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Abstract
Multithreaded programs can have subtle errors that result from un-
desired interleavings of concurrent threads. A common technique
programmers use to prevent these errors is to ensure that certain
blocks of code are atomic. A block of code is atomic if every exe-
cution is equivalent to a serial execution in which no other thread’s
instructions are interleaved with the code. Atomic blocks of code
are amenable to sequential reasoning and are therefore significantly
simpler to analyze, verify, and maintain.

This paper presents a system for automatically detecting atomicity
violations in Java programs without requiring any specifications.
Our system infers which blocks of code must be atomic and detects
violations of atomicity of those blocks. The paper first describes
a synchronization pattern in programs that is likely to indicate a
violation of atomicity. The paper then presents a static analysis for
detecting occurrences of this pattern.

We tested our system on over half a million lines of popular open
source programs, and categorized the resulting atomicity warnings.
Our experience demonstrates that our system is effective. It suc-
cessfully detects all the previously known atomicity errors in those
programs as well as several previously unknown atomicity errors.
Our system also detects badly written code whose atomicity de-
pends on assumptions that might not hold in future versions of the
code.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.4 [Software Engineering]:
Software/Program Verification; D.2.5 [Software Engineering]:
Testing and Debugging; D.3.1 [Programming Languages]: For-
mal Definitions and Theory; D.3.4 [Programming Languages]:
Processors; F.3.1 [Logics and Meanings of Programs]: Specify-
ing, Verifying, and Reasoning about Programs

General Terms Algorithms, Design, Experimentation, Reliabil-
ity, Verification

Keywords

1. Introduction
Multithreaded programming is becoming increasingly common be-
cause of the advances in parallel hardware technology. But multi-
threaded programming is difficult and error prone. Multithreaded
programs synchronize operations on shared mutable data to en-
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sure that the operations execute atomically. Failure to correctly syn-
chronize such operations can lead to errors. Synchronization errors
in multithreaded programs are timing-dependent non-deterministic
bugs that are among the most difficult programming errors to de-
tect, reproduce, and eliminate.

Much previous work on detecting and preventing synchronization
errors has focused on data races. A data race occurs when two
threads concurrently access the same shared data without synchro-
nization, and at least one of the accesses is a write. Unfortunately,
absence of data races does not ensure absence of synchronization
errors because a program without data races can still have atomicity
violations [5].

A common technique to prevent synchronization errors is to ensure
that certain blocks of code are atomic. A block of code is atomic
if every execution is equivalent to a serial execution in which no
other thread’s instructions are interleaved with the code. Atomic
blocks of code are amenable to sequential reasoning and are much
simpler to analyze, verify, and maintain because one does not have
to consider an enormous number of interleavings.

This paper presents a tool for automatically detecting atomicity vio-
lations in existing Java programs using a static analysis. Most exist-
ing Java programs do not contain specifications that declare which
blocks of code must be atomic. Our tool automatically identifies
blocks of code that the programmers intended to be atomic and
uses a static analysis to detect violations of the intended atomicity.
In addition, even when there is no error, our tool detects badly writ-
ten code whose atomicity depends on assumptions that might not
hold in future versions of the code, and which might thus lead to
bugs in future versions of the code.

A key underlying idea behind our system is that we have identified
a pattern of synchronization in Java code that is highly correlated
with atomicity violations and that can be detected efficiently using
a static analysis. The pattern suggests that a block is intended to be
atomic and yet may have non-serializable interleavings. Our tool
uses an efficient interprocedural static analysis to detect this pat-
tern. It then reports instances of the pattern as potential violations
of atomicity.

Like other bug finding systems, our tool is neither sound nor com-
plete. That is, our tool does not prove or refute atomicity. This is
because the presence of the abovementioned pattern does not im-
ply the presence of an atomicity violation, nor does the absence
of the pattern imply the absence of atomicity violations. Moreover,
because of the approximate nature of static analysis, our tool may
falsely identify occurrences of the pattern as well as fail to identify
occurrences of the pattern.

However, our experience with over half a million lines of real Java
programs indicates that our tool is effective at identifying atomicity
problems. It successfully detects all the previously known atomicity
errors in those programs. This includes all the atomicity errors that
were reported by other tools, including a sound type system [5, 6]
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1 class Line {
2 Location start, end;
3 synchronized boolean contains(Location point) {
4 double r1=point.distanceTo(start);
5 double r2=point.distanceTo(end);
6 double c=start.distanceTo(end);
7 return ((r1+r2)<=1.001*c);
8 }
9 }

10
11 class Location {
12 double x, y;
13 synchronized double distanceTo(Location p) {
14 return Math.sqrt(
15 Math.pow(p.x-x,2)
16 +Math.pow(p.y-y,2)
17 );
18 }
19 }

Figure 1. An example code fragment illustrating a locking pattern
that violates atomicity. While holding the lock on this in Lines
3-8, a lock on point is acquired and released twice.

and a static analysis tool [20]. In addition, our tool detects several
previously unknown atomicity errors as well. Our tool also detects
badly written code whose atomicity depends on assumptions that
might not hold in future versions of the code.

Our tool is efficient, processing over half a million lines of code in
a little over three minutes. Moreover, our experiments indicate that
there are few false positive and they are easily detected. It took us
less than an hour to manually analyze the warnings generated from
about half a million lines of code to identify which ones are false
positives and which ones are not. One reason we could identify the
false positives quickly is that false positives often appear in groups.
Once a false positive is found, it becomes clear that other warnings
are false positives as well. For example, once we identify a set of
lock objects as using a nonstandard locking idiom, any warning
based on those objects is likely to be a false positive.

This paper makes the following contributions:

1. This paper identifies a synchronization pattern in Java code that
is highly correlated with atomicity violations and that can be
detected efficiently using a static analysis.

2. The paper presents a static analysis that efficiently detects the
abovementioned pattern.

3. The paper presents a tool that implements the above static
analysis. Our tool is efficient and analyzes over half a million
lines of code in just over three minutes.

4. The paper describes our experience in using the above tool on
over half a million lines of Java code from popular open source
projects. Our tool uncovers a variety of problems including all
the previously known and some previously unknown atomicity
violations, and bad coding practices that could lead to atomicity
errors in future versions of the code. The false positives are few
and easily identified. It took us less than an hour to manually
analyze the warnings generated from about half a million lines
of code to identify the false positives.

The rest of this paper is organized as follows. Section 2 illustrates
our approach with an example. Section 3 describes our approach for
detecting atomicity violations. Section 4 presents a formal descrip-
tion of our efficient static analysis. Section 5 presents our experi-
ence using our tool to find atomicity violations in various Java pro-
grams. Section 6 discusses related work and Section 7 concludes.

Thread 1 Thread 2
compute r1 (Line 4)

modify point from Loc1 to Loc2
compute r2 (Line 5)

start endLoc1 Loc2

r1 r2c

Figure 2. An example unserializable interleaving that demon-
strates an atomicity violation of the contains method in Figure 1.
The value r1 is computed when point is Loc1, but the value r2
is computed when point is Loc2. As a result, r1+r2 is less than
c, so contains returns true even though neither Loc1 nor Loc2
is contained in the Line. This does not correspond to any serial
execution of contains.
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Figure 3. A graphical depiction of the locking pattern that causes
atomicity violations. While the context lock A is held, the witness
lock B is acquired and released twice.

2. Example
This section presents a motivating example.

2.1 An Atomicity Violation in Java Code

Consider the Java code in Figure 1, which is a simplified version of
code from the ObjectDraw framework [2]. There are two classes,
Line and Location. The contains method tests to see if the pa-
rameter point is contained within a Line. It computes r1 and r2,
the distances from point to each endpoint of the Line, then tests
to see if the sum is within a certain tolerance of the length of the
Line. Both classes are synchronized and intended to be used in
the presence of concurrency. The contains method is intended
to be atomic, so it acquires the lock on this before accessing the
similarly synchronized distanceTo method twice on Lines 4-5.
However, the contains method is not atomic. For example, the
interleaving in Figure 2 is not serializable. In this interleaving, an-
other thread modifies point (via one of Location’s methods) af-
ter contains computes r1 but before it computes r2. If point
changes from Loc1 to Loc2 then contains will return true al-
though neither Loc1 nor Loc2 are in the Line. Hence there is no
atomic serialization with the same result.

The method contains of Figure 1 has an atomicity violation. It
first acquires the lock on this, then it calls point.distanceTo
twice. Each call acquires and releases the lock on point. This
is a pattern of synchronization like the one depicted in Figure 3,
where this is lock A and point is lock B. To fix the atomicity
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violation, contains should explicitly acquire the lock on point
for the duration of both calls to distanceTo:

synchronized(point) {
r1=point.distanceTo(start);
r2=point.distanceTo(end);

}

Locks in Java are reentrant, so the additional synchronization on
the point object during the call to distanceTo is ignored.

2.2 Description of the Locking Pattern

Figure 3 depicts the synchronization pattern that resulted in an
atomicity violation in the code of Figure 1. The pattern occurs
when a lock B (the witness) is acquired and released twice while a
different lock A (the context) is held.

This pattern is likely to contain an atomicity violation. The context
lock A indicates that the entire block of code where lock A is held
must be atomic. Recall that lock acquires and releases in Java are
block structured. However, the multiple acquisitions and releases
of the inner lock B are likely to violate that atomicity. In particular,
during the time that the lock on B is released and then reacquired,
the data protected by the lock B could potentially be modified
by another thread and therefore their previously read values could
become stale.

Our experience does indicate that the occurrence of this pattern
usually implies an atomicity violation. Furthermore, even when
there is no error, we hold that in most cases the pattern indicates
bad programming style. If the block is intended to be atomic, it
must acquire all its locks first before it releases any of its locks. If
the block is not intended to be atomic, it must not hold any locks
for the duration of the block. Thus, even if there is no error, the
atomicity of the code depends on assumptions that might not hold
in future versions of the code.

2.3 Pattern Variant

The pattern in Figure 3 can be relaxed to catch more errors, possi-
bly at the expense of generating more false positives. The pattern
variant occurs when a thread, while holding a lock A, acquires and
releases a lock B1 and then acquires and releases a lock B2. A must
be different from both B1 and B2. B1 and B2 may be the same lock
or different locks. Note that if B1 and B2 are the same lock, then
this is identical to the original pattern described in Section 2.2.

This relaxed variant also indicates bugs because the atomic block
might rely on a concurrent snapshot of data protected by B1 and
B2. The atomicity may be violated because of the same reasons
as above. Furthermore, even if there is no error, this indicates bad
programming because of the same reasons as above.

In addition to detecting occurrences of the original pattern, our tool
also detects occurrences of the relaxed pattern variant when a flag
is switched on.

3. Approach
Given the pattern described in Section 2, we developed a tool that
quickly and automatically detects instances of this pattern in Java
code.

3.1 Locking Within a Method

Consider the code in Figure 1, which contains an atomicity vio-
lation. Our tool detects that the contains method acquires and
releases the lock on point in Line 4 and again in Line 5. We use
a flow-sensitive analysis because we only want to detect instances
where control flow passes through both acquisitions of the lock on

m1

lock(A)

m2

m3

lock(A)

m4

lock(A)

m5

lock(B)

Figure 4. Example call graph with five methods. Method m1 calls
method m2 while holding the lock on A. Our analysis shows that
the lock on B is acquired and released twice while method m1 holds
the lock on A.

Method Locks Acquired After Propagation
m1 A A, B
m2 - A, B
m3 A A, B
m4 A A, B
m5 B B

(a)

Method Locks Acquired Twice After Propagation
m1 - B
m2 A, B A, B
m3 - -
m4 - -
m5 - -

(b)

Figure 5. Results computed while analyzing the call graph of
Figure 4. First we build the set of locks acquired and released by
each method (a). Then we use a static dataflow analysis to find
which locks are acquired and released twice (b). After propagating
the results up the call graph, we see that the lock on B is acquired
and released twice while the lock on A is held in method m1.

point. For example, the following code clearly does not acquire
and release the lock twice.

if (b)
r1=point.distanceTo(start);

else
r2=point.distanceTo(end);

Our dataflow analysis tracks information about which locks have
been acquired and released so far in the code. When we complete
a method call to a synchronized method or exit a synchronization
block, we mark the corresponding lock as having been acquired and
released. If it is already marked, we mark it as having been acquired
and released twice. For example, in Figure 1 the dataflow analysis
has point marked as having been acquired and released zero times
before Line 4, once after Line 4 and before Line 5, and twice after
Line 5.
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Note that the two acquisitions and releases of the lock on point
need not be at distinct locations in the code. For example, if start
and end are stored in an array called endpoints then the following
code might be used.

for (int i = 0; i < 2; i++) {
r[i]=point.distanceTo(endpoints[i]);

In this case, point is acquired and released twice, although each
call to distanceTo takes place at the same code point. Our
dataflow analysis traverses the loop twice before it stabilizes with
point marked twice. However, we must be careful to ensure that
the same lock is acquired and released both times. For example,
consider the following code variation where two different points
point[0] and point[1] are acquired and released in succession.

for (int i = 0; i < 2; i++) {
r[i]=point[i].distanceTo(endpoints[i]);

Although both synchronizations occur at the same place in the
code, the locks being synchronized are distinct. Since point[i]
represents two different locks, it would be incorrect to mark it as
having been acquired and released twice. Our analysis solves this
problem efficiently by noticing that the variable i is modified, and
unmarking point[i]. (If point[i] is already marked twice then
we leave it marked, since it was already marked twice before i was
modified.)

In general, our analysis unmarks a lock variable whenever its value
changes, or whenever a dependent value changes (such as an array
index). Thus we can use an efficient syntax-based alias detection
as long as we unmark any lock that depends on a variable or
field that changes values. In practice, this technique is sufficient to
avoid most if not all false positives that arise from imprecise alias
analysis.

At the end of the method contains in Figure 1, our dataflow
analysis has point marked twice. Since contains synchronizes
this, we have discovered an instance of the pattern. While the lock
on this is held, the lock on point is acquired and released twice.

3.2 Locking Across Methods

The above analysis considers analyzing only a single method. Our
full analysis also detects the pattern when it occurs across multiple
methods. For example, consider the call graph of Figure 4. In this
call graph, method m1 holds the lock on A and calls method m2,
which calls methods m3 and m4 in sequence. Methods m3 and
m4 each hold the lock on A while calling m5, which acquires and
releases the lock on B. The locking is all structured, so each method
releases its lock before returning.

First, our analysis determines which locks each method may even-
tually acquire and release. For example, the methods m3 and m4
each acquire and release the lock on B by calling m5. Thus, m2
acquires and releases the lock on B as well, and the analysis con-
tinues up the call graph in this fashion. Figure 5(a) presents the
initial locks that are known to be acquired by each method, along
with the results of propagating this information up the call graph.

Next our analysis applies the dataflow analysis described above
to each method to find out which locks are acquired and released
twice. This analysis depends on the results in the second column of
Figure 5(a) for determining which locks are acquired and released
during method calls. For example, the dataflow analysis of method
m2 uses the fact that each call to m3 and m4 acquires and releases
the locks on both A and B. Thus, our analysis determines that m2
acquires and releases A and B twice each. The first column of
Figure 5(b) tabulates the results of the dataflow analysis. Note that
method m2 does not exhibit the pattern because neither lock is held
while the other is acquired and released twice.

Finally, our analysis discovers whether either of the locks are ac-
quired and released in the context of a different lock, and thus ex-
hibits the pattern. To do this, it propagates the information about
locks that are acquired and released twice. For example, m2 ac-
quires and releases A and B twice, so any method that calls m2
also acquires and releases A and B twice. However, m1 already
holds the lock on A when it calls m2, so the reentrant locking on
A is ignored. Therefore only B is propagated to m1, as the sec-
ond column of Figure 5(b) shows. Method m1 holds the lock on
A while locking and releasing B twice, which is an instance of the
pattern described in Section 2. Our analysis detects the pattern, and
it reports the lines of code where A and B are locked.

3.3 Call Graph Propagation

The above analysis depends on propagating locks up the call graph.
Our analysis represents locks according to their syntax, which
can vary between methods. For example, in Figure 1 the method
distanceTo synchronizes the lock on this, which corresponds
to the lock on point in method contains. When propagating
locks between methods, our analysis converts formal parameter
names (including this) into the actual parameters at the call site.
We replace names that can’t be converted (such as local variable
names) with a generic unknown lock.

Consider the code in Figure 1, and suppose that a method calls
contains while holding the lock on point. Then by propagating
the lock information in contains back to this method, it appears
that there is no atomicity violation at all since the reentrant locking
of point is ignored. However, the method contains is intended
to be atomic. It will eventually be used with a method that does not
hold the lock on point. Therefore our analysis detects and reports
the atomicity violation of contains, even if the method that calls
it holds the lock on point.

4. Static Analysis Formalism
This section formally describes the static analysis we use to detect
the synchronization pattern that indicates an atomicity violation.
First we describe an intraprocedural version of the analysis. We
then extend this to an interprocedural analysis and describe how
we use the resulting information to generate atomicity warnings.

4.1 Preliminaries

In Java, objects are associated with locks. The Java keyword
synchronized defines a block of code in which a given object’s
lock is held. The lock is acquired at the beginning of the block
(possibly causing the thread to wait) and released at the end of the
block. Similarly, an entire method may be synchronized, which im-
plicitly puts the entire method body into a block synchronized on
the this object. We assume that all such implicit synchronization
is transformed into explicit synchronization blocks. We define a
locking expression (LE) according to the following grammar

LE ::= v | this | LE.f | LE[c]

where v is a program variable, f is a field, and c is an in-
teger expression. Locking expressions can be arbitrarily long
(v.f1.f2.f3...), so we define Locks as the set of all such locking
expressions up to a given size bound. If a locking expression ex-
ceeds the bound, we denote it with the special lock ∗, which we
take to be in the set Locks. We model method calls as a statement
of the form CALL e.m(...) where e is an expression and m is a
method.

In our analysis, locks are considered equal when they have the same
syntax. Thus we use locking expressions as defined above to repre-
sent the locks themselves. In general, we consider two locks equal
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when their corresponding locking expressions are the same. Our
experience indicates that this syntax-based alias detection works
well, with no false positives as a result of imprecise alias detection
discovered in our experiments. Therefore we choose to avoid the
extra costs of a more complex alias analysis.

We model synchronization as a statement of the form SYNC e sb
where e is a locking expression and sb is a synchronization block.
The statement SYNC ∗ sb refers to a synchronization block sb that
does not synchronize on a locking expression within the bounds
defined above.

We assume that a preceding compiler stage has constructed a call
graph (we use Class Hierarchy Analysis [3]) and control flow
graphs for the program. The program points immediately before
and after a statement st are respectively denoted •st and st•. The
set of all predecessors of a statement st is denoted pred(st).

Let entrym denote the set of method and synchronization block en-
try statements in method m. (Note that the inclusion of synchro-
nization block entry points is different from the usual definition of
entrym.) Let A(p) denote the dataflow facts at a program point p.
(The dataflow facts are defined in the next subsection.) Let A(m)
denote the dataflow facts at the exit of method m, and let A(sb) de-
note the dataflow facts at the exit of synchronization block sb. Let
CALLEES(st) denote the set of methods that may be called from
the call site st. Let CALLS(m) denote the set of CALL statements
in method m. Finally, let METHODS denote the set of all methods
in the program.

4.2 Intraprocedural Dataflow Analysis

Our intraprocedural analysis detects the synchronization pattern
described in Section 2 when it occurs within a method. We use
a flow-sensitive forward dataflow analysis that tracks some facts
about the synchronization history at each point in the program. In
particular, our analysis maintains three sets:

• a set R ⊆ Locks of previously released locks in the current
static scope,

• a set T ⊆ Locks of locks that were acquired and released twice
in sequence (potential witnesses), and

• a set P ⊆ Locks of locks that witness the full pattern.

Locks enter R the first time they are acquired and released. After
the second time, they enter T . If a lock enters R and T in the scope
of a block synchronizing a different lock, then the lock enters P ,
which indicates that the pattern has been detected.

The dataflow facts 〈R, T, P 〉 form a lattice where

〈R1, T1, P1〉 v 〈R2, T2, P2〉

if and only if

R1 ⊂ R2 ∧ T1 ⊂ T2 ∧ P1 ⊂ P2.

The join operator is defined such that

〈R1, T1, P1〉 t 〈R2, T2, P2〉 = 〈R1 ∪R2, T1 ∪ T2, P1 ∪ P2〉.

The dataflow equations are presented below:

A(•st) =

(
〈∅, ∅, ∅〉 if st ∈ entrymF

st′∈pred(st) A(st′•) otherwise

A(st•) = [st](A(•st))

These equations set the initial dataflow facts 〈R, T, P 〉 to empty
sets for every method entry and every synchronization block entry
point. (Recall that entrym is defined as the set of all entry points
to the method m and to synchronization blocks in m.) Every other
program point just before a statement is computed as the join of
the dataflow facts just after all predecessors of that program point.
The transition functions (defined below) are used to compute the
dataflow facts just after a given statement.

Note that these dataflow equations differ from traditional dataflow
equations by defining the initial dataflow facts of synchronization
blocks. We do this in order to determine which locks in the set T
to add to the set P . For a lock to enter P , it must have entered R
and T while inside a synchronization block of a different lock. By
setting the initial facts of all synchronization blocks to the empty
set, we know that all locks in T must have entered R and T while
in the current synchronization block. This enables us to determine
which locks should enter P .

Figure 6(a) presents the transfer functions. The transfer functions
for the SYNC statements look up the dataflow facts at the end of the
synchronization block sb, denoted 〈Rsb, Tsb, Psb〉. For a synchro-
nization statement SYNC e sb, the set of previously released locks
R is modified to include all locks released in sb, plus e. The set
of potential witnesses T is updated to include any of these locks
that were already present in R. The set of actual witnesses P is
updated to include locks that witness the pattern in sb as well as
potential witnesses in sb that now witness the pattern with e as
context. However, e itself is not added to P because the pattern re-
quires that witnesses be distinct from their context. The statement
SYNC ∗ sb is treated similarly, with ∗ assumed to be a lock that is
distinct from every other lock, including other instances of ∗. Thus
∗ may be used as a context but never a witness of the pattern.

Our analysis considers two locks equal when they have the same
syntax, but that syntax might refer to different locks at different
program points. The transfer function for an assignment x := y
addresses this problem by assuming that the old value of x is lost
and can not be equal to any further locks. More precisely, we
remove from R all locks that depend on x. A lock e depends on
x if it satisfies DEPENDS(e, x), which is defined at the the top of
Figure 7. DEPENDS(e, x) holds whenever e is composed of x in
some way, as either a field or an array access of x, or if x is used to
index an array in e. For example, incrementing a loop variable will
remove from R all locks that index an array with that variable. This
prevents our system from incorrectly assuming that distinct locks
from across iterations are equal.

4.3 First Interprocedural Extension

The intraprocedural technique described above is unable to detect
patterns where locks are acquired in different methods. For exam-
ple, the code in Figure 1 will result in the set P always being empty,
despite the presence of the pattern. To remedy this, we introduce an
interprocedural analysis. For each method m, the analysis gener-
ates LOCKSHELD(m), the set of locks that may be acquired by m
or methods that m calls. This additional information can then be
used during the intraprocedural analysis at call sites.

One important caveat is that locking expressions can refer to
method-local variables, including this and formal parameters.
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st [st](〈R,T ,P 〉)
SYNC e sb 〈R ∪Rsb ∪ {e}, T ∪ (R ∩ (Rsb ∪ {e})), P ∪ ((Psb ∪ Tsb)\{e})〉
SYNC ∗ sb 〈R ∪Rsb, T ∪ (R ∩Rsb), P ∪ Psb ∪ Tsb〉
x := y 〈R\{e | DEPENDS(e, x) = true}, T , P 〉

all others 〈R, T , P 〉
for A(sb) = 〈Rsb, Tsb, Psb〉

(a)

st [st](〈R,T ,P 〉)
CALL e.m′(p̄) 〈R ∪ L, T ∪ (R ∩ L), P 〉

where L =
S

m′′∈CALLEES(st){TRANSLATELOCKst(x) | x ∈ LOCKSHELD(m′′)}\{∗}
(b)

Figure 6. Transfer functions for (a) the intraprocedural analysis and (b) the first interprocedural extension

DEPENDS(e, x) =

8
>>><
>>>:

true for e = x

DEPENDS(y, x) for e 6= x and e = y.f

DEPENDS(y, x) ∨ DEPENDS(i, x) for e 6= x and e = y[i]

false otherwise

LOCKSHELD(m) = {x | SYNC x sb ∈ m}\{∗} ∪

0
BB@

[

st∈CALLS(m)

m′∈CALLEES(st)

{TRANSLATELOCKst(x) | x ∈ LOCKSHELD(m′)}\{∗}

1
CCA

For a method m that contains a statement st = CALL e.m′(p̄) and for a locking expression x in the context of m′,

TRANSLATELOCKst(x) =

8
>>>>>>><
>>>>>>>:

TRANSLATELOCKst(y).f for x = y.f and result ∈ Locks
TRANSLATELOCKst(a)[TRANSLATELOCKst(i)] for x = a[i] and result ∈ Locks
e for x = this and e ∈ Locks
pi for x the parameter i in m′ and pi ∈ Locks
x for x an integral constant
∗ otherwise

Figure 7. Equation for computing LOCKSHELD and definitions of DEPENDS and TRANSLATELOCK

FINALP (n) = A(n)P ∪

0
B@

[
s=SYNC e sb
s∈SYNCS(n)

(FINALT (s) ∪ FINALP (s))\{e}

1
CA

FINALT (n) = A(n)T ∪

0
BB@

[

st∈CALLS(n)
m∈CALLEES(st)

{TRANSLATELOCKst(x) | x ∈ FINALT (m)}\{∗}

1
CCA

Figure 8. Equations for computing final sets of witnesses T and P for each method or synchronization block n

Before using the value of LOCKSHELD from another method,
each lock needs to be translated to the current context. For ex-
ample, the method distanceTo in Figure 1 locks this. In the
method contains, that lock should be translated to the target of the
call, point. Figure 7 defines the function TRANSLATELOCKst(x),
which translates locking expression x for the call site st. TRANS-
LATELOCK translates field and array accesses recursively. It trans-
lates this to the target of the method call. It translates formal
parameters to the arguments of the method call. An expression
containing any other method-local variable is translated to ∗. Ad-

ditionally, any translation that would result in a locking expression
that exceeds the size bound results in ∗.

Figure 7 presents the equation for computing LOCKSHELD. For
each method m, LOCKSHELD(m) contains all locking expressions
acquired in SYNC statements in m, as well as the translations of
all of its callees’ locks. We define LOCKS-HELD to be the least
solution to this equation, which can be efficiently computed with a
standard fixed point algorithm.

The new transfer function for the interprocedural analysis is shown
in Figure 6(b). The set L is defined as the set of translated locks
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from all of the callees. The new set of released locks R therefore
includes L, and the new set of potential witnesses T includes every
lock in L that was already in R. The set of locks witnessing the
pattern P is left unmodified.

4.4 Second Interprocedural Extension

The interprocedural extension described above accounts for locks
acquired by callees, but it does not immediately detect the pattern
when a lock becomes a potential witness in a callee. For example,
suppose method m acquires a lock x and calls a method m′, which
acquires and releases a lock y twice. The pattern is exhibited with
x as context and y as witness. The interprocedural extension above
will terminate with the final state of m as 〈{x, y}, ∅, ∅〉 and the final
state of m′ as 〈{y}, {y}, ∅〉. Both methods have an empty set of
pattern witnesses, but the lock acquired in m serves as context for
the pattern witnessed in m′. A final analysis propagates the set T
of potential witnesses back up the call graph in search of a context.

The final analysis operates on an expanded call graph, where each
method and synchronization block represents a unique node. Edges
are either method calls or control flow paths to embedded synchro-
nization blocks. Thus the path from a method to a callee might pass
through a number of synchronization block nodes. Here we extend
the definition of CALLS(n) for the case where n is a synchroniza-
tion block. Let SYNCS(n) denote the set of synchronization block
nodes that are successors of node n in the expanded call graph. For
each node in the expanded call graph, the final analysis tracks a pair
of sets, 〈T, P 〉, where T and P are as usual the sets of potential and
actual witnesses, respectively. For a synchronization node n, define
A(n) as 〈∅, ∅, ∅〉.
Figure 8 presents the equations for computing FINALP and FINALT

for each node of the expanded call graph. FINALT computes the
set of potential witnesses for each node. This is simply propagated
from the callees of the node. Synchronization blocks either con-
firm or eliminate a potential witness, so the only source of potential
witnesses is from callees. FINALP computes the set of confirmed
witnesses for each node. These are either potential witnesses that
are confirmed by a synchronization block, or previously confirmed
witnesses that pass through a synchronization block. Witnesses
passing through a synchronization block s are eliminated if they
are the same as the lock being synchronized by s. Java’s reentrant
locking would render such witnesses as no-ops.

Note that witnesses in FINALP are never propagated between meth-
ods, even though they might be eliminated by synchronization
blocks further up the call hierarchy. Many methods are designed
to be atomic in any calling context, and the warnings our tool gen-
erates can assist in the development of these methods. Therefore,
once a witness reaches a method boundary it is considered an ac-
tual instance of the pattern.

4.5 Atomicity Warning Generation

After the above analyses, FINALP (m) is the set of pattern wit-
nesses of each method m. The final set of witnesses is then[

m∈METHODS

FINALP (m).

The witness may not have been locked in m, so the same witness
could appear in FINALP for multiple methods. We report only
one atomicity warning for each location in the code where the
witness was locked for the second time. Each warning contains the
locations of both witness lock locations as well as the context.

4.6 Detecting the Pattern Variant

Section 2.3 describes a variant on the pattern where the witness
synchronizations are allowed to operate on two different locks. The

above analysis can be modified to check for this variant. Each wit-
ness and potential witness is now a pair of locks 〈a, b〉 ∈ Locks ×
Locks, where a was locked and released before b was locked. Thus
the sets T and P are subsets of Locks× Locks. The subset relation
and join operation remain the same. Figure 9 presents the transfer
functions for the modified analysis and Figure 10 presents the final
analysis equations.

The variant pattern analysis has the potential to produce more atom-
icity warnings, since many more combinations of locks are possi-
ble. Like above, we limit the output to one warning per location of
the second witness lock.

5. Experience
This section presents our experience using our analysis tool on a
variety of Java programs. We ran our experiments on an Ubuntu
10.04 machine with a Pentium 4 3.4 GHz processor and 1 GB
memory using IcedTea Java 1.8.

5.1 Methodology

We implemented the analysis of Section 4 as an extension to the
Polyglot [15] compiler framework. Our tool combines warnings
that involve the same witness lock into a single warning. We ran
our tool on a set of Java programs:

• elevator: A concurrent elevator simulation [21].
• tsp: A parallel solution to the traveling salesman problem [21].
• sor: A parallel scientific computation application [21].
• ObjectDraw: A concurrent object drawing library used for

teaching Java [2].
• Risk: A computer board game [17].
• Arbaro: A utility for creating and rendering realistic trees [1].
• TVSchedulerPro: A program for capturing data from a digital

tuner device according to a schedule [19].
• FreeMind: A mind mapping application [7].
• TuxGuitar: A guitar tablature editor [18].
• Jose: A graphical tool for the game chess [11].
• JFreeChart: A chart library for Java [10].

Risk, Arbaro, TVSchedulerPro, FreeMind, TuxGuitar, Jose, and
JFreeChart are all popular projects at sourceforge.net. Our tool cur-
rently supports only Java 1.4, so we used a program to automati-
cally remove the extra features of Java 5 from the TVSchedulerPro
source code.

5.2 Classification of Warnings

We ran our tool on the programs and benchmarks above. We manu-
ally inspected each warning output by our tool, and categorized it as
either a program error or a false positive. We divided the program
errors into actual atomicity violations and stylistic problems that
are potential bugs as the program develops. We divided the false
positives into instances of the pattern that don’t indicate an error,
and cases where the pattern is not actually exhibited.

Atomicity Violation

If a warning refers to a block of code that could plausibly be
interleaved with unexpected results, it is considered an atomicity
violation. Atomicity violations can cause dramatic failures such
as uncaught exceptions, or more subtle problems such as methods
returning incorrect values. Many atomicity violations are the result
of a method not acquiring a lock on its parameter at the right
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st [st](〈R,T ,P 〉)
SYNC e sb 〈R ∪Rsb ∪ {e}, T ∪ (R× (Rsb ∪ {e})), P ∪ ((Psb ∪ Tsb)\FILL(e))〉
SYNC ∗ sb 〈R ∪Rsb, T ∪ (R×Rsb), P ∪ Psb ∪ Tsb〉

CALL e.m′(p̄) 〈R ∪ L, T ∪ (R× L), P 〉
all others 〈R, T , P 〉

for A(sb) = 〈Rsb, Tsb, Psb〉
and L =

S
m′′∈CALLEES(st){TRANSLATELOCKst(x) | x ∈ LOCKSHELD(m′′)}

Figure 9. Transfer functions for detecting the pattern variant

VARFINALP (n) = A(n)P ∪

0
BB@

[
s=SYNC e sb
s∈SYNCS(n)

(VARFINALT (s) ∪ VARFINALP (s))\FILL(e)

1
CCA

VARFINALT (n) = A(n)T ∪

0
BBB@

[

st∈CALLS(n)
m∈CALLEES(st)

{TRANSLATELOCKst(〈x, y〉) | 〈x, y〉 ∈ VARFINALT (m)}\FILL(∗)

1
CCCA

TRANSLATELOCKst(〈x, y〉) = 〈TRANSLATELOCKst(x), TRANSLATELOCKst(y)〉
FILL(x) = Locks× {x} ∪ {x} × Locks

Figure 10. Equations for computing final sets of witnesses for the pattern variant, along with the helper function FILL

Errors and Potential Errors False Positives
Lines of Total Atomicity Stylistic Benign Non-Pattern Time

Benchmark Code Warnings Violations Problems Pattern (s)
elevator 523 0 0 0 0 0 1.3

tsp 706 0 0 0 0 0 1.6
sor 17690 9 3 0 6 0 5.6

ObjectDraw 5637 3 2 1 0 0 2.7
Risk 10735 1 0 1 0 0 5.9

Arbaro 13760 1 1 0 0 0 6.6
TVSchedulerPro 30857 2 2 0 0 0 16.2

FreeMind 65161 0 0 0 0 0 23.1
TuxGuitar 96035 6 1 0 2 3 40.3

Jose 145993 5 0 4 0 1 48.8
JFreeChart 217354 0 0 0 0 0 40.9

TOTAL 604451 27 9 6 8 4 193.0

Figure 11. Experimental results of running our analysis on several Java programs. We categorize the warnings into atomicity violations,
stylistic problems, benign patterns, and misidentified patterns. Our analysis detected atomicity violations in 33% of the cases. About 85% of
the warnings correspond to actual instances of the pattern, and about 65% of these correspond to program errors or potential errors.

granularity, such as the example from Section 2. In all instances of
atomicity violations that we observed, the violation can be resolved
by acquiring an additional lock for the duration of the atomic block.

Stylistic Problem

In some cases the code style suggests a confusion, which may lead
to atomicity violations in the future. In these cases, a suspect syn-
chronization pattern is used, although it may not lead to a violation
of atomicity. For example, an object might not need correct syn-
chronization because it is protected by a lock on a different object.
However, the presence of incorrect synchronization on the encap-
sulated object suggests that it may rely on that synchronization in a
future version of the code, in which case there will be an atomicity
violation.

There are some standard synchronized classes in the Java such as
Vector and StringBuffer that are often used in an encapsulated

or thread-local setting. Our tool detects patterns involving library
classes such as Vector and StringBuffer and filters them from
the results.

Benign Pattern

Sometimes our tool will correctly identify the pattern but there
will be no error in the code and no indication that there may
be an error in the future. For example, the programmer may not
have intended a given block to be atomic, or they might be using
a nonstandard locking idiom. These false positives might benefit
from some programmer attention, but they are benign and are not
expected to cause problems now or in the future.

Less than 35% of the instances of the pattern identified by our tool
are benign. This supports our hypothesis that the pattern generally
indicates a problem. Furthermore, there are ways to reduce the
size of this category. Programmers can use annotations to tell our
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system that some locks are benign. With knowledge of the benign
patterns, we could use heuristics to filter out these warnings. For
example, locks that are held for most of the program’s execution
are probably not intended to be atomic blocks. Implementing such
filters is future work.

Non-Pattern

Sometimes our tool produces warnings that do not correspond to in-
stances of the pattern. In our experience these false positives come
from two sources of imprecision: path sensitivity and conservative
call graphs. Our tool uses a path insensitive technique, so it might
generate warnings that correspond to impossible paths. Addition-
ally, our tool conservatively approximates the call graphs and so it
might consider calls that can never happen. Despite these sources
of imprecision, our tool incorrectly reported a non-pattern less than
15% of the time.

Although our alias analysis is very fast and imprecise, lock vari-
ables are generally used in a simple and straightforward manner in
synchronized code. We did not encounter any false positives as a
result of imprecise alias detection.

5.3 Analysis

The experimental results are tabulated in Figure 11. These results
confirm that the pattern we detect is likely to indicate problems in
the program. Of the 27 warnings that were reported, 9 were meth-
ods that were intended to be atomic but do not ensure atomicity
through synchronization. There were 6 warnings with questionable
style, which could lead to problems in future versions of the code.
False positives accounted for the other 12 warnings generated. As
expected, the analysis is efficient, processing over half a million
lines of code in a little over three minutes.

It took us less than an hour to manually analyze the 27 warnings
generated from about half a million lines of code and identify
which ones are errors or potential errors and which ones are false
positives. One reason we could identify the false positives quickly
is that false positives often appear in groups. Once a false positive
is found, it becomes clear that other warnings are false positives as
well. For example, once we identify a set of lock objects as using a
nonstandard locking idiom, any warning based on those objects is
likely to be a false positive.

We also built the analysis of the pattern variant as described in Sec-
tion 4.6 into our tool and ran it on all benchmarks. The variant anal-
ysis produced a superset of the warnings of the standard analysis.
Figure 12 shows the number of additional warnings generated by
the variant analysis. The additional warnings do not immediately
lead to atomicity violations, but they do indicate code blocks with
complex synchronization patterns that might bear further investiga-
tion or rethinking. We feel that the variant pattern is a useful option
for those wanting more warnings at the expense of a potentially
greater false positive rate.

The warnings tabulated in Figure 11 are described in detail below.

sor

Our tool reported nine warnings for the sor benchmark. We deter-
mined that three of these warnings represent actual atomicity viola-
tions. Two atomicity violations are detected in the addAll methods
of a data structure. These methods take a Collection as a param-
eter but they do not synchronize the parameter. Thus, changes to
the Collection during execution of the addAll methods violates
atomicity and can lead to exceptions. The third atomicity violation
is in a Heap data structure. The insert method is synchronized,
but it does not synchronize its parameter.

The remaining six warnings all correctly identify the pattern, but
they do not correspond to actual program errors. Four of the warn-
ings are for blocks that are not intended to be atomic but instead
explicitly detect certain classes of concurrent modifications. These
warnings are reported in sections of the code that relate to load
sharing. Finally, there were two warnings that arose from the use of
custom lock objects. In these cases, the programmers define their
own locking outside of the built-in Java synchronized blocks.

ObjectDraw

Our tool identified two atomicity bugs in the ObjectDraw library.

One atomicity bug is in a method that tests whether a line contains
a point. While a lock on the line is held, the lock on the point is
acquired and released multiple times. The point could be modified
by a concurrent thread between acquisitions, making the method
return an incorrect result.

The other atomicity bug is in a method that determines whether
two bounding boxes intersect. The method acquires a lock on one
bounding box but not on the other. Subsequent method calls acquire
and release the lock on the other bounding box multiple times. If
that bounding box is modified, the method uses stale data and may
return an incorrect result.

In addition to these atomicity bugs, our tool detects one stylistic
problem, which results from the synchronization of an encapsulated
bounding box.

We ran our experiments on a version of ObjectDraw from 2001.
The maintainer of the ObjectDraw library has confirmed that the
atomicity violations revealed by our tool are previously unknown
errors that still exist in the current version of the code.

Risk

The Risk program can act as a client when connecting to a game
server. If it is kicked from a server, some cleanup is required.
During cleanup, a lock is acquired and released twice. This lock
protects an object representing the current state of a game. It is
locked while closing a battle within a game, and then released and
locked again while closing the game itself. These operations are
clearly intended to be atomic, such that a new battle is not started
after the old one is closed but before the game itself is closed.
We were not able to determine for certain whether this atomicity
could be violated during execution, so we conservatively classify
this warning as a stylistic problem. If it is not a feasible bug right
now, certainly it could be in future versions of the code. The lock
on the game state should be held throughout the cleanup.

Arbaro

This program tracks the progress of an operation using a shared
progress object. When it updates the progress, it checks to see if
more than 1 percent progress has been made since the last time it
was updated. If so, it sets the new progress. This is clearly intended
to be atomic, since the operation of setting the progress depends on
the result of the progress check. However, there is an atomicity bug.
If another thread modifies the progress object between the check
and the operation, the progress object enters an inconsistent state.

TVSchedulerPro

Our tool identified two atomicity bugs in TVSchedulerPro.

TVSchedulerPro maintains a list of devices capable of capturing
video. Sometimes it needs to count the number of active devices
in the system. However, the method that counts the devices has an
atomicity bug. It acquires a lock on the list of capture devices to
read the size of the list, but it releases the lock before it traverses
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Additional
Benchmark Warnings

elevator 0
tsp 0
sor 4

ObjectDraw 5
Risk 1

Arbaro 0
TVSchedulerPro 1

FreeMind 0
TuxGuitar 1

Jose 7
JFreeChart 0

TOTAL 19

Figure 12. Number of additional warnings gathered by running the
analysis to detect the pattern variant.

the list. The size of the list could become stale if (for instance) a
device is removed from the list. This leads to an access outside the
bounds of the list, which will halt the program with an exception.

The second atomicity bug is in the system for setting server prop-
erties dynamically. When a property is needed, it first checks to see
if the property has been defined. If it has not been defined yet, the
property is set to a default value. However, an atomicity bug makes
it possible for the property to be concurrently set after it is checked,
but before the default value is assigned. Thus, the new value could
be incorrectly overwritten by the default value.

TuxGuitar

The TuxGuitar application uses an object to represent a music se-
quencer. This sequencer contains a method that updates the se-
quencer forward one time step by managing a TickController ob-
ject that stores the current time as well as information such as the
tempo. This method should be atomic, so that it uses a consistent
state of the TickController throughout the processing. However,
there is an atomicity bug that allows the TickController to be mod-
ified by another thread, which results in unexpected behavior.

There are two instances of the pattern not representing an actual
problem. In one case, the program uses a custom locking scheme,
as described above. In the other case, a non-atomic method is
unnecessarily declared as synchronized. This could be seen as a
stylistic problem, but we categorize it as a benign pattern because
it is completely harmless, and has little chance of causing problems
in the future.

Our tool generates three warnings that do not correspond to an ex-
ecution that exposes the pattern. An interprocedural path-sensitive
analysis is required to detect that the pattern is not present.

Jose

This program contains a stylistic problem that involves an object
that writes output data. This object is synchronized each time it
writes, although some sequences of writes should be atomic. It is
uncertain whether this atomicity is actually violated, but the stylis-
tic issue is clear. In addition, there are three instances of encapsu-
lated buffers whose synchronization could violate atomicity if the
objects were shared.

There is a single warning that does not correspond to an instance of
the pattern. Our call graph is too conservative to determine that the
pattern is not present.

6. Related Work
This section describes work related to detecting and preventing
atomicity violations. This can be divided into static and dynamic
techniques.

Among the static techniques, Flanagan and Qadeer developed a
type system for establishing atomicity in blocks specified by the
programmer [5, 6]. Wang and Stoller use a static intraprocedural
analysis to infer atomicity in the presence of non-blocking syn-
chronization [23]. The above techniques require significant manual
effort.

Von Praun and Gross use a fully automated technique to statically
detect atomicity violations [20]. Their system in effect attempts to
detect a different pattern than ours in Java code that is indicative of
atomicity violations, so their approach is unlike and complemen-
tary to ours. In our experiments using the same benchmarks, our
tool detected atomicity violations (e.g., in the sor benchmark) that
their tool could not. Also, it seems to us that our analysis is more
efficient.

Among the dynamic techniques, there is work on systems that mon-
itor the execution of Java programs and detect atomicity violations
at runtime [4, 22]. These systems require programmer specifica-
tions of atomic blocks. Other techniques infer atomicity while run-
ning programs, either automatically [12, 13, 24] or using some ba-
sic annotations [14]. Dynamic techniques such as these rely on the
paths exercised at runtime to expose a bug. In contrast, our static
technique enables programmers to quickly run our system and im-
mediately generate atomicity warnings.

Finally, there is work on implementing atomicity requirements us-
ing transactions [8, 9, 16]. These techniques approach the problem
of atomicity from a different angle. Instead of checking that the
programmer correctly used synchronization primitives, these sys-
tems provide language support for dynamically enforcing atomic-
ity. Thus the programmer simply denotes which blocks are atomic
and the language runtime enforces that requirement.

7. Conclusions
This paper presents a system for automatically detecting atomicity
violations in Java programs without requiring any specifications.
Our system infers which blocks of code must be atomic and detects
violations of atomicity of those blocks. The key to our approach
is the identification of a synchronization pattern that is highly
likely to indicate a violation of atomicity and that can be detected
efficiently using static analysis. The paper presents a static analysis
for detecting occurrences of this pattern.

Our experience with several popular open source Java programs in-
dicates that the pattern can indeed be detected efficiently and it does
indeed correlate highly with atomicity violations. We checked over
half a million lines of programs with our tool in a little over three
minutes. Our tool successfully detects all the previously known
atomicity errors in those programs as well as several previously
unknown atomicity errors. Our tool also detects badly written code
whose atomicity depends on assumptions that might not hold in
future versions of the code.
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