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Abstract
In previous work onSafeJavawe presented a type system exten-
sion to the Java source language that statically prevents data races
and deadlocks in multithreaded programs. SafeJava is expressive
enough to support common programming patterns, its type check-
ing is fast and scalable, and it requires little programming over-
head. SafeJava thus offers a promising approach for making mul-
tithreaded programs more reliable. This paper presents a corre-
sponding type system extension for the Java virtual machine lan-
guage (JVML). We call the resulting languageSafeJVML. Well-
typed SafeJVML programs are guaranteed to be free of data races
and deadlocks. Designing a corresponding type system for JVML
is important because most Java code is shipped in the JVML for-
mat. Designing a corresponding type system for JVML is nontrivial
because of important differences between Java and JVML. In par-
ticular, the absence of block structure in JVML programs and the
fact that they do not use named local variables the way Java pro-
grams do make the type systems for Java and JVML significantly
different. For example, verifying absence of races and deadlocks in
JVML programs requires performing an alias analysis, something
that was not necessary for verifying absence of races and deadlocks
in Java programs. This paper presents static and dynamic seman-
tics for SafeJVML. It also includes a proof that the SafeJVML type
system is sound and that it prevents data races and deadlocks. To
the best of our knowledge, this is the first type system for JVML
that statically ensures absence of synchronization errors.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
D.2.4 [Software Engineering]: Program Verification

General Terms
Languages, Verification

Keywords
SafeJava, Data Races, Deadlocks, Ownership Types

1. Introduction
Multithreaded programming is becoming a mainstream program-
ming practice. But multithreaded programming is difficult and error
prone. Multithreaded programs synchronize operations on shared
mutable data to ensure that the operations execute atomically. Fail-
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ure to correctly synchronize such operations can lead todata races
or deadlocks. A data race occurs when two threads concurrently ac-
cess the same shared data, at least one of the accesses is a write, and
there is no synchronization to separate the accesses. A deadlock oc-
curs when there is a set of threads such that every thread in the set
is waiting on a lock held by another thread in the set. Synchroniza-
tion errors in multithreaded programs are timing-dependent, non-
deterministic bugs, and are among the most difficult programming
errors to detect, reproduce, and eliminate.

In previous work onSafeJava[5, 6, 9] we presented a static type
system for multithreaded programs. Well-typed SafeJava programs
are guaranteed to be free of data races and deadlocks. The basic
idea is as follows. When programmers write multithreaded pro-
grams, they already have a locking discipline in mind. SafeJava
allows programmers to specify this locking discipline in their pro-
grams in the form of type declarations. The type checker then stati-
cally verifies that a program is consistent with its type declarations.

The SafeJava type system also enforces object encapsulation [5, 7],
which is key to enable local reasoning in object oriented programs.
Consider, for example, aStack objects that is implemented using a
linked list. Local reasoning about the correctness of theStack im-
plementation is possible if objects outsides do not directly access
the list nodes, i.e., the list nodes areencapsulatedwithin s. Safe-
Java uses a variant of ownership types [13, 12, 3] to declare that
s ownsall the list nodes. The type system then statically ensures
that the list nodes are encapsulated withins. Object encapsulation
is useful for safe multithreading because the lock that protects an
object can also protect the objects encapsulated within that object.

Our experience suggests that SafeJava is expressive enough to sup-
port common programming patterns, its type checking is fast and
scalable, and it requires little programming overhead. In addition,
the type declarations in SafeJava programs serve as documentation
that lives with the code and is checked throughout the evolution of
code. The SafeJava type system thus provides significant software
engineering benefits and offers a promising approach for improving
the reliability of multithreaded and object-oriented programs.

This paper presents a corresponding type system for (a subset of)
the Java virtual machine language (JVML). We call the resulting
languageSafeJVML. Well-typed SafeJVML programs are guaran-
teed to be free of data races and deadlocks. Well-typed programs
are also guaranteed to enforce object encapsulation. This paper
presents the static and dynamic semantics of SafeJVML, and in-
cludes a proof that the SafeJVML type system is sound and that it
prevents data races and deadlocks and enforces encapsulation.

Designing a corresponding type system for JVML is important be-
cause it is the format of choice for shipping code. Systems that
download untrusted JVML programs first perform bytecode ver-
ification to ensure absence of memory errors before running the
programs. With our proposed extension to the JVML type sys-
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1 class Account {
2 private int balance;
3 static void transfer(Account from, Account to, int x) {
4 synchronized (from) {
5 synchronized (to) {
6 to.balance += x;
7 from.balance -= x;
8 }}
9 }

10 }

Figure 1. A transfer method in Java

static void transfer(Account,Account,int);
1: load 0 17: putfield #2; //balance:I
2: store 3 20: load 0
3: load 3 21: load 0
4: monitorenter 22: getfield #2; //balance:I
5: load 1 25: load 2
6: store 4 26: sub
7: load 4 27: putfield #2; //balance:I
9: monitorenter 30: load 4

10: load 1 32: monitorexit
11: load 1 44: load 3
12: getfield #2; //balance:I 45: monitorexit
15: load 2 56: return
16: add

Figure 2. The transfer method in Figure 1 in JVML (excluding ex-
ception handling)

tem, a bytecode verifier can also statically ensure the absence of
data races and deadlocks in a program before running it. More-
over, many code bases have a combination of Java source code and
JVML code. Verifying the absence of races and deadlocks in such a
code base requires corresponding race-free and deadlock-free type
systems for both Java and JVML.

Designing a corresponding type system and asyntax-directedtype
checker for JVML is nontrivial because of important differences be-
tween Java and JVML. In particular, the absence of block structure
in JVML programs and that they do not use named local variables
like Java programs make the type systems for Java and JVML sig-
nificantly different. For example, verifying absence of races and
deadlocks in JVML programs involves performing an alias analy-
sis, something we did not have to do for verifying Java programs.

Consider thetransfer method in Figure 1. Suppose there are
type annotations (not shown in the figure) that declare that every
Account object is protected by its own lock. A type checker can
then statically verify that thetransfermethod is race-free because
the accesses to thebalance field of theto andfrom Account ob-
jects happen within the block of code where the locks on theto and
from Account objects are held. Now consider the corresponding
JVML code in Figure 2. To check that the JVML code is race-free,
one must use alias analysis to statically ensure that thegetfield
andputfield instructions operate on the same objects on which
the locks are obtained usingmonitorenter. Moreover, one must
statically ensure thatgetfield andputfield accesses happen af-
ter the correspondingmonitorenter instructions and before the
correspondingmonitorexit instructions, something that is non-
trivial in general if the code is not block structured and uses gotos.

To the best of our knowledge, this is the first type system for JVML
that statically prevents data races, deadlocks and encapsulation vio-
lations. This paper combines ideas from four different systems—i)
formalization of the JVML type system [4, 20, 29], ii) type systems
for preventing data races and deadlocks in Java programs [5, 9, 6,
16]) iii) ownership types for enforcing object encapsulation [1, 3,
7, 13], and iv) type systems for JVML for statically ensuring that
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Figure 3. An ownership relation

E1. The owner of an object does not change over time.

E2. The ownership relation forms a tree rooted atworld.

E3. If objectz ownsy butz 6º x, thenx cannot accessy.

R4. To safely access an object, a thread must hold the lock on the
root ownerof that object. (r is the root owner of an objecto
iff r º o andworld directly ownsr.)

R5. Every thread implicitly holds the lock on its corresponding
thisThread owner. A thread can access objects owned by
its thisThread without synchronization.

D6. Every lock belongs to some lock level. The lock level of
a lock does not change over time. The lock levels form a
partial order.

D7. To acquire a new lock of lock levell, the levels of all the
locks held by the thread must be greater thanl.

Figure 4. Properties of SafeJava and SafeJVML type systems

methods release all locks they acquire and no other lock [26, 23]—
and achieves what neither of these systems individually achieves.

We also note in passing that any type system that guarantees race
freedom also eliminates all the complex issues associated with the
use of weak memory consistency models [28]. A detailed expla-
nation of this issue can be found in [2]. The rest of the paper is
organized as follows. Section 2 presents an overview of SafeJava.
Section 3 presents SafeJVML, including its dynamic and static se-
mantics and a soundness proof. Section 4 describes related work.

2. Overview of SafeJava
This section presents an overview of a core subset of SafeJava for
preventing data races [9] and deadlocks [6] and encapsulation vi-
olations [7]. The key to the type system is the concept of object
ownership. Every object has an owner. An object can be owned by
another object, by a special per-thread owner calledthisThread,
or a global owner calledworld. We use the notationo1 º o2 to de-
note thato1 directly or transitively ownso2 or o1 is the same aso2.
The relationº is thus the reflexive transitive closure of theowns
relation. If thisThread º o, theno is local to the corresponding
thread and cannot be accessed by any other thread. All other objects
are potentially shared between multiple threads. Figure 3 presents
an example ownership relation. We draw an arrow from objectx to
objecty if x ownsy. Our type system statically verifies that a pro-
gram respects the properties shown in Figure 4. Properties E1-E3
ensure encapsulation. Properties R4 and R5 prevent races.

Figure 5 shows aTStack program in SafeJava. ATStack is a
stack ofT objects. ATStack is implemented using a linked list.
A class definition in SafeJava is parameterized by a list of owners.
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1 class TStack<thisOwner, TOwner> {
2 TNode<this, TOwner> head = null;
3
4 T<TOwner> pop() requires(this) {
5 if (head == null) return null;
6 T<TOwner> value = head.value; head = head.next;
7 return value;
8 }
9 }

10 class TNode<thisOwner, TOwner> {
11 T<TOwner> value;
12 TNode<thisOwner, TOwner> next;
13 }
14
15 TStack<thisThread, thisThread> s1;
16 TStack<thisThread, world> s2;
17 TStack<world, world> s3;

Figure 5. Stack of T objects in SafeJava
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Figure 6. Ownership relation for TStacks s1,s2,s3

This parameterization helps programmers write generic code to im-
plement a class, then create different objects of the class that have
different protection mechanisms. In Figure 5, theTStack class is
parameterized bythisOwner andTOwner. thisOwner owns the
this TStack object andTOwner owns theT objects contained in
the TStack. In general, the first formal parameter of a class al-
ways owns thethis object. In case ofs1, the ownerthisThread
is used for both the parameters to instantiate theTStack class. It
means thatTStack s1 as well as all theT objects contained in the
TStack are local to the main thread. In case ofs2, theTStack is
local to the main thread but theT objects contained in theTStack
are potentially shared between multiple threads. In case ofs3, both
theTStack and theT objects contained in theTStack are poten-
tially shared between multiple threads. The ownership relation for
theTStack objectss1, s2, ands3 is depicted in Figure 6 (assuming
the stacks contain two elements each). In SafeJava, a method can
contain arequires clause that specifies the objects the method ac-
cesses that must be protected by externally acquired locks. Callers
are required to hold the locks on the root owners (see Figure 4)
of the objects specified in therequires clause before they invoke
a method to avoid data races. Thepop method assumes that the
callers hold the lock on the root owner of theTStack object.

To prevent deadlocks, programmers partition all the locks in the
system into a fixed number of lock levels and specify a partial or-
der among the lock levels. The type checker statically verifies that
whenever a thread holds more than one lock, the thread acquires the
locks in the descending order. A lock level is like a static field in
Java; a lock level is a per-class entity rather than a per-object en-
tity. But unlike static fields in Java, lock levels are used only for
compile-time type checking and are not preserved at runtime. Pro-
grammers can specify a partial order among the lock levels using
the< and> syntax in the lock level declarations. Since a program
has a fixed number of lock levels, our type checker can statically
verify that the lock levels do indeed form a partial order. Proper-
ties D6 and D7 in Figure 4 prevent deadlocks.

P ::= defn*
defn ::= class cn〈formal+〉 extends c where constr*

{level* field* meth*}
c ::= cn〈owner+〉 | Object〈owner〉

owner ::= formal | this | world:cn.l | thisThread
constr ::= (ownerº owner) | (owner 6º owner)

level ::= LockLevel l = new | LockLevel l < cn.l* > cn.l*
meth ::= t mn(t* ) requires (x0..k) locks (cn.l* ) {inst*}
field ::= t fd

methodref ::= ‖c, mn〈owner+〉, (t*), t, requires(x0..k)‖M

fieldref ::= ‖c, fd, t‖F

t ::= c | int | ci , i is an integer
formal ::= f

inst ::= push v | pop | store x | load x | add | ifeq L | new c |
invokevirtual methodref| returnval | start |
getfield fieldref | putfield fieldref |
monitorenter | monitorexit

fd ∈ field names, mn∈ method names, cn ∈ class names,
f ∈ owner names, x ∈ variable names, M ∈ methodref names,
F ∈ fieldref names, v ∈ Integers, l ∈ lock level names, L ∈ label names

Figure 7. SafeJVML grammar

Note that the complete SafeJava language is more expressive than
the core subset presented here, and supports most of the commonly
used synchronization patterns. It also supports safe region-based
memory management [10] and safe software upgrades [8]. A de-
tailed description can be found in [5] and [6, 7, 8, 9, 10].

3. SafeJVML
This section presents SafeJVML, an extension to the Java virtual
machine language (JVML) for statically preventing data races and
deadlocks as well as for statically enforcing object encapsulation.
To simplify the presentation of key ideas behind our approach, we
describe our system formally in the context of a core subset of
JVML. In particular, we avoid subroutines and object initialization
because they are orthogonal to preventing synchronization and en-
capsulation errors. However, they can be easily added to our system
using previous work on formalization of subroutines [11, 24, 30]
and object initialization [19] for JVML.

Figure 7 shows the grammar for SafeJVML. The grammar is similar
to the grammar for SafeJava [5] with respect to the class and method
signatures. But the SafeJVML instructions are different from those
of SafeJava. In particular, JVML programs are not block structured
and do not use named local variables. This makes it difficult to de-
sign a syntax-directed type checker for JVML that tracks the rela-
tion between locks acquired and the objects they protect. To address
this problem we use indexed types [26], which statically guarantee
that all variables with the same indexed typeci are aliases. In-
dexed types [26] were previously used to statically ensure that the
monitorenter andmonitorexit instructions are matched along
every program path. In this paper, we adopt the idea to ensure ab-
sence of races and deadlocks in JVML programs.

The SafeJVML instruction set closely resembles the JVML instruc-
tion set. The only difference is the format ofmethodrefshown
in Figure 7. In SafeJVML,methodrefalso includes arequires
clause which specifies the objects the method accesses that must be
protected by externally acquired locks. Eachxi in requires(x0..k)
denotes theith argument passed to the method. For example,re-
quires(x0, x1) specifies that thethis object (x0) and the first ar-
gument (x1) must be protected by externally acquired locks.

3.1 Dynamic Semantics
This section presents a small step operational semantics for Safe-
JVML. This is necessary to formally define the semantics of Safe-
JVML programs, as well as to state and prove the type soundness

3



C := Φ; h
Φ := T Φ | ε
T := (A)
A := 〈M, pc, f, s, ls〉A | ε
h : location→ 〈fdi=vi, gj=wj , level=cn′.l〉i∈{1..m},j∈{1..n}

cn〈w1..n〉

Figure 8. SafeJVML execution state

theorems. We call the corresponding virtual machine SafeJVM.
The SafeJVM execution state is a configurationC := Φ; h, where
Φ is a set of threads andh is a memory heap. Each threadT in
the thread setΦ has a stack of activation records. Each activation
recordA consists of themethodrefM of the method, the address
pc of the next instruction in the code array, a mapf from the set
of local variables to values, the operand stacks, and a set of locks
ls. The heap is modeled as a partial functionh mapping locations
to records. The definitions are shown in Figure 8.fd1..m denote
the fields in an object of typecn〈w1..n〉. The special fieldsg1..n

track the runtime ownerswi..n of the object. They are named after
the static formal owner parametersg1..n of the corresponding class.
The special fieldlevel stores the lock level of the lock associated
with this object. The special fieldlock stores the number of times
a thread has acquired the lock on this object. (Recall that locks
in JVML are reentrant.) We use the notationh[o].fd to access the
value of fieldfd from objecto in heaph. To create a new heap with
a modified value for that field, we use the notationh[o.fd → v].

Note that we includels for each method frame that belongs to a
thread instead of having a global lock set for a thread. The reason
is to simplify the type soundness proofs by maintaining close cor-
respondence with static semantics where we have a separate static
lock set for each method to enable modular checking of methods.
ls for a method frame contains the locks that are acquired within
the method and the locks that are specified in itsrequires clause.
The locks specified in therequires clause are externally acquired
locks; we check that these locks are indeed held by the thread be-
fore adding them to the current frame’s lock set. Therefore the lock
set held by a threadT is the union of the lock sets held in the ac-
tivation records of the thread. That is,Locks(T ) = ∪〈A〉∈T (ls ∈ A).
We also maintain the lock levels even though they are unnecessary,
to maintain close correspondence with static semantics.

Figure 10 presents the dynamic semantics for SafeJVML and Fig-
ure 9 presents some auxiliary definitions. The rules in Figure 10
only include the components that participate in the transition. The
transition however applies to every configuration that contains the
components using the following congruence rule. Below,Φ, Φ1,
andΦ2 are sets of threads, andLocks[Φ] is the collection of objects
locked by threads inΦ. That is,Locks[Φ] = ∪(T∈Φ)Locks[T ].

Φ1; h → Φ2; h′ (Locks[Φ1]∪Locks[Φ2])∩Locks[Φ] = φ
Φ1 ∪ Φ; h → Φ2 ∪ Φ; h′

Thenew instruction creates a new object and initializes its fields to
default values. It also initializes fieldsg1..n with runtime owners of
the object. To access the runtime owners, it uses a mapROshown
in Figure 9, which takes an object and a static owner parameter and
returns the corresponding runtime owner. Thestart instruction
starts a new thread with the lock set that contains onlythisThread,
because the new thread does not inherit any locks from its parent
thread. The control of the new thread is transferred to itsstart
method. Figure 10 presents these and other rules formally.

3.2 Static Semantics
This section describes the static semantics of SafeJVML. Following
standard practice in JVML type system formalizations [20, 26, 30],

type(h, v) =

�
int, if v is aninteger
t, if v ∈ locationandh[v] = 〈..〉t

�
lock(h, v) =

8<: thisThread, if type(h, v) = cn〈thisThread..〉
v, if type(h, v) = cn〈 world:cn’.l..〉
lock(h, v′), if type(h, v) = cn〈v′, ..〉

9=;
level(h, g) =

�
cn.l, if g = world:cn.l
∞, otherwise

�
RO(o, g) =

8><>:
thisThread, if g = thisThread
world, if g = world:cn.l
o, if g = this
h[o].g, otherwise

9>=>;
f0 : function mapping local variables to arbitrary values

Figure 9. Auxiliary definitions for dynamic semantics

we assume there is a separateintraproceduraltype inference phase
that infers the types of local variables at every program point. This
paper only describes the type checking rules. Type inference can be
performed by solving the constraints generated by the type check-
ing rules. The advantage of separating type inference from type
checking is that it reduces the size of the trusted computing base; a
bug in type inference cannot compromise a JVM, only a bug in type
checking can. Moreover, type checking becomes syntax directed.
We also assume the SafeJava to SafeJVML compiler generates pro-
grams according to the grammar in Figure 7. That is, the compiler
preserves the type annotations on class and method signatures.

The core of our type system is a set of rules for reasoning about the
typing judgment:P ; E; F ; S; LS; Lmin; i ` M . P denotes the pro-
gram that is being checked. It contains the information about class
definitions. The typing environmentE tracks the owners and con-
straints which are in scope. The typing environment contains the
declared owner parameters, the declared constraints among own-
ers, and the declaredlocks clause in scope:

E ::= ∅ |E, ownerf |E, constr|E, locks(cn.l∗)

F , S, LS, andLmin provide respectively the types of local variables,
the types of stack slots, the locks that are statically known to be
held, and the sequence of minimum lock levels at every program
point. That is,Fi is the map from local variables to types atith

instruction. Si is a sequence of types of the operand stack atith

instruction.LSi is a sequence of indexed object types denoting the
locks held at instructioni. Lmini is a sequence oflmin’s. Recall lock
levels from Section 2. The definition oflmin is as follows:

lmin ::=∞ | cn.l | LUB(cn1.l1 ... cnk.lk)

By definition,LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k. LUB(...) is not
computed—it is an expression used as such for type checking. The
lock level∞ denotes that the thread currently holds no locks.

Figure 11 presents the static semantics for the instructions in Safe-
JVML. The full set of typing rules are in the appendix. The judg-
mentP ; E; F ; S; LS; Lmin; i ` M denotes that instructioni sat-
isfies all type constraints.M [i] denotes theith instruction of the
method withmethodrefM . We use the notation that for any typet,
t.owners =o1..n if t = cn〈o1..n〉. Also, t[o1/f1][o2/f2]..[om/fm]
denotes the typet in which the formal owner parameters are re-
placed with actual owner parameters.

Figure 12 illustrates the types at every program point for thetrans-
fer method shown in Figure 2. We use this example to explain few
of our typing rules. Like we mentioned before, we use indexed
types to keep track of aliases. The indexed typeci is the type of
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M[pc] = push v

(〈M, pc, f, s, ls〉.A); h→
(〈M, pc+1, f, v.s, ls〉.A); h

M[pc] = pop

(〈M, pc, f, v.s, ls〉.A); h→
(〈M, pc+1, f, s, ls〉.A); h

M[pc]= ifeq L
v1 = v2

(〈M, pc, f, v1.v2.s, ls〉.A); h→
(〈M, L, f, s, ls〉.A); h

M[pc]= ifeq L
v1 6= v2

(〈M, pc, f, v1.v2.s, ls〉.A); h→
(〈M, pc+1, f, s, ls〉.A); h

M[pc]= add

(〈M, pc, f, v1.v2.s, ls〉.A); h→
(〈M, pc+1, f, (v1+v2).s, ls〉.A); h

M[pc] = getfield ‖cn〈f1..n〉, fd, t‖F

(〈M, pc, f, o.s, ls〉.A); h→
(〈M, pc+1, f, (h[o].‖cn〈f1..n〉, fd, t‖F ).s, ls〉.A); h

M[pc] = putfield ‖cn〈f1..n〉, fd, t‖F

(〈M, pc, f, v.o.s, ls〉.A); h→
(〈M, pc+1, f, s, ls〉.A); h[o.‖cn〈f1..n〉, fd, t‖F 7→ v]

M[pc] = start
o ∈Dom(h)

(〈M, pc, f, o.s, ls〉A); h→
(〈Mstart, 1, f0[0 → o], ε,thisThread〉).(〈M, pc+1, f, s, ls〉.A); h

M[pc]= load x

(〈M, pc, f, s, ls〉A); h→
(〈M, pc+1, f, f [x].s, ls〉.A); h

M[pc] = monitorenter
h[o].lock= 0

(〈M, pc, f, o.s, ls〉.A); h→
(〈M, pc+1, f, s, ls ∪ {o}〉.A); h[o.lock 7→ 1]

M[pc] = returnval
M = ‖cn〈f1..n〉, mn, α, γ,requires(x0..k)‖M

(〈M, pc, f, v.s, ls〉.〈M ′, pc′, f ′, s′, ls′〉.A); h→
(〈M ′, pc′, f ′, v.s′, ls′〉.A); h

M[pc] = store x

(〈M, pc, f, v.s, ls〉.A); h→
(〈M, pc+1, f [x → v], s, ls〉.A); h

M[pc] = monitorenter
h[o].lock= n, (n > 0)

o ∈ ls ∨ (〈M ′, pc′, f ′, s′, ls′〉 ∈ A ∧ o ∈ ls′)
(〈M, pc, f, o.s, ls〉.A); h→

(〈M, pc+1, f, s, ls〉.A); h[o.lock 7→ n+1]

M[pc] = new cn〈o1..n〉
o /∈Dom(h)

class cn〈g1..n〉 ...∈ P
(〈M, pc, f, s, ls〉.A); h→

(〈M, pc+1, f, o.s, ls〉.A); h[o 7→ Defaults(cn)][o.level 7→ level(h, o1)][o.gi 7→ RO(f [0], oi)]∀i∈1..n

M[pc] = monitorexit
h[o].lock= 1

(〈M, pc, f, o.s, ls ∪ {o}〉A); h→
(〈M, pc+1, f, s, ls〉.A); h[o.lock 7→ 0]

M[pc] = invokevirtual ‖cn〈f1..n〉, mn, α, γ,requires(x0..k)‖N

|α| = |s1|
∀i ∈ {0..k}, lock (h, (o.s1)[i]) ∈ ls
(〈M, pc, f, s1.(o.s), ls〉.A); h→

(〈N, 1, f0[0 → o, 1..|α| → s1], ε, {thisThread ∪ (∪i∈0..k lock (h, (o.s1)[i]))}〉.〈M, pc+1, f, s, ls〉.A); h

M[pc] = monitorexit
h[o].lock= n, (n > 1)

(〈M, pc, f, o.s, ls〉A); h→
(〈M, pc+1, f, s, ls〉.A); h[o.lock 7→ n− 1]

Figure 10. Dynamic semantics for SafeJVML

variables whose value of typec was first copied atith instruction.
In a well-typed program, all variables that have the same typeci are
guaranteed to be aliases. Consider the rule forload in Figure 11.
If it is the first copy of the value, then its type is changed; the type
of the object is tagged with the program point at which theload is
performed. For example, in Figure 12, one of theAccount object’s
type is tagged withPC 1, the instruction at which the object is first
copied on to the stack. The otherAccount object’s type is tagged
with PC 5. Successive copies preserve the type of the first copy.

We define an indexing operation over typest to mark types when
variables are copied. Letti, wherei is an integer, be the following:

ti = t, if t=int
ti = ci, if t = c (first copy of the variable changes the type)
ti = ĉ, if t = ĉ (successive copies keep the type of the first copy)

We also defineIndexandTypeas partial functions from types to in-
tegers and types respectively. The notationt̂ denotes indexed types.

Index[ci] = i, andIndexis undefined otherwise
Type[ci] = c, andType[t] = t otherwise

Before we proceed, we explain the auxiliary functionLock(t̂) (for-
mally defined in the appendix). A lock is an object directly owned
by world. Lock(t̂) denotes the lock that protects an object with in-
dexed typêt. If the owner of an object is a formal owner parameter,
then we cannot determine the root owner of the object from within
the static scope of the enclosing class. In that case, we define the
root owner of the object with indexed typêt to beL(t̂). Note that
L(t̂) is not computed—it is used as such for type checking.

The rule for acquiring a new lock usingmonitorenter in Fig-
ure 11 checks that the top of the stack is a lock of some lock level
cn′.l that is less thanlmin. The rule also ensures that after the in-
struction,cn′.l is stored on the top ofLmini+1 sequence. The rule

for getfield in Figure 11 checks that the class declares or inherits
the field and that the type on the top of the stack matches the type
of the class in which the field is declared. It also checks that the
thread holds the lock on the root owner (see Figure 4) of the object.

Going back to our example in Figure 12, the thread acquires the
lock on Account1 and Account5 objects before accessing their
balance fields. By consistently acquiring the lock on an object
before accessing its fields, the potential for data races is avoided.
There are two points to note in this example. One is that the type
system statically tracks that themonitorenter operations are per-
formed on the same objects whose fields are accessed by theget-
field instructions. The second point is to note that the type system
statically tracks that eachgetfield operation is performed after
the correspondingmonitorenter operation and before the corre-
spondingmonitorexit operation on the same object.

The rule for invoking a method usinginvokevirtual in Figure 11
checks that the arguments are of right type and that the thread holds
the locks on the root owners of all the expressions in the requires
clause. The rule ensures thatlmin, which is the topmost value in
the Lmini sequence is greater than all the levels specified in the
locks clause of the method. The rule appropriately renames the ex-
pressions and types used outside their declared context. Figure 11
presents the rules for these and other instructions formally. The
appendix contains the rest of the type checking rules.

3.3 Soundness
This section provides a proof that the SafeJVML type system is
sound and that well-typed SafeJVML programs do not have data
races or deadlocks or encapsulation errors. We first define a good
machine state configuration. We use the notationP ` h wt to
denote that the heaph is well-typed. The rules for mapping run-
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M [i] = pushv
P ; E ` int.Si <: Si+1

P ; E ` Fi <: Fi+1
P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = pop
P ; E ` Si <: t.Si+1
P ; E ` Fi <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = add
Si = int.int.β

P ; E ` int.β <: Si+1
P ; E ` Fi <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = Load x
x ∈Dom(Fi)

P ; E ` Fi[x] = t
P ; E ` Fi[x → ti] <: Fi+1

P ; E ` ti.Si <: Si+1
P ; E ` LSi = LSi+1
∀ĉ ∈ Si. i 6=Index[ĉ]

∀y ∈Dom[Fi]. i 6=Index[Fi[y]]
∀ĉ ∈ LSi. i 6=Index[ĉ]
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = Storex
x ∈Dom(Fi)

P ; E ` Si <: t.Si+1
P ; E ` Fi[x → t] <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = ifeq L
P ; E ` Si <: t.t.Si+1

P ; E ` Fi <: Fi+1
P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1
P ; E ` Si <: t.t.SL

P ; E ` Fi <: FL

P ; E ` LSi = LSL

P ` Lmini = LminL
i + 1, L ∈Dom(M)

P ; E; F ; S; LS; Lmin; i ` M

M [i] = monitorenter
P ; E ` Fi <: Fi+1

P ; E ` Si <: ĉn〈world : cn′.l, ..〉.Si+1
P ; E ` LSi+1 = ĉn〈world : cn′.l, ..〉.LSi

Lmini = lmin.β
′

P ` cn′.l < lmin

P ` Lmini+1 = (cn′.l).lmin.β
′

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = monitorexit
P ; E ` Fi <: Fi+1

P ; E ` Si <: ĉn〈world : cn′.l, ..〉.Si+1
P ; E ` LSi = ĉn〈world : cn′.l, ..〉.LSi+1

P ` Lmini = (cn′.l).Lmini+1
i + 1 ∈Dom(M)

P ; E; F ; S; LS; Lmin; i ` M

M [i] = start
P ; E ` Type[t̂] :Thread〈world : l〉

P ; E ` Si <: t̂.Si+1
P ; E ` Fi <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = newcn〈o1..n〉
P ` cn〈f1..n〉 whereconstr∗

P ; E ` oi º o1
P ; E `owner oi

P ; E ` constr[o1/f1]..[on/fn]
P ; E ` cn〈o1..n〉.Si <: Si+1

P ; E ` Fi <: Fi+1
P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = returnval
M = ‖cn〈f1..n〉, mn, α, γ, requires(x0..k)‖M

P ; E ` Si <: γ.β
P ; E ` LSi = LS1
P ` Lmini = Lmin1

P ; E; F ; S; LS; Lmin; i ` M

M [i] = getfield‖cn〈f1..n〉,fd, t‖F

P ` (t fd) ∈ cn〈f1..n〉
P ; E ` Si <: ĉn〈o1..n〉.β

Type[ĉn〈o1..n〉] = cn〈o1..n〉
P ; E ` Lock(ĉn〈o1..n〉) ∈ LSi

P ; E ` t[o1/f1]..[on/fn][ĉn〈o1..n〉/this].β <: Si+1
P ; E ` Fi <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = putfield ‖cn〈f1..n〉,fd, t‖F

P ` (t fd) ∈ cn〈f1..n〉
P ; E ` Si <: t[o1/f1]..[on/fn][ĉn〈o1..n〉/this].ĉn〈o1..n〉.β

Type[ĉn〈o1..n〉] = cn〈o1..n〉
P ; E `Lock(ĉn〈o1..n〉) ∈ LSi

P ; E ` β <: Si+1
P ; E ` Fi <: Fi+1

P ; E ` LSi = LSi+1
P ` Lmini = Lmini+1

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

M [i] = invokevirtual ‖cn〈f1..n〉, mn, α, γ, requires(x0..k)‖M′
P ` (mn, α, γ, requires(x0..k), locks(cn′.l∗)) ∈ cn〈f1..n〉

P ; E ` Fi <: Fi+1

Renamed(α)
def
= α[o1/f1]...[on/fn][ĉn〈o1..n〉/this]

P ; E ` Si <: Renamed(α̂).ĉn〈o1..n〉.β P ; E ` Renamed(γ̂).β <: Si+1

∀j ∈ [0..k]. P ; E `Lock((ĉn〈o1..n〉.Renamed(α̂))[j]) ∈ LSi P ` LSi+1 = LSi

Lmini = lmin.β
′ ∀cni.li ∈ cn′.l∗. P ` cni.li < lmin P ` Lmini+1 = Lmini

i + 1 ∈Dom(M)
P ; E; F ; S; LS; Lmin; i ` M

Figure 11. Static semantics for SafeJVML instructions
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PC Instruction Fi[0] Fi[1] Fi[2] Fi[3] Fi[4] Si LSi

1 load 0 Account Account int − − ε φ
2 store 3 Account1 Account int − − Account1 φ
3 load 3 Account1 Account int Account1 − ε φ
4 monitorenter Account1 Account int Account1 − Account1 φ
5 load 1 Account1 Account int Account1 − ε Account1
6 store 4 Account1 Account5 int Account1 − Account5 Account1
7 load 4 Account1 Account5 int Account1 Account5 ε Account1
9 monitorenter Account1 Account5 int Account1 Account5 Account5 Account1
10 load 1 Account1 Account5 int Account1 Account5 ε Account1,Account5
11 load 1 Account1 Account5 int Account1 Account5 Account5 Account1,Account5
12 getfield Account1 Account5 int Account1 Account5 Account5.Account5 Account1,Account5
15 load 2 Account1 Account5 int Account1 Account5 int.Account5 Account1,Account5
16 add Account1 Account5 int Account1 Account5 int.int.Account5 Account1,Account5
17 putfield Account1 Account5 int Account1 Account5 int.Account5 Account1,Account5
20 load 0 Account1 Account5 int Account1 Account5 ε Account1,Account5
21 load 0 Account1 Account5 int Account1 Account5 Account1 Account1,Account5
22 getfield Account1 Account5 int Account1 Account5 Account1.Account1 Account1,Account5
25 load 2 Account1 Account5 int Account1 Account5 int.Account1 Account1,Account5
26 sub Account1 Account5 int Account1 Account5 int.int.Account1 Account1,Account5
27 putfield Account1 Account5 int Account1 Account5 int.Account1 Account1,Account5
30 load 4 Account1 Account5 int Account1 Account5 ε Account1,Account5
32 monitorexit Account1 Account5 int Account1 Account5 Account5 Account1,Account5
44 load 3 Account1 Account5 int Account1 Account5 ε Account1
45 monitorexit Account1 Account5 int Account1 Account5 Account1 Account1
56 return Account1 Account5 int Account1 Account5 ε φ

Figure 12. Static types for thetransfer method in Figure 2

time values in the heap to types are given at the end of appendix.
GoodConfiguration(P, Φ, h) states that given programP and heap
h, the thread setΦ is well-typed iff for every activation record
〈M, pc, f, s, ls〉 ∈ threadT included in the thread setΦ, the con-
ditions in Figure 13 hold with respect to the static type information
F , S, andLS for the methodM , and whereE provides the infor-
mation regarding owners, constraints, and locks clause in scope.

We now formally state and prove the theorems.

Theorem 1 (SafeJVML Preservation)
SupposeP ` wt. Then,∀ Φ, Φ′, h, h′, if P ` h wt and Good-
Configuration(P, Φ, h) and P ` Φ; h → Φ′; h′, then P ` h′ wt
and GoodConfiguration(P, Φ′, h′).

Proof: We sketch the proof forgetfield ‖cn〈f1..n〉, fd, t‖F in-
struction to motivate the structure of the invariants. First, we show
that the execution ofgetfield ‖cn〈f1..n〉, fd, t‖F instruction in
a machine configurationΦ; h, whereP ` h wt andGoodConfig-
uration(P, Φ, h), yields a new well-typed heap. Forgetfield, this
is trivial to show sinceh is not modified. In general, the heap up-
dates respect three properties: the types of records never change,
values written into heap records have the same types as the over-
written values, and any new records introduced by allocation are
well-typed records. If an instruction changes a heaph to h′ accord-
ing to these rules, thenh′ will be well-typed.

Next we show that the execution ofgetfield instruction preserves
all theGoodConfigurationinvariants listed in Figure 13. Suppose a
getfield instruction moves the virtual machine from(〈M, pc, f,
o.s, ls〉.A); h to (〈M, pc + 1, f , v.s, ls〉.A); h wherev = h[o].
‖cn〈f1..n〉, fd, t‖F . Further suppose thatE, F , S andLS com-
prise the type information used to show thatP ; E; F ; S; LS; Lmin;
pc ` M . We proceed by showing that all the conditions in Fig-
ure 13 hold. All conditions except C4 hold trivially since theget-
field instruction does not affect these invariants. In fact, the only
instruction that affects Condition C1 is thenew instruction. It is
easy to show thatnew preserves this invariant—every object has a
unique owner and the ownership relation forms a tree before the ex-
ecution ofnew, therefore adding a child to one of the nodes of the
tree duringnew’s execution preserves the tree structure.

Coming back to thegetfield instruction, the only condition that is
affected by it is Condition C4 which states thatP ; h ` s : RunTime-
Type(s, Spc+1). From the static type checking rule forgetfield
instruction, we haveP ; E ` t.Spc <: ĉn〈o1..n〉.Spc+1 for somet
andĉn〈o1..n〉. SinceP ; h ` o.s′ : RunTimeType(o.s′, Spc), P ; h `
o : RunTimeType(o, ĉn〈o1..n〉), andP ; h ` v : RunTimeType(v, t),
we can conclude thatP ; h ` v.s′ : RunTimeType(v.s′, Spc+1).
ThusP ; h ` s : RunTimeType(s, Spc+1). Therefore the execution
of getfield preserves all the invariants in Figure 13.

Theorem 2 (SafeJVML Progress)
SupposeP ` wt. Then,∀ Φ, h, if P ` h wt and GoodConfigura-
tion(P, Φ, h), then either:
i) ∃Φ′, h′. P ` Φ; h→ Φ′ : h′ (progress),or
ii) (∀T ∈ Φ).(T = 〈A〉∧ A = ε) (normal termination),or
iii) ∃T ∈ Φ, s.t.T ’s next instruction is a null pointer dereference.

Proof: We prove this by showing that ifP ` h wt andGoodConfig-
uration(P, Φ, h) hold, then either the program is in stuck a deadlock
state, or at least one thread is stuck attempting to dereference a null
pointer, or at least one thread can make progress, or the activation
record stack for every thread is empty. We later prove in Theorem 5
that a deadlock state is not possible because well-typed programs in
SafeJVML are free of deadlocks. Thus, the above theorem holds.
The details of the proof are similar to the details of the proof of
Theorem 1 presented above.

Theorem 3 (SafeJVML Encapsulation)
An objectx can access an object owned byo only if (o º x).

Proof: Recall that the notation (o º x) denotes thato directly or
transitively ownsx or o is same asx. Also, note that the owner
of an object does not change over time andGoodConfiguration
judgment holds before every instruction. Consider the code:class
C〈f, ...〉{... T 〈o, ...〉 y ...}. Variabley of typeT 〈o, ...〉 is declared
within the static scope ofC. Ownero can therefore be either 1)
this, or 2)world, or a 3) a formal class parameter. We show that
in each case, the constraint (oº this) holds. In the first two cases,
the constraint holds trivially. In the last case, (o º f ) and (f º
this), so the constraint holds. Therefore an objectx of a classC
can access an objecty owned byo only if (o º x).
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C1. The ownership relation in the program forms a tree.
Recall that the owner of an objecto is stored inh[o].g0, where
g0 denotes the first formal parameter ofo’s class.

C2. The owners of every object satisfy the owner constraints
specified in object’s class.

That is, the runtime ownersh[o].g1, ..,h[o].gn of an ob-
ject o satisfy the constraints declared in its class definition.
Note thatcn〈h[o].g1, .., h[o].gn〉 gives the runtime type of
an objecto whose static type iscn〈g1..n〉. We useRunTime-
Type(v, t) to denote the runtime type of a valuev whose static
type ist. RunTimeType(v, t) = t if t is an integer.RunTime-
Type(v, t) = cn〈h[v].g1, .., h[v].gn)〉 if t = cn〈g1..n〉.

C3. pc ∈Dom(M)

C4. The stacks have values of the expected types.
That is,s=v1..vk impliesSpc=t1..tk, andP ; h ` vi : Run-
TimeType(vi, ti). In short,P ; h ` s : RunTimeType(s, Spc).

C5. The local variables contain values of the expected types.
That is,∀y∈Dom(Fpc), (Fpc[y]=t) ⇒ P ; h ` f [y] : Run-
TimeType(f [y], t).

C6. The static and dynamic lock sets are consistent.

Let,LSpc = t̂1..t̂k andls = o1..ok. Then, for all1 ≤ i ≤ k,
P ; h ` oi : RunTimeType(oi, t̂i).

C7. Two variables with the same indexed type must be aliases.

Let

(a) o = f(x), whenFpc[x] = t̂ or
o = vj , whens = v1..vk, Spc = t1..tk andtj = t̂

(b) o′ = f(y), whenFpc[y] = t̂′ or
o′ = vj′ , whens = v1..vk, Spc = t1..tk andtj′ = t̂′

If t̂ = t̂′, theno = o′. Furthermore, if̂t ∈ LSpc, theno ∈ ls.

C8. The static and dynamic lock levels of the locks are consistent.

If P ; h ` o : cn〈o1 : l, o2..n〉, thenh[o].level= l

Figure 13. Properties of a good machine state configuration

Theorem 4 (SafeJVML DataRaceFreedom)
Well-typed programs in SafeJVML are free of data races.

Proof: The type checking rules for SafeJVML ensure that every
thread holds the lock protecting an object in its static lock setLS
before accessing the object. TheGoodConfigurationjudgment en-
sures consistency between dynamic and static entities. Together,
they ensure that every thread holds the lock protecting an object
in its dynamic lock setls before accessing the object. Well-typed
SafeJVML programs are thus race free.

Theorem 5 (SafeJVML DeadLockFreedom)
Well-typed programs in SafeJVML are free of deadlocks.

Proof: The typing rules for SafeJVML ensure that the lock levels in
the program form a partial order and that the locks are acquired in
the decreasing order of their lock levels. The type checking rule for
acquiring a new lock checks that the level of the lock being acquired
is less thanlmin, which is the topmost value in theLmin sequence; the
type checking rules guarantee thatlmin is the minimum level among
the levels of all the locks already held in the static lock setLS.
The typing rules along withGoodConfigurationjudgment, which
ensures the consistency between dynamic and static lock sets held

by the thread, prove that the level of the lock acquired is less than
the levels of the locks in dynamic lock setls. Thus, well-typed
programs in SafeJVML are free of deadlocks.

4. Related Work
This section presents work on related type systems. Our type sys-
tem for checking JVML instructions is based on a formalization
of the JVML type system developed in [20]. Their work covers a
large subset of JVML but does not handle multithreaded programs.
[4] and [29] provide detailed semantics for JVML but also do not
handle multithreaded programs. Other formalizations of the JVML
type system have focused on subroutines [24, 30, 11] and object
initialization[19]. The type systems in [26, 23] statically verify
that every method releases all the locks it acquires and no other
locks. Currently, while this property holds for all well-typed Java
programs, it does not hold for all well-typed JVML programs that
pass the bytecode verification. JVMs use runtime checking to en-
sure this property. The type system in [26] is designed for JVML
programs that are compiled from Java source programs, whereas
the type system in [23] is more general and supports JVML pro-
grams produced from other sources well. We used ideas from [26]
to track aliases in our system.

None of the previously proposed type systems for JVML handle
data races, deadlocks, or encapsulation. The main contribution of
our paper is that, to the best of our knowledge, this is the first type
system for JVML that statically prevents data races, deadlocks, and
encapsulation violations.

Our type system extension to JVML is based on a corresponding
type system extension to Java that we previously developed called
SafeJava [5, 6, 7, 9]. The SafeJava type system for preventing data
races is most closely related to [2, 16, 22]. The SafeJava type sys-
tem for enforcing object encapsulation uses a variant of ownership
types [1, 12, 13, 25]. A detailed comparison of the SafeJava type
system with related type systems and other approaches for prevent-
ing synchronization errors and encapsulation errors can be found
in [5] and [6, 7, 9].
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Appendix

A. Rules for Type Checking
This section presents the SafeJVML type system. The SafeJVML
grammar is shown in Figure 7. We first define a number of predi-
cates used in the type system. These are based on similar predicates
from [17, 16, 5]. We refer the reader to those papers for their precise
formulation.

Predicate Meaning

WFClasses(P) There are no cycles in the class hierarchy
ClassOnce(P) No class is declared twice inP
FieldsOnce(P) No class contains two fields, declared or inherited,

with same name
MethodsOncePerClass(P) No class contains two methods with same name
OverridesOK(P) Overriding methods have the same return type and

parameter types as the methods being overridden.
Therequires andlocks clauses of an
overriding method must be superseded by those of
the overridden methods

LockLevelsOK(P) There are no cycles in the lock levels

We define the typing environment as follows. The typing envi-
ronment contains the declared owner parameters, the declared con-
straints among owners, and the declared locks clause.

E ::= ∅ |E, ownerf |E, constr|E, locksclause

We define a minimum lock level as follows:

lmin ::=∞ | cn.l | LUB(cn1.l1 ... cnk.lk)

By definition,LUB(cn1.l1 ... cnk.lk) > cni.li ∀i=1..k. LUB(...) is not
computed—it is an expressions used as such for type checking. The
lock level∞ denotes that the thread currently holds no locks.

We define the type system using the following judgments. We
present the typing rules for these judgments after that, except that
the typing rules for instructions in methods are given in Figure 11.

Judgment Meaning

` P ProgramP is well defined
P ` defn defnis a well-formed class
P ; E `owner o o is an owner
P ; E ` constr Constraintconstris satisfied
P ; E ` t t is a well-formed type
P ; E ` t1 <: t2 t1 is a subtype oft2
P ; E ` t11..1k <: t21..2k Every type in the sequencet11..1k is

a subtype of the corresponding type
in the sequencet21..2k

P ; E ` wf Typing environmentE is well-formed
P ` field∈ c Classc declares/inheritsfield
P ` meth∈ c Classc declares/inheritsmeth
P `level cn.l cn.l is a well-formed lock level
P ` cn1.l1 < cn2.l2 cn1.l1 is less thancn2.l2 in the partial

order formed by lock levels
P ` cn.l < lmin cn.l is less thanlmin in the partial order

formed by lock levels
P ; E ` Lock(t̂) = r r is the lock that protects an object of typet̂
P ; E; F ; S; LS; Lmin `M MethodM is well defined by the

parametersF , S, LS, andLmin
P ; E; `M MethodM is well defined
P ; E; F ; S; LS; Lmin; i `M Instruction at positioni in

methodM is well defined
P ; h ` o : t Given programP and heaph, the heap

position h[o] has typet
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` P

[PROG]
WFClasses(P) ClassOnce(P) FieldsOnce(P) MethodsOncePerClass(P) OverridesOK(P) LockLevelsOK(P)

P = defn1..n P ` defni
`P

P ` defn

[CLASS]
E = ownerf1..n , fi º f1 , constr∗

P ; E `wf P ; E ` c′ P ; E ` fieldi P ; E ` methi
P ` class cn〈f1..n〉 extends c′ where constr∗ {level∗ field∗meth∗}

P ; E ` constr

[CONSTR ENV]

E = E1 , constr, E2
P ; E ` constr

[OWNERº]

P ; E ` e : cn〈o1..n〉
P ; E ` (o1 º e)

[WORLDº ]

P ; E `ownero
P `level cn.l

P ; E ` (world:cn.lº o)

[REFLº]

P ; E `ownero
P ; E ` (oº o)

[TRANSº]

P ; E ` (o3 º o2 )
P ; E ` (o2 º o1 )
P ; E ` (o3 º o1 )

P ; E `ownero

[OWNER WORLD]

P `level cn.l
P ; E `ownerworld:cn.l

[OWNER THIS]

E = E1 , c this, E2
P ; E `ownerthis

[OWNER THREAD]

P ; E `ownerthisThread

[OWNER FORMAL]

E = E1 , ownerf , E2
P ; E `ownerf

P ; E ` wf

[ENV ∅]

P ; ∅ `wf

[ENV OWNER]

f /∈ Dom(E)
P ; E `wf

P ; E, ownerf `wf

[ENV CONSTR]
constr= (o′ º o)∨ constr= (o′ 6º o)
P ; E `wf P ; E `ownero, o′

E′ = E, constr
6 ∃x,y (P ; E′ ` yº x)∧ (P ; E′ ` y 6º x)

P ; E, constr`wf

[ENV LOCKSCLAUSE]

locksclause= locks(... )
P ; E `wf

P ; E, locksclausè wf

P ; E ` t

[TYPE INT]

P ; E ` int

[TYPE OBJ]

P ; E `ownero
P ; E ` Object〈o〉

[TYPE C]

P ` class cn〈f1..n〉 ... where constr∗ ...
P ; E `owneroi P ; E ` oi º o1

P ; E ` constr[o1/f1 ]..[on/fn ]
P ; E ` cn〈o1..n〉

P ; E ` t1 <: t2

[SUBTYPE C]

P ; E ` cn〈o1..n〉
P ` class cn〈f1..n〉 extends cn′〈f1 o∗〉 ...

P ;E `cn〈o1..n〉<: cn′〈f1 o∗〉[o1/f1 ]..[on/fn ]

[SUBTYPE TRANS]

P ; E ` t1 <: t2
P ; E ` t2 <: t3
P ; E ` t1 <: t3

[SUBTYPE REFL]

P ; E ` t
P ; E ` t <: t

P ; E ` t11..1k <: t21..2k

[SUBTYPE SEQ]

∀i∈{1..k} P ; E ` t1i <: t2i
P ; E ` t11..1k <: t21..2k

P `level cn.l

[LEVEL]

P ` class cn... {... LockLevell ...}
P `level cn.l

P ` cn1.l1 < cn2.l2

[LEVEL <]

P ` class cn1 ... {... LockLevell1 < ..cn2.l2 ..}
P ` cn1.l1 < cn2.l2

[LEVEL >]

P` class cn2 ... {... LockLevell2 >..cn1.l1 ..}
P ` cn1.l1 < cn2.l2

P ` cn.l < lmin

[LEVEL < INFTY]

lmin =∞
P `level cn.l

P ` cn.l < lmin

[LEVEL < LUB]

lmin = LUB(... cn.l ...)
P `level cn.l

P ` cn.l < lmin

[LEVEL < CN.L]

lmin = cn′.l′
P ` cn.l < cn′.l′

P ` cn.l < lmin

[LEVEL TRANS]

P ` cn′.l′ < lmin
P ` cn.l < cn′.l′

P ` cn.l < lmin

P ; E ` Lock(t̂) = r

[LOCK THISTHREAD]

P ; E ` Type[t̂] = cn〈thisThread o∗〉
P ; E ` Lock(t̂) = thisThread

[LOCK WORLD]

P ; E ` Type[t̂] = cn〈world:cn′.l′ o∗〉
P ; E ` Lock(t̂) = t̂

[LOCK FORMAL]

P ; E ` Type[t̂] = cn〈o1..n〉
E = E1 , ownero1 , E2
P ; E ` Lock(t̂) = L(t̂)

[LOCK THIS]

P ; E ` Type[t̂] = cn〈this o2..n〉
P ; E ` Lock(t̂) = Lock(F1[0]

P ` field∈ c

[FIELD DECLARED]

P ` class cn〈f1..n〉... {... field ...}
P ` field∈ cn〈f1..n〉

[FIELD INHERITED]

P ` field∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P ` field [o1/f1 ]..[on/fn ] ∈ cn′〈g1..m〉

P ` meth∈ c

[METHOD DECLARED]

P ` class cn〈f1..n〉... {... meth...}
P `meth∈ cn〈f1..n〉

[METHOD INHERITED]

P `meth∈ cn〈f1..n〉
P ` class cn′〈g1..m〉 extends cn〈o1..n〉...
P `meth[o1/f1 ]..[on/fn ] ∈ cn′〈g1..m〉

P ; E; F ; S; LS; Lmin ` M

[VERIFICATION]
M = ‖ cn〈f1..n〉, mn, α, γ, requires(x0..k)‖M

P ` class cn〈f1..n〉 ... constr∗ ... P ` γ mn(α) requires (x0..k ) locks (cn′.l∗ ) ...∈ cn〈f1..n〉
E = E1, ownerf1..n , constr∗, locks(cn′.l∗) E `wf

P ; E ` F0[0 → cn〈f1..n〉, 1..|α| → α] <: F1 S1 = ε ∀xi ∈ x0..k. P ; E `xi : t′

∀(xi : t′) ∈ x0..k. F1[i] = t′−i ∧ Lock(t′−i) ∈LS1 thisThread ∈ LS1

Lmin1
= LUB(cn′.l∗) ∀i ∈ Dom(M). P ; E; F ; S; LS; Lmin; i ` M

P ; E; F ; S; LS; Lmin ` M

[INFERENCE]

∃F, S, LS, Lmin. P ; E; F ; S; LS; Lmin ` M

P ; E ` M

The above rules define when a JVML program is well-typed. We also define that a heap is well-typed if every record in the heap is well-typed
and the runtime state is consistent with the static type information. The functiontype(h, v) used below is defined in Figure 9.

[P ; h ` o : t]

[HEAP]

h[o] = 〈 fdi = vi, gj = wj, level=cn′.l〉i∈{1..m},j∈{1..n}
cn〈w1..n〉

∀i ∈ {1..m}.P ` (ti fdi) ∈ cn〈f1..n〉 ∀i ∈ {1..m}.P ` type(h, vi) <: ti[w1/f1]..[wn/fn]

P ; h ` o : cn〈w1..n〉
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