
Systematic Software Testing: The Korat Approach

ACM SIGSOFT Impact Paper Award 2012

Chandrasekhar Boyapati
Google Inc.

Mountain View, CA 94043
boyapati@google.com

Sarfraz Khurshid
University of Texas
Austin, TX 78712

khurshid@utexas.edu

Darko Marinov
University of Illinois
Urbana, IL 61801

marinov@illinois.edu

ABSTRACT
At ISSTA 2002, the three authors (then Ph.D. students)
published the paper “Korat: Automated Testing Based on
Java Predicates”, which won one of the first ACM SIGSOFT
Distinguished paper awards. In 2012, the paper won the
ACM SIGSOFT Impact Paper Award. The authors briefly
recount the motivation behind Korat research, the ideas pre-
sented in the original paper, and some work it inspired.

1. BRIEF KORAT STORY
Testing, the most commonly used methodology for vali-

dating the quality of software, is conceptually simple: create
some inputs, run them against the program, and check its
outputs. In practice, however, testing is expensive, often
requiring much manual effort, and ineffective, often failing
to find crucial bugs. Automated testing can substantially
reduce the cost of software development and maintenance.

A promising approach for automation is specification-based
testing, where specifications, which describe expected pro-
gram behavior, provide the basis for test input generation
and correctness checking. Researchers realized the impor-
tance of specifications in testing over three decades ago [3].
However, effective techniques for programs written in com-
monly used languages remained scarce and ad hoc.

At ASE 2001, the second and third authors published
TestEra [7], which was the first specification-based technique
for bounded-exhaustive testing of object-oriented programs.
The key idea of TestEra was to capture the properties of the
desired inputs using a logical formula, termed an input con-
straint, enumerate the desired inputs using systematic con-
straint solving, and check the correctness of the program un-
der test by (1) running it against all non-isomorphic inputs
within a given bound on the input size and (2) checking each
input/output pair using an output constraint, which states
the expected relation between inputs and outputs and serves
as a test oracle. TestEra used declarative constraints writ-
ten in the Alloy language [4], based on first-order logic, and
used Alloy’s SAT-based back-end for input generation and
correctness checking. TestEra enabled systematic testing of
Java programs in the spirit of the bounded-exhaustive check-
ing that the Alloy tool-set provided for declarative models.

During a research presentation on TestEra by the third au-
thor, the first author, who was not familiar with the Alloy
language, asked whether constraints written in Java could
be used to provide the same functionality as TestEra. The
ensuing effort to support Java constraints resulted in the
Korat approach for systematic testing, which was first pre-
sented at ISSTA 2002 [1]. Korat introduced the idea of

using declarative constraints written in an imperative lan-
guage for bounded-exhaustive testing and presented a dedi-
cated solver for such constraints. The main insight into the
Korat solver was execution-driven pruning and isomorphism
breaking, where executions of the given input constraint on
select candidate inputs provided the basis of pruning the
space of all possible inputs and generating exactly those in-
puts that were valid and non-isomorphic. A key contribution
of Korat was enabling specification-based testing without re-
quiring the specifications to be written in a language greatly
different from the underlying programming language – a re-
quirement of all previous approaches for specification-based
generation of test inputs.

Systematic test generation using input constraints brought
the spirit of model checking to checking properties of pro-
grams that operate on structurally complex data. Previous
work on software model checking focused on properties of
control, such as deadlocks, but not on data, such as data
structure invariants. Systematic testing was able to find
subtle bugs in a number of applications [6]. The ideas at
the heart of Korat provided the foundation for other com-
plementary techniques, including symbolic execution of pro-
grams with structurally complex inputs [5], glass-box soft-
ware model checking [9], and runtime error recovery using
data structure repair [2]. Korat has been used for parallel
and incremental test generation and execution for enhanced
efficiency and effectiveness [8, 10]. Korat is available online
for public download: “http://mir.cs.illinois.edu/korat”.

2. REFERENCES
[1] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated

testing based on Java predicates. In ISSTA, 2002.

[2] B. Elkarablieh. Assertion-based Repair of Complex Data
Structures. PhD thesis, UT Austin, 2009.

[3] J. B. Goodenough and S. L. Gerhart. Toward a theory of test
data selection. IEEE TSE, June 1975.

[4] D. Jackson. Alloy: A lightweight object modeling notation.
ACM TOSEM, 11(2), Apr. 2002.

[5] S. Khurshid, C. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In TACAS,
2003.

[6] D. Marinov. Automatic Testing of Software with Structurally
Complex Inputs. PhD thesis, MIT, 2005.

[7] D. Marinov and S. Khurshid. TestEra: A novel framework for
automated testing of Java programs. In ASE, 2001.

[8] S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel test generation and execution with Korat.
In ESEC/FSE, 2007.

[9] M. E. Roberson. Glass Box Software Model Checking. PhD
thesis, U. Michigan, Ann Arbor, 2011.

[10] J. H. Siddiqui. Improving Systematic Constraint-driven
Analysis using Incremental and Parallel Techniques. PhD
thesis, UT Austin, 2012.


