if (iszero 0)
then true else false’. AST t2 represents the term ‘if
(iszero 0) then (pred 0) else (succ 0)’. AST t3
represents the term ‘if (iszero 0) then (if false
then false else true) else false’. Figure 2 shows
the ASTs before and after a small step evaluation according
to the small step operational semantics of the language.

Our state space reduction technique works as follows. As our
system checks the progress and preservation theorems on t1,
it detects that the small step evaluation of t1 touches only a
small number of AST nodes along a tree path in the AST.
These nodes are highlighted in the figure. If these nodes
remain unchanged, the small step evaluation will behave
similarly (e.g., on ASTs such as t2 and t3). Our system
determines that it is redundant to check the progress and
preservation theorems on ASTs such as t2 and t3 once it
checks the theorems on t1. Our system safely prunes those
program states from its search space, while still achieving
complete test coverage within the bounded domain. Our
system thus checks the progress and preservation theorems
on every unique tree path (and some nearby nodes) rather
than on every unique AST. Note that the number of unique
ASTs of a given maximum height h is exponential in n,
where n = 3h, but the number of unique tree paths is only

494



t ::= true | false | 0 | succ t | pred t | iszero t | if t then t else t

term constant constant constant successor predecessor zero test conditional
true false zero

Figure 1. Abstract syntax of the language of integer and boolean expressions from [50, Chapters 3 & 8].

t1

t1’

if

falsetrueiszero

0

if
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0 0

t2

t2’

if

iszero

0

if

true

t3

t3’

if
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if

falseiftrue
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false false true

Figure 2. Three abstract syntax trees (ASTs) for the language in Figure 1, before and after a small step evaluation. The tree
path touched by each evaluation is highlighted. Note that the tree path is the same in all three cases. Once our system checks
the progress and preservation theorems on AST t1, it determines that it is redundant to check them on ASTs t2 and t3.

polynomial in n. This leads to significant reduction in the
size of the search space and makes our approach feasible.

Our system performs even better if the operational semantics
of the above language is implemented efficiently. For the
example in Figure 2, our system detects that only the nodes
in the redex ‘iszero 0’ matter, as long as that is the next
redex to be reduced. It therefore prunes all program states
where those nodes remain the same and that is the next
redex to be reduced. This leads to even greater speedups. Our
system then only checks O(n) number of program states.

3. Model Checking Type Soundness
While the basic idea presented in Section 2 is simple, one
must overcome several technical challenges to make it work
well in practice. This section describes our approach.

3.1 Specifying Language Semantics

To check the soundness of a type system, language designers
only need to specify the small step operational semantics of
the language, rules for checking type correctness of interme-
diate program states, and finite bounds on the size of inter-
mediate program states. The operational semantics must be
specified in an executable language to facilitate our dynamic
analysis (c.f. Section 3.6). The type system must be spec-
ified in a declarative language to facilitate our static anal-
ysis (c.f. Section 3.7). The operational semantics, however,
may also be specified in a declarative language if the declar-
ative specifications can be automatically translated into ex-
ecutable code. For example, a large subset of JML can be
automatically translated to Java using the JML tool set [40].

In our current system, we use Java as our executable lan-
guage for specifying an operation semantics. We use a vari-
ant of Java as our declarative language for specifying a type
system. We use Java similarly to our previous work [16]
for specifying finite bounds on the size of intermediate pro-
gram states. Figure 3 shows an example implementation of
the expression language in Figure 1 in our system. An ob-
ject of class ExpressionLanguage represents an interme-
diate program state of the expression language. Every such
class that implements Language must have two methods: i)
a Java method smallStep that either performs a small step
of evaluation and terminates normally, or throws an excep-
tion if the evaluation gets stuck; and ii) a declarative method
wellTyped that returns true iff the corresponding interme-
diate program state is well typed. Declarative methods are
annotated as Declarative. A declarative method may not
contain object creations, assignments, loops, or exception
handlers, and may only call other declarative methods. A
declarative method may however contain implications, uni-
versal quantifications, and existential quantifications to facil-
itate writing first order logic formulas. We allow Java meth-
ods to call declarative methods—we automatically translate
a declarative method into executable code before running it.
Finally, the Tree annotations on Lines 14 and 70 denote that
the expression structure forms a tree, similarly to [16]. Such
annotations reduce the search space of our model checker
because it does not have to check non-tree structures.

We note that our model checking techniques are not tied to
our above choice of specification languages and can also be
made to work with other languages (e.g., Ott [51]).
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1 public class ExpressionLanguage implements Language {
2 static final int TRUE = 0;
3 static final int FALSE = 1;
4 static final int ZERO = 2;
5 static final int SUCC = 3;
6 static final int PRED = 4;
7 static final int ISZERO = 5;
8 static final int IF = 6;
9 static final int BOOL = 0;

10 static final int INT = 1;
11
12 static class Expression {
13 int kind; /* TRUE / FALSE / ZERO / SUCC / PRED / ISZERO / IF */
14 @Tree Expression e1, e2, e3; /* Subexpressions */
15
16 @Declarative
17 boolean wellTyped() {
18 return
19 syntaxOk() &&
20 ( kind == TRUE ==> true ) &&
21 ( kind == FALSE ==> true ) &&
22 ( kind == ZERO ==> true ) &&
23 ( kind == SUCC ==> e1.wellTyped() && e1.type() == INT ) &&
24 ( kind == PRED ==> e1.wellTyped() && e1.type() == INT ) &&
25 ( kind == ISZERO ==> e1.wellTyped() && e1.type() == INT ) &&
26 ( kind == IF ==> e1.wellTyped() && e1.type() == BOOL && e2.wellTyped() && e3.wellTyped() && e2.type()==e3.type() );
27 }
28
29 Expression smallStep() throws StuckException {
30 if ( isValue() ) { return this; }
31 if ( e1 == null ) { throw new StuckException(); }
32 if ( !e1.isValue() ) { e1 = e1.smallStep(); return this; }
33
34 if ( kind == PRED && e1.kind == ZERO ) return e1;
35 if ( kind == PRED && e1.kind == SUCC ) return e1.e1;
36 if ( kind == ISZERO && e1.kind == ZERO ) return True();
37 if ( kind == ISZERO && e1.kind == SUCC ) return False();
38 if ( kind == IF && e1.kind == TRUE ) return e2;
39 if ( kind == IF && e1.kind == FALSE ) return e3;
40
41 throw new StuckException();
42 }
43
44 // Helper functions
45
46 @Declarative
47 boolean syntaxOk() {
48 return
49 ( ( kind == TRUE || kind == FALSE || kind == ZERO ) && e1 == null && e2 == null && e3 == null ) ||
50 ( ( kind == SUCC || kind == PRED || kind == ISZERO ) && e1 != null && e2 == null && e3 == null ) ||
51 ( ( kind == IF ) && e1 != null && e2 != null && e3 != null );
52 }
53
54 @Declarative
55 int type() {
56 if ( kind == TRUE || kind == FALSE || kind == ISZERO ) return BOOL;
57 else if ( kind == ZERO || kind == SUCC || kind == PRED ) return INT;
58 else /*( kind == IF )*/ return e2.type();
59 }
60
61 @Declarative
62 boolean isValue() {
63 return kind == TRUE || kind == FALSE || kind == ZERO || kind == SUCC && e1.isValue();
64 }
65
66 static Expression True () {Expression e = new Expression(); e.kind = TRUE; return e;}
67 static Expression False() {Expression e = new Expression(); e.kind = FALSE; return e;}
68 }
69
70 @Tree Expression root;
71
72 @Declarative
73 public boolean wellTyped() { return root != null && root.wellTyped(); }
74
75 public void smallStep() throws StuckException { root = root.smallStep(); }
76
77 public boolean isFinalState() { return root.isValue(); }
78 }

Figure 3. An implementation of the language of integer and boolean expressions in Figure 1 in our system.
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Field Domain
n0.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n1.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n2.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n3.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n4.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n5.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n6.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n7.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n8.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n9.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n10.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n11.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n12.kind {TRUE, FALSE, ZERO, SUCC, PRED, ISZERO, IF}
n0.e1 {null, n1}
n0.e2 {null, n2}
n0.e3 {null, n3}
n1.e1 {null, n4}
n1.e2 {null, n5}
n1.e3 {null, n6}
n2.e1 {null, n7}
n2.e2 {null, n8}
n2.e3 {null, n9}
n3.e1 {null, n10}
n3.e2 {null, n11}
n3.e3 {null, n12}

n1

n4 n5 n6 n7 n8

n2

n9 n10 n11

n3

n12

n0

Figure 4. Search space for the language implemented in
Figure 3 with ASTs of height at most 3.

3.2 Search Space

Traditional software model checkers [3, 11, 15, 21, 24, 53,
29, 44] explore a state space by starting from the initial state
and systematically generating and checking every successor
state. While this approach works well to check software with
scheduling nondeterminism, it is not convenient to check
software with input nondeterminism. In fact, it is difficult
to even formulate the problem of checking type soundness
in the context of most software model checkers. Instead, our
model checker organizes its search space as follows.

Consider the language in Figure 3. Suppose our system must
check the progress and preservation theorems on all ASTs
up to a maximum height h=3. Figure 4 shows the corre-
sponding search space. The search space consists of all pos-
sible assignments to the fields, where each field gets a value
from its corresponding domain. Every element of this search
space is an AST. For example, the first element in Fig-
ure 5 corresponds to the AST ‘if (iszero 0) then (if
false then false else true) else false’. In Fig-
ure 4, there are thirteen fields with seven elements in their
domains and twelve fields with two elements in their do-
mains, so the size of this search space is 713∗212. In general,
for ASTs of height at most h, the size of the search space
is 7

3h−1
2 ∗ 2

3h−3
2 . Note that many elements of this search

space are not type correct or even syntactically correct. For
example, the second element in Figure 5 is not type correct
because iszero cannot be invoked on false.

Field Value Field Value
n0.kind IF n0.kind ISZERO
n1.kind ISZERO n1.kind FALSE
n2.kind IF n2.kind *
n3.kind FALSE n3.kind *
n4.kind ZERO n4.kind *
n5.kind * n5.kind *
n6.kind * n6.kind *
n7.kind FALSE n7.kind *
n8.kind FALSE n8.kind *
n9.kind TRUE n9.kind *
n10.kind * n10.kind *
n11.kind * n11.kind *
n12.kind * n12.kind *
n0.e1 n1 n0.e1 n1
n0.e2 n2 n0.e2 null
n0.e3 n3 n0.e3 null
n1.e1 n4 n1.e1 null
n1.e2 null n1.e2 null
n1.e3 null n1.e3 null
n2.e1 n7 n2.e1 *
n2.e2 n8 n2.e2 *
n2.e3 n9 n2.e3 *
n3.e1 null n3.e1 *
n3.e2 null n3.e2 *
n3.e3 null n3.e3 *

Figure 5. Two elements of the search space in Figure 4. The
first element represents the term ‘if (iszero 0) then
(if false then false else true) else false’.
The second element represents the term ‘iszero false’.
The symbol * denotes don’t care.

In general, the intermediate state of a program can include
other components besides an AST, such as a dynamically
allocated heap. Our system appropriately constructs a finite
search space that includes all such components.

3.3 Search Algorithm

Figure 6 presents the pseudo-code for our search algorithm.
Given a language to check for type soundness and finite
bounds on the size of its intermediate program states, our
system first initializes the search space to the set of all
well typed program states within the finite bounds. It then
systematically explores this space by repeatedly selecting a
program state w from the search space, running its analyses
to identify a set of program states W′ (including w) on which
smallStep (described in Section 3.1) behaves similarly to
w, checking that the progress and preservation theorems hold
on every program state in W′, and pruning all the program
states in W′ from the search space. The next sections describe
how to perform various steps of the above search efficiently.

3.4 Search Space Representation

Consider the search space of the language in Figure 3, with
ASTs of height at most h=8. The size of this search space
is about 212487. Of these, about 22523 ASTs are type cor-
rect. However, as our experiments show, our system checks
the progress and preservation theorems explicitly on only 41
ASTs. (Our analyses determine that it is redundant to check
the theorems on the remaining elements of the search space.)
Thus, if we are not careful, search space management it-
self could take exponential time and negate the benefits of
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1 void search( SearchSpace S ) {

2 W = { w ∈ S | w.wellTyped() }

3 while ( W 6= ∅ ) {

4 w = Any element in W

5 W′ = { w′ ∈ W | smallStep behaves similarly on w & w′ }

6 Check progress and preservation on all states in W′

7 W = W - W′

8 }

9 }

Figure 6. Pseudo-code for the search algorithm.

our search space pruning techniques. We avoid this by us-
ing a compact representation of the search space (that is, the
set of intermediate program states). We explored two differ-
ent approaches for representing the search space: (i) using
a reduced ordered binary decision diagram [10] or BDD,
as in our previous work [16], and (ii) using an incremen-
tal SAT solver, MiniSat [22]. In our experiments, we found
that while the BDD-based approach performs slightly better
on tree-based type constraints, the SAT-based approach per-
forms much better on languages that include non-tree-based
type constraints (that is, on languages whose program states
include components other than ASTs). We therefore discuss
only our SAT-based approach in the rest of this paper.

Our SAT-based approach works as follows. We represent a
set of program states as a finite propositional logic formula.
For example, for the search space in Figure 4, the formula
(n0.kind=IF ∧ n1.kind=ISZERO ∧ n4.kind=ZERO ∧
n0.e1=n1 ∧ n0.e2=n2 ∧ n0.e3=n3 ∧ n1.e1=n4) rep-
resents the set of all the terms of the form ‘if (iszero 0)
then x1 else x2’, where x1 and x2 are any two terms.
This includes the terms represented by ASTs t1, t2, and t3
in Figure 2. Every satisfying assignment of the formula rep-
resents a member of the set. If the formula is unsatisfiable,
then the set is empty. We use dlog2 de bits to encode a field
with domain size d. For example, we use 3 bits to encode a
kind field , and 1 bit to encode an e1, e2, or e3 field. We use
an incremental SAT solver to find satisfying assignments of
the propositional logic formula. Line 7 in Figure 6, comput-
ing the difference of two sets, thus takes time linear in the
size of the formula because it simply injects clauses into the
incremental SAT solver. Line 3, checking if a set is empty,
and Line 4, choosing an element of a non-empty set, could
be expensive operations because they invoke the SAT solver.

3.5 Search Space Initialization

Our search begins by initializing the search space to the set
of all well typed intermediate program states (Line 2 in Fig-
ure 6). We do this by automatically translating the declara-
tive method wellTyped (described in Section 3.1) and the
declarative methods it transitively invokes, given the finite
bounds on the size of intermediate program states, into a fi-
nite propositional logic formula. The translation process is
somewhat similar to that of AAL [37]. However, because

our declarative methods do not contain object creations, as-
signments, loops, or exception handlers, the formulas for
declarative methods we generate are considerably simpler
than the formulas for regular Java methods that AAL gen-
erates. We translate our declarative variant of Java directly
into propositional logic, unlike AAL which translates Java
into Alloy [34] and translates Alloy into propositional logic.

3.6 Dynamic Analysis

This section presents our basic search space pruning tech-
nique. Consider the language implemented in Figure 3. Con-
sider checking the progress and preservation theorems on the
AST represented by the first element in Figure 5. The theo-
rems hold on the AST. As our system evaluates the AST a
small step forward, it monitors the fields that the small step
evaluator reads. In this case, smallStep reads n0.kind,
n1.kind, n4.kind, n0.e1, and n1.e1. That means, regard-
less of the values of the remaining fields, the small step eval-
uator will still behave similarly if the values of the fields
that were read do not change. Our system then determines
that regardless of the values of the remaining fields, if the
AST is well typed before the small step evaluation, then
the AST will be well typed after the small step evaluation.
Our system therefore prunes all elements of the search space
where (n0=IF ∧ n1=ISZERO ∧ n4=ZERO ∧ n0.e1=n1 ∧
n1.e1=n4). This is the basic idea that makes our approach of
exhaustive testing within a large but finite domain feasible.

3.7 Static Analysis

The dynamic analysis described above in effect detects don’t
care fields in a well typed program state w, and suggests that
all states w′ that differ from w only at the don’t care fields be
pruned from the search space. The goal of the static analysis
is to prove that it is indeed safe to prune those states. To see
why the static analysis is necessary, consider the following
simple but artificial example where wellTyped returns true
iff a implies b. Suppose we invoke smallStep on a=false
and b=true. wellTyped returns true before and after the
execution of smallStep. smallStep reads only the field a
while the field b is a don’t care. The dynamic analysis above
suggests that the progress and preservation theorems might
hold on all states where a=false (and therefore those ele-
ments be pruned from the search space). But the suggestion
is incorrect because the preservation theorem does not hold
on a=false and b=false. wellTyped returns true before
the evaluation of smallStep but returns false after.
1 class WhyStaticAnalysis extends Language {
2 private boolean a, b;
3 @Declarative
4 public boolean wellTyped() {return a ==> b;}
5 public void smallStep() throws StuckException {a = !a;}
6 }

Our static analysis works as follows. Consider checking the
progress and preservation theorems on a program state w,
with fields f1..n. Of these, without loss of generality, suppose
smallStep neither writes to nor reads the original values of
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fields f1..m, writes to but does not read the original values
of fields f(m+1)..k, and both writes to and reads the original
values of fields f(k+1)..n. Our dynamic analysis then identi-
fies fields f1..k as don’t cares. Let the values of fields f1..n
be v1..n before smallStep, and v′1..n after smallStep. Re-
call from Section 3.5 that our system automatically trans-
lates the declarative method wellTyped, given the finite
bounds on the size of program states, into a finite proposi-
tional logic formula. Let wellTyped(f1..n) denote that for-
mula. Our static analysis then attempts to prove that for
all values of f1..k in the bounded domain, wellTyped(f1..k
v(k+1)..n) implies wellTyped(f1..m v′(m+1)..n). Our system in-
vokes the SAT solver to check if the implication holds. If
the implication holds, our system safely prunes the search
space as described in Section 3.6. If the implication does not
hold, then there is an error in the type system. An instance
satisfying the negation of the implication exposes the error.

The above analysis requires careful handling if smallStep
rearranges fields. Consider the search space in Figure 4.
Consider checking the term ‘if true then (if false
then false else false) else true’. A small step of
evaluation yields the term ‘if false then false else
false’. Note that even though smallStep does not read the
fields of nodes n2, n7, n8, and n9 in Figure 4, it moves the
nodes into the positions of nodes n0, n1, n2, and n3. Thus,
for example, the field n2.kind before smallStep moves
into the position of n0.kind after smallStep. Our system
tracks such rearrangement of fields and appropriately con-
structs the formula for the static analysis described above.

3.8 Symbolic Execution

The dynamic analysis in Section 3.6 identifies a usually large
set W′ of program states on which smallStep behaves simi-
larly (Line 5 in Figure 6). The static analysis in Section 3.7
efficiently checks that the progress and preservation theo-
rems hold on all the program states in W′ (Line 6 in Figure 6),
so that W′ can be pruned from the search space. This section
describes optimizations that enable our system to identify
and prune an even larger set W′ from the search space.

Consider smallStep in the example below. Suppose it is
invoked on b1=true, b2=true, b3=true, b4=true, and
b5=true. The dynamic analysis in Section 3.6 detects that
smallStep only reads fields b1, b2, b3, and b5, and thus
determines that if the values of those fields remain un-
changed, smallStep will behave similarly. Suppose the
declarative method wellTyped gets automatically trans-
lated into the formula wellTyped(b1, b2, b3, b4, b5), as
described in Section 3.7. The static analysis in Section 3.7
then attempts to prove using a SAT solver that for all values
of b4, wellTyped(true, true, true, b4, true) implies
wellTyped(true, true, true, false, true). If the im-
plication holds, our system prunes from the search space all
states where (b1=true ∧ b2=true ∧ b3=true ∧ b5=true).

1 class WhySymbolicExecution extends Language {
2 private boolean b1, b2, b3, b4, b5;
3 @Declarative
4 public boolean wellTyped() {...}
5 public void smallStep() throws StuckException {
6 if ( b1 == b2 ) if ( b1 == b3 ) b4 = !b5;
7 }
8 }

In the above example, even though the field b5 is read, it
does not affect the control flow of smallStep. Moreover,
even though the fields b1, b2, and b3 are read, the control
flow of smallStep remains the same if (b1=b2 ∧ b1=b3).
Our system uses symbolic execution [39] to identify that
smallStep behaves similarly, that is, follows the same con-
trol flow path, on all program states where (b1=b2 ∧ b1=b3).
Our system uses symbolic execution to also identify that the
value of the field b4 after smallStep is the negation of the
value of the field b5 before smallStep. Our static analysis
then attempts to prove using a SAT solver that for all val-
ues of b1, b2, b3, b4, and b5, wellTyped(b1, b2, b3, b4,
b5) and (b1=b2 ∧ b1=b3) implies wellTyped(b1, b2, b3,
¬b5, b5). If the implication holds, our system prunes from
the search space all states where (b1=b2 ∧ b1=b3).

Our system currently symbolically executes assignments,
comparisons, and boolean operations. Our system also sym-
bolically executes declarative methods by automatically
translating declarative methods into propositional logic for-
mulas, as described in Section 3.5, and replacing every call
to a declarative method with its corresponding propositional
logic formula. For example, when symbolically executing
Line 30 or Line 32 in Figure 3, our system replaces the call
to the declarative method isValue with its corresponding
propositional logic formula. Our system uses symbolic ex-
ecution to build a path constraint formula which when true
guarantees that smallStep will follow the same control
flow path. Our system then performs a static analysis as de-
scribed above and prunes all states that satisfy the formula.
If our system is unable to symbolically execute an operation
on a field f with original value v, it simply treats the field
concretely instead of symbolically and adds the clause (f=v)
to the path constraint formula (that is, our system falls back
to the dynamic analysis in Section 3.6 w.r.t. that field).

3.9 Isomorphism Analysis

Consider a language whose intermediate program states in-
clude an AST and a dynamically allocated heap. Figure 7
presents an example of such a search space, where every ob-
ject contains one pointer, the AST has height at most 2, and
there are at most 4 heap objects. Consider the two elements
of the above search space in Figure 8. These two elements
are isomorphic because o0 and o1 are equivalent mem-
ory locations. Therefore, once we check the progress and
preservation theorems on the first element, it is redundant
to check the theorems on the second element. Our system
avoids checking isomorphic structures as follows. Suppose
the small step evaluator reads only n0.value, n1.value,
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Field Domain
n0.value {EQUALS, ..., o0, o1, o2, o3, null}
n1.value {EQUALS, ..., o0, o1, o2, o3, null}
n2.value {EQUALS, ..., o0, o1, o2, o3, null}
o0.value {o0, o1, o2, o3, null}
o1.value {o0, o1, o2, o3, null}
o2.value {o0, o1, o2, o3, null}
o3.value {o0, o1, o2, o3, null}

n1 n2

AST

n0

Heap

o0

o1

o2

o3

Figure 7. Search space for a language whose intermediate
program states include an AST and a heap.

and n2.value when evaluating the first element, and sup-
pose that the analyses in the previous sections conclude
that all states where (n0.value=EQUALS ∧ n1.value=o0
∧ n2.value=o1) can be pruned. Our isomorphism analysis
then determines that all structures that satisfy the following
formula can also be safely pruned: (n0.value=EQUALS ∧
n1.value=o1/o2/o3 ∨ n0.value=EQUALS ∧ n1.value=
o0 ∧ n2.value=o2/o3).

In general, given a program state w, our system constructs
such a formula Iw denoting the set of states isomorphic
to w as follows. Recall from Section 3.8 that our symbolic
execution on w builds a path constraint formula, say Pw.
Suppose during symbolic execution our system encounters a
fresh object o that a field f points to, and the path constraint
built so far is Pw. Our isomorphism analysis includes in Iw
all states that satisfy (Pw ∧ f=o′), for every o′ in the domain
of the field f that is another fresh object. Our system then
prunes all the states denoted by Iw from the search space.

Note that some software model checkers also prune iso-
morphic program states using heap canonicalization [32,
43]. The difference is that in heap canonicalization, once a
checker visits a state, it canonicalizes the state and checks if
the state has been previously visited. In our system, once our
checker checks a state w, it computes a compact formula Iw
denoting a (often exponentially large) set of states isomor-
phic to w, and prunes Iw from the search space. Our checker
never visits the (often exponentially many) states in Iw.

3.10 Handling Special Cases

Our system also handles the following special cases.

3.10.1 Handling Term Cloning

Consider the following semantics for the while statement
of the imperative language IMP from [55, Chapter 2], which
clones the entire loop body. σ contains values of variables.

〈while c do b, σ〉 → 〈if c then (b; while c do b), σ〉
The cloning of different loop bodies could make smallStep
follow different control flow paths. However, in one iteration
of the loop in Figure 6, the symbolic execution described

Field Value Field Value
n0.value EQUALS n0.value EQUALS
n1.value o0 n1.value o1
n2.value o1 n2.value o0
o0.value null o0.value null
o1.value null o1.value null
o2.value null o2.value null
o3.value null o3.value null

Figure 8. Two isomorphic elements of the space in Figure 7.

above only prunes states on which smallStep follows the
same control flow path. To enable the pruning of program
states with different loop bodies in the same iteration of the
loop in Figure 6, our system provides a special construct to
implement cloning and replaces a cloning operation with an
automatically generated formula during symbolic execution.

Other examples of cloning include method calls that have a
method inlining semantics (e.g., in Featherweight Java [31]).

3.10.2 Handling Substitution

Consider a language where method calls have a method
inlining semantics. Suppose one small step of evaluation
substitutes all the formals with actuals in the method body.
Our model checker works best when each small step of
evaluation reads only a small part of the program state.
However, the above substitution reads the entire method
body. Language designers can avoid the problem by defining
the semantics of method calls using incremental substitution,
where each small step of evaluation performs substitution
on at most one AST node, and by ensuring that the type
checking rules handle partially substituted program states.

3.10.3 Handling Nondeterministic Languages

The discussion so far assumes deterministic languages. Con-
sider a language L with with nondeterministic operational
semantics. Its implementation in our system must include
a deterministic method smallStep that takes an integer x
as an argument, as shown below. If there are n transitions
enabled on a given state, then smallStep must execute a
different transition for each different value of x from 1 to
n. Our system then checks that the progress and preserva-
tion theorems hold on every program state (within the finite
bounds), w.r.t. every transition that is enabled on the state.

1 class L extends NondeterministicLanguage {
2 @Declarative
3 public boolean wellTyped() {...}
4 public void smallStep(int x) throws StuckException {...}
5 }

4. Experimental Results
This section presents our preliminary experimental results.
We implemented a rudimentary software model checker as
described in this paper. We extended the Polyglot [48] com-
piler framework to automatically instrument the operational
semantics of languages to perform our dynamic analyses.
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We used MiniSat [22] as our incremental SAT solver to per-
form our static analysis. We ran all our experiments on a
Linux Fedora Core 8 machine with a Pentium 4 3.4 GHz
processor and 1 GB memory using IcedTea Java 1.7.0.

We present results for the following languages, each with
increasing complexity:

1. The language of integer and boolean expressions from
[50, Chapters 3 & 8], as implemented in Figure 3.

2. A typed version of the imperative language IMP from
[55, Chapter 2].
This language contains integer and boolean variables, so
its type checking rules include an environment context.
This language also contains while statements.

3. An object-oriented language Featherweight Java [31].
This language has classes, objects, and methods. The se-
mantics of method calls require term level substitution (of
the formal method parameters with their actual values).

4. An extension to Featherweight Java we call Mini Java.
This language models the heap explicitly, supports muta-
tions to objects in the heap, and includes a null value.
This language also contains integers and booleans, and
operations on integers and booleans.

5. An extension to Mini Java to support ownership types
[1, 6, 13], that we call Ownership Java.
This language has classes parameterized by owner pa-
rameters. Therefore the semantics of a method call re-
quire both term level and type level substitution.

For each benchmark, we checked the progress and preser-
vation theorems exhaustively on all program states up to a
maximum size n. In all languages, we limited the maximum
expression size to be bound by a balanced AST with n nodes.
In the imperative language IMP, we limited program states
to have at most n variables and n integer literals. In Feath-
erweight Java, Mini Java, and Ownership Java, we limited
program states to have at most four classes, where each class
can have at most two fields and two methods (in addition to
inherited fields and methods). In Mini Java and Ownership
Java, we limited program states to have at most four heap
objects and n integer literals. In Ownership Java, we limited
classes to have at most two owner parameters.

We report both the number of states explicitly checked by
our checker and the time taken by our checker. Note that
we did not yet optimize the execution time of our checker,
but we report it here nonetheless to provide a rough idea.
The results indicate that our approach is feasible and that
our model checker achieves significant state space reduction.
For example, the number of well typed IMP programs of
maximum size 511 is over 2786, but our checker explicitly
checks only 652 states to exhaustively cover this space.

Benchmark Max Expression States Time (s)
Size Checked

1 1 0.068
2 3 0.093
3 3 0.105
4 5 0.122

Expression ... ... ...
Language 13 11 0.246

40 17 0.551
121 23 1.376
364 29 3.633

1093 35 10.833
3280 41 38.543

1 1 0.102
2 7 0.185
3 11 0.256
4 19 0.408
5 34 0.710
6 34 0.739

IMP 7 34 0.816
... ... ...
15 61 2.158
31 96 5.107
63 147 10.066

127 230 21.013
255 377 52.208
511 652 331.138

1 3 1.148
2 7 1.594
3 9 1.650
4 9 1.899

Featherweight 5 13 2.151
Java ... ... ...

21 70 6.905
85 298 43.756

341 1210 475.022
1 5 2.721
2 21 3.117
3 40 3.897

Mini 4 53 5.750
Java 5 59 6.191

... ... ...
21 275 37.354
85 1133 342.435

341 4565 5981.114
1 13 50.818
2 73 77.135
3 110 103.230
4 135 231.328

Ownership 5 157 247.954
Java ... ... ...

21 733 2760.734
25 877 3963.836
29 1021 5271.509
33 1165 6255.260

Figure 9. Experimental results for checking soundness of
type systems. Our system achieves significant state space
reduction. For example, there are over 2786 well typed IMP
programs of expression size up to 511, but our system checks
only 652 states to exhaustively cover this space.

Finally, Figure 10 presents our experimental results that sug-
gest that exhaustive testing within a small finite domain does
indeed catch all type system errors in practice, a conjecture
also known as the small scope hypothesis [35, 41, 49]. We
introduced twenty different errors into the type system of
Ownership Java (one at a time) and five different errors into
the operational semantics. Some are simple mistakes such as
forgetting to include a type checking clause. Some are more
subtle errors as the following examples illustrate.
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Max Expression Percentage of Errors Caught
Size

1 0
2 8
3 40
4 68
5 76
6 80
7 84
8 100

Figure 10. Evaluating the small scope hypothesis. A max-
imum expression size of 8 is sufficient to catch all the type
system errors that we introduced into Ownership Java.

The Java compiler rejects as ill typed a term containing a
type cast of a value of declared type T1 into a type T2 if T1
is neither a subtype nor supertype of T2. The Ownership Java
(as also the Featherweight Java) compiler, however, accepts
such a term as well typed. We changed Ownership Java to re-
ject such casts as ill typed. Our model checker then correctly
detected that the preservation theorem does not hold for the
changed language. The term (T2) (Object<world>) new
T1() provides a counter example. It is well typed initially.
But after the upcast, the term in effect simplifies to (T2)
new T1() which is ill typed in the changed language. The
preservation theorem therefore does not hold.

We also introduced a subtle bug (c.f. [5, Figure 24]) into
Ownership Java such that the owners as dominators property
does not hold. Our checker correctly detected the bug.

The results in Figure 10, while preliminary, do indicate that
exhaustive testing within a small finite domain is an effec-
tive approach for checking soundness of type systems. We
also examined all the type soundness errors we came across
in literature and found that in each case, there is a small pro-
gram state that exposes the error. This lends credibility to the
validity of the small scope hypothesis in practice.

5. Related Work
This section presents related work on software model check-
ing. Model checking is a formal verification technique that
exhaustively tests a circuit/program on all possible inputs
(sometimes up to a given size) to handle input nondeter-
minism and all possible nondeterministic schedules to han-
dle scheduling nondeterminism. There has been much re-
search on model checking of software. Verisoft [24] is a
stateless model checker for C programs. Java PathFinder
(JPF) [53, 38] is a stateful model checker for Java programs.
XRT [27] checks Microsoft CIL programs. Bandera [15] and
JCAT [18] translate Java programs into the input language of
model checkers like SPIN [30] and SMV [42]. Bogor [21] is
an extensible framework for building software model check-
ers. CMC [44] is a stateful model checker for C programs
that has been used to test large software including the Linux
implementation of TCP/IP and the ext3 file system.

For hardware, model checkers have been successfully used
to verify fairly complex finite state control circuits with up to
a few hundred bits of state information; but not circuits that
have large data paths or memories. Similarly, for software,
model checkers have been primarily used to verify control-
oriented programs (with scheduling nondeterminism) with
respect to temporal properties; but not much work has been
done to verify data-oriented programs (with input nondeter-
minism) with respect to complex data-dependent properties.

Thus, most of the research on reducing the state space of a
software model checker has focused on checking programs
with scheduling nondeterminism. Tools such a Slam [3],
Blast [29], and Magic [11] use heuristics to construct and
check an abstraction of a program (usually predicate ab-
straction [26]). Abstractions that are too coarse generate
false positives, which are then used to refine the abstraction
and redo the checking. This technique is known as Counter
Example Guided Abstraction and Refinement or CEGAR.
There are also many static [24] and dynamic [23] partial or-
der reduction systems for concurrent programs. There are
many other symmetry-based reduction techniques as well
(e.g., [33]). However, none of the above techniques seem to
be effective in reducing the state space of a model checker
when checking the soundness of a type system—where one
must deal with input nondeterminism (to check every input
program state) and data-dependent properties (type correct-
ness properties that depend on input program states). In fact,
because of input nondeterminism, it is difficult to even for-
mulate the problem of checking type soundness automati-
cally in the context of most software model checkers.

Tools such as Alloy [34, 36] and Korat [4] systematically
generate all test inputs that satisfy a given precondition.
A version of JPF [38] uses lazy initialization of fields to
essentially simulate the Korat algorithm. However, these
tools generate and test every valid state and so do not achieve
as much state space reduction as our system.

Jalloy [52] and Miniatur [19] translate a Java program and its
specifications into a SAT formula and verify it with a SAT
solver. We experimented with a similar approach by trans-
lating both the operational semantics and the type system of
a language into a SAT formula and verifying it with a SAT
solver. However, translating operational semantics into SAT
usually led to large formulas and the approach was less effi-
cient than the model checker described in this paper.

This paper builds on our recent previous work on model
checking properties of tree-based data structures [16]. This
paper improves on the techniques presented in [16] and
applies them to checking soundness of type systems.

A recent paper [12] describes a technique for checking prop-
erties of programming languages specified in αProlog, us-
ing a bounded backtracking search in an αProlog interpreter.
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However, [12] does not use our search space reduction tech-
niques and does not scale as well as our model checker.

6. Conclusions
This paper presents a software model checker that automat-
ically checks the soundness of a type system, given only
the specification of type correctness of intermediate program
states and the small step operational semantics. Currently,
proofs of type soundness are either done on paper or are ma-
chine checked, but require significant manual assistance in
both cases. Consequently proofs of type soundness are usu-
ally done after language design, if at all. Our system can be
used during language design with little extra cost.

We have tested our system on several small to medium sized
languages that include several features such as term and type
level substitution, explicit heap, objects, etc., and found our
approach to be feasible. We expect our system to be partic-
ularly useful to researchers who design novel type systems
but formalize only a core subset of their type systems, as is
the standard practice in the research community.

This paper presents techniques that significantly reduce the
state space of a model checker for checking type soundness.
This paper thus makes contributions both in the area of
checking soundness of type systems, and in the area of
reducing the state space of a software model checker.
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