Chapter 14

Type Reconstruction

The faculty of deduction is certainly contagious . ..

— Sherlock Holmes in The Problem of Thor Bridge
by Sir Arthur Conan Doyle

14.1 Introduction

In the variants of FL/X that we’ve studied so far, it is necessary to specify
explicit type information in certain situations. All variables introduced by a
lambda must be explicitly typed, for instance. Not all type information needs
to be explicitly declared, however. For example, the return type of a procedure
need not be explicitly declared.

What determines the placement of explicit type information in a language?
That is, why does some type information have to be provided while other type
information can be elided? The answer to this question lies in the structure of
the type checker. As noted earlier, a simple type checker has the structure of an
evaluator. Consider the type checking of a 1ambda expression. When entering a
lambda expression, the type checker has no information about the types of the
formal parameters; these must be provided explicitly. However, once the types
of the formals are known, it is easy for the type checker to determine the type
of the body, so this information need not be declared.

Could a more sophisticated type checker do its job with even less explicit
information? Certainly, programmers can reason proficiently about type infor-
mation in many programs where there are no explicit types at all. Such reason-
ing is important because understanding the type of an expression, especially one

583



o84 CHAPTER 14. TYPE RECONSTRUCTION

that denotes a procedure, is often a major step in figuring out what purpose the
expression serves in the program. As an example of this kind of type reasoning,
consider the following expression:

(lambda (f x y)
(if (£ x y) (£ 3 y) (f x "twenty-three"))))

By studying the various ways in which £, x, and y are used in the body of
the above lambda expression, we can piece together a lot of information about
the types of these variables. The application (£ x y), for example, returns a
boolean because it is used as the predicate in an if expression. Thus, f is a
procedure of two arguments that returns a boolean. Since both branches of the
if expression are calls to £, we know that the procedure created by the lambda
expression must also return a boolean. In fact, looking at the consequent and
alternative of the if, we can even say more about f: its first argument is a
number and its second argument is a string. Thus, x must be a number and y
must be a string.

There is no reason that a program cannot carry out the same kinds of rea-
soning exhibited above. Automatically computing the type of an expression that
does not contain type information is known as type reconstruction or type
inference. Type reconstruction is more complicated than type checking be-
cause type reconstruction must operate properly without programmer supplied
type assertions.

Type reconstruction is the formalization of the kind of reasoning seen in
the example above. A type reconstruction algorithm is an automatic way of
determining the types of an expression (and all the subexpressions along the
way). We can think of the different subexpressions in the above example as
specifying constraints on the types of the expressions. It is possible to view
these constraints as a set of simultaneous type equations that restrict the type
of an expression. If these equations cannot be solved, then the expression is not
well-typed. If these equations can be solved, then the most general typing for
the expression results. In the event that several types may be assigned to an
expression, then the most general type is the type, T, such that all other possible
types are substitution instances of T. l.e., for any type, S, the expression may
have, there is a substitution that can be applied to the most general type to get
S. The type system of a type reconstructed language is usually designed so that
there is a unique most general type for every typable expression. Most general
types are often called principal types.

Consider the lambda expression studied above. Suppose that!

'Here we denote unknowns in the equations by names prefixed with a question mark, to



14.1. INTRODUCTION 585

e 71 is the type of the result of evaluating the lambda expression.

e 71 is the type of the result of evaluating the if expression.

e 7f is the type of f.

e 7x is the type of x.

e 7y is the type of y

Then the equations that are implied by the expression are

71 = (> (?f 7x ?7y) 7i)
?7f = (-> (?x ?7y) 7a)

?a = bool

?7f = (-> (int ?y) ?b)
?7f = (-> (7x string) 7c)
T = %c

?i = 7

A solution to the above equations yields the following variable bindings:

7a
7x
7y
7f
71

?b = 7c =71 =Dbool

int

string

(-> (int string) bool)

(> ((-> (int string) bool) int string) bool)

Note that a system of type equations need not always have the neat form of
solution indicated by the example. For example, the system associated with

(lambda (f x y)
(if (£ xy) (£ 3y) (£ y "seven")))

has no solution since it is overconstrained: the int and string types are disjoint.
On the other hand, the system may be underconstrained, as in the following
perturbation of the example:

distinguish them from variables in the language.



586 CHAPTER 14. TYPE RECONSTRUCTION

(lambda (h x y)
(if b xy) (hxy) (h x "seven")))

In this case, the type of x is unknown, and the type deduced for the expression
is

(-> ((-> (7x string) bool) ?7x string) bool)

The appearance of an unknown type variable in this type is the way that this
particular type language indicates the potential for polymorphism. We will see
below under what conditions such a type is viewed as polymorphic. In other
notations we have seen, a polymorphic type would be expressed as:

(forall (t) (-> ((-> (t string) bool) t string) bool))

or

Vt. ((string t) — Dbool) X t X string — bool

14.2 A Language with Type Reconstruction: FL/R

In this section, we’ll consider issues in type reconstruction for a variant of FL
called FL/R. The grammar for FL/R is given in Figure 14.1. Note that there
are no explicit type declarations in the expressions of the language.

Figure 14.2 contains the typing rules for FL/R. The rules for literals, con-
ditionals, abstractions, and applications are similar to the ones for FL/X. The
only difference is in the 1ambda rule. Whereas the FL /X typing rule for lambda
uses the explicit type declarations for each of the variables, the lambda rule in
FL/R “guesses” the types of the variables, and then checks to see that its guess
is correct. The typing rules do not explain how these guesses are made. The
details of guessing will be specified by the reconstruction algorithm presented in
Section 14.4 below.

The typing rules for let, letrec and variables contain some new ideas. The
motivation for these concepts is that we’d like type reconstruction to be able to
reconstruct polymorphic types, at least in some simple cases. As an example of
where we’d like to infer a polymorphic type, consider:

(let ((f (lambda (x) x)))
GAf (£ #8) (£ 1) (f 2)))

Here, we would like f to have the type (-> (bool) bool) when applied to
#t, and the type (-> (int) int) when applied to 1 and 2. If we required
each variable to have only one type associated with it, this kind of polymorphic
behavior would not be allowed in the language.



14.2. A LANGUAGE WITH TYPE RECONSTRUCTION: FL/R o987

P € Programpy, /g I € Identifierpy, r = usual identifiers
Fe EXPFL/R B e BOOHitFL/R = {#t,#f}

AB € AbstractionFL/R N e IntlitFL/R = { “ey —2, —1, O, 1, 2, .. }
LELitFL/R OEPrimopFL/R
T € Type

TS € Type-schema
P = (f1r (Upmi™) Epody (define Ingme Egen)™)
E:=1L| 1] (error D

| (1f Etest Ethen Eelse) | (begin EJr)

| Qambda (Lpmi™) Epody) | (Erator Erana™) | (primop Op Earg™)
| (let ((Iname Edefn)*) Ebody) | (letrec (([name Edefn)*) Ebody)

L:i=#u| B| N | (symlit D

Oppyp =+ | = | x|/ |% Arithmetic ops]
|<=| <] =]1t=]>]|>= Relational ops]

| pair | £st | snd Pair ops]

[
[
| not | band | bor [Logical ops]
[
| cons | car | cdr | null | null? [List ops]
[

| cell | ~ | := Mutable cell ops]

T ::=unit | int | bool | sym [Base Types]

| I [Type Variable]

| (=> (T%) Thoday) [Arrow Type]

| (pairof T; Tg) [Pair Type]

| (listof T) [List Type]

| (cellof T) [Cell Type]
TS ::= (generic (I*) T) [Type Schema]

Figure 14.1: Grammar for FL/R



088 CHAPTER 14. TYPE RECONSTRUCTION

F #u : unit [unit]

F B : bool [bool]

F N : int [int)

F (symbol I) : sym [symbol]
[...[:T,..])-1:T [var]

[...,I: (generic (I; ... LI,) Thoay),--.JF I : ([Ts/L]71) Trody [genvar|
AF (error ) : T [error]

AF FEigt :bool ; AbFEepn : T 3 AFEy @ T f]

AbF (if Eiest Eeon Ean) : T

nUAFE T (begin
AT (vegin B; ... B : Ty €

All; 2Ty, ..., In: Tyl Epody @ Thody
Al (Qambda (I; ... I,) Ebody) (> (T; ... T,,)) Tbody)

Al FErator (-> (T1 . Tn) Tbody)
e AFE T [apply]
Al (Emtor E1 e En) . Tbody

Astandard FO: (_> (TJ . Tn) T)
", CARE T [primop)]
AtF (primop O E; ... E,) : T

VR AFE T
A[l; :GenPure(E,, T;, A),....I,:GenPure(E,, T,, A)|F Epoay : Tooay [let]
Al (let ((.[1 E1) (In En))) Ebody) . Tbody

m oAl Ty, .., LT FE T
A[l; :GenPure(E,, T;, A),....I,:GenPure(E,, T,, A)|F Epoay : Trody [letrec]
Al (Qetrec ((U; Ep) ... (Iy Ep))) Epody) : Thody

Astandard[jl : TI 5 ey In : Tn] F
(letrec ((Ug, Ey) ... g, Ep)) Epoay) : T
Fprog (£1r (I; ... I,) Epoay (define Iz, E;) ... (define Iy, Ey))
(> (T ... Tp,) D)

Gen(T,A) = (generic (I; ... I,) T),where {I;} = FTV(T)— FTE(A)

GenPure(E, T, A) = Gen(T, A) if E is pure
T otherwise

[program]

Figure 14.2: Typing rules for FL/R.



14.2. A LANGUAGE WITH TYPE RECONSTRUCTION: FL/R 589

In order to handle this simple polymorphism, we introduce the notion of
a type schema (7S in Figure 14.1). A type schema is a pattern for a type
expression that is abstracted over variables; the schema can be instantiated by
binding the variables to particular types. For example, a type schema for the
identity procedure is
(generic (t) (-> (t) t))

Type schemas for various list operations are shown below:

cons: (generic (t) (-> (¢t (list-of t)) (list-of t)))
car: (generic (t) (-> ((list-of t)) t))

cdr: (generic (t) (-> ((list-of t)) (list-of t)))
null?  (generic (t) (-> ((list-of t)) bool))

null (generic (t) (> () (list-of t)))

Unlike the forall type of FL/X, a type schema cannot appear as a subex-
pression of a type expression. That is, according to the grammar for type
schemas, generic can only appear once, at the outermost level. A type schema
thus represents types that are universally quantified over a set of variables.

The reason for this restriction on type schemas is that type reconstruction
is greatly complicated in the more general case. In some cases, it is unknown
whether it can even be accomplished; other situations involving general polymor-
phic types have been proven undecidable. Reconstruction using type schemas,
though, is decidable. Type reconstruction based on type schemas is usually
called Hindley-Milner type reconstruction, after its inventors.

FL/R’s use of type schemas means that certain meaningful FL programs
are not well-typed in FL/R, even if they could be assigned types in FL/X.
Consider the following program:

(lambda (f)
(if (f #t) (£ 1) (f 200

Intuitively, the type for this procedure is something like
(-> ((generic (t) (-> (t) t))) int)

But this is not a legal type or type schema. The closest legal type schema we
could make would be:

(generic (t) (-> ((-> (t) t)) int))

Although this bears some similarity to the desired type, it is not correct. For
example, instantiating the schema with t bound to int would lead us to believe
that the above procedure could take the integer successor procedure as its ar-
gument. But this yields a type error, since we shouldn’t be able to apply the
successor procedure to #t.



290 CHAPTER 14. TYPE RECONSTRUCTION

Type schemas are introduced into the language via let and letrec. The idea
is that any new type variables introduced by the bindings (free type variables
that do not appear already in the type environment, A) can be viewed as generic.
For example,

(let ((f (lambda (x) x)))
(if (f true) (£ 3) (f 4)))

will now type check, because the type checker will guess that (lambda (x) x)

has the type (-> (t13) t13) where t13 is a newly minted type variable. Since
this type variable is not constrained by information imported into the expression
(lambda (x) x), it can be generalized, and thus f can have a different type each
time it is used (via the [genvar|). How these names are guessed will become
clearer when we present a type reconstruction algorithm below.

One way to view this type of polymorphism is to imagine that the right hand
sides of the let or letrec bindings are substituted for the identifiers to which
they are bound in the body. This would allow the expression to have different
types for any new type variables at each use. However, this transformation is
only legitimate if the expressions are referentially transparent as discussed in
Section 8.2.5.

The [let] and [letrec] rules restrict polymorphic values to be pure expressions,
just as we restricted the body of a plambda to be pure, and for the same reason.
We will see a more general way to introduce effect restrictions in Chapter 16,
but for now, we will insist that F is pure only if it is a syntactic value, i.e., Eis a
literal, variable reference (note that FL /R does not have mutable variables), a
lambda expression, or an if /let/letrec all of whose components are syntactic
values. In other words, applications or compound expressions (except lambda)
is not a syntactic value.

14.3 Unification

In order to solve type equations, we will use the unification method due to
Robinson. Unification takes two types and attempts to find a substitution for
special unification variables in the two types (here prefixed with ?) such that
the two expressions are equal. A substitution is a structure that represents
constraints between unification variables. It is like a type environment in that it
contains bindings of variables (in this case, unification variables, not expression
variables) to types. These types may contain other unification variables. A
substitution can be applied to a type or expression; this returns a new type or
expression in which each unification variable has been replaced by the element
to which it is bound in the substitution. A substitution S is said to be more



14.4. A TYPE RECONSTRUCTION ALGORITHM 991

general than a substitution S’ (written S > S’) if there exists an S” such that
S = (58" o 9).

More formally, a unification algorithm U unifying types T; and T» with
respect to a substitution S (written U(Ty, T2, S)) produces the most general
substitution S < S such that (S’ T;) = (S’ Tg), where the notation (S T)
designates the result of applying substitution S to the type 7. Unification can
of course fail. We will represent the result of a failing unification by the token
fail.

Here are some examples of unification. (Assume that Sy is the empty sub-
stitution, i.e., one not specifying constraints on any variables.)

U((?x ?7y), (int ?7x),Sp) = {?x = int, ?y = int}
U((-> (int) bool), (-> (bool) ?x),S5y) = fail

U((=> (?x) (> (?x) ?y)), (-> (int) 7z),S))
= {?x = int, 7z = (-> (int) ?7y)}

Note in the examples how the same variable can be used in the two expres-
sions being unified to express a constraint between them. For example, in
U((?x ?y), (int ?x),Sp) the variable 7x is used to say “the first element of
the first pair must be the same as the second element of the second pair.” This
idea is also very important in logic programming, and, in fact, unification lies
at the heart of both logic programming and type reconstruction.

14.4 A Type Reconstruction Algorithm

We now present a type reconstruction algorithm similar to one developed by
Milner. This algorithm is the basis of type reconstruction in FX, ML, and
HASKELL.

This is used (via input) both by handouts 41 and 44 We shall use the following
notation to describe the steps of the algorithm:

(RIE] A S) = (T.5")

The way to read this notation is “Reconstructing the type of expression E in
type environment A with respect to substitution S yields the type T and the new
substitution S’.” Reconstruction may not always succeed; if it is not possible
to perform type reconstruction, then

(R[E] A S) =fail
The algorithm is defined such that the following relationship is satisfied:
(subst-in-type-env S A) - E : (S’ T)



992 CHAPTER 14. TYPE RECONSTRUCTION

where (S’ T) means the result of applying the substitution S’ to the type T,
and subst-in-type-env takes a substitution and a type environment, and returns
a new type environment in which the substitution has been applied to all the

types bound in the environment.
The type of an FL /R expression F can be found by the function reconstruct,

reconstruct(E) = (let (T, S) be (R[E] Ao Sp) in (S T))

where Ay is the standard type environment (presumably containing the types for
all names in the standard value environment) and Sy is the empty substitution.
Recall that the metalanguage notation

let (T, S) be Eyq in Epoqy

is a destructuring form of let . We assume for simplicity of presentation that
let propagates failure as well. That is, if the result of evaluating E,,; is fail,
then let returns fail immediately, without evaluating Ep,qy -

Figures 14.3 and 14.4 present the algorithm. The handling of literals, condi-
tionals, abstractions, and applications are fairly straightforward. The handling
of 1let and letrec is complicated by the desire to handle polymorphism. The
functions RgenPure and Rgen are like the GenPure and Gen functions encoun-
tered before, except that they take a substitution as an additional argument.
This substitution is applied to both the type and the type environment:

T if F is not pure

RgenPure(B, T, 4, 5) = { Rgen(T, A, S) otherwise
Rgen(T, A, S)

= Gen((S T), (subst-in-type-env S A))

= (generic (J; ... J,) (S T)),

where {J;} = FTV((S T)) — FTE((subst-in-type-env S A))

Here, FTV gives the free type variables of a type expression (i.e., those type
variables that are not bound by generic), and FTE gives the free type variables
of a type environment (i.e., all type variables that appear free in some type bound
in the environment). A type variable J is a name prefixed with a 7.

14.5 Discussion
Milner proved two theorems about his type reconstruction algorithm:

1. The semantic soundness theorem states that if an expression is well-typed
(by his definition of well-typed, which is expressed as a set of reconstruc-
tion rules), then the expression cannot encounter a dynamic type error.



14.5. DISCUSSION 993

(bool, S)
(int, S)
(string, S)
(symbol D] A S) = (sym,S)
I AL.., I:T, ..]8 = (T,95)
R[I] Al..., I:(generic (I; ... I,) T), ...]S) = (([?vi/L])}=1)T.S),
where ?v; are fresh
(R[I] A S) = fail,
where [ unbound in A
(Rﬂ(lf Etest Econ Ealt)]] A S) =
let <Ttest75test> be (R[[Etest]] A S) iIl
let Stest/ be U(Ttest,bool,Stest) in
let (Tcon,Scon) be (R[Econ] A Stest’) in
let <Taltasalt> be (R[[Ealt]] A Scon) il’l
let Saltl be U(TconaTaltaSalt) iIl
<Talta Salt />
(R[Qambda (I; ... I,) Epog)] A S) =
let <Tbody75body> be (R[[Ebody]] A[I1:?V1 In:?vn] S) in
<(—> (?V1 ?Vn) Tbody),Sbody>,
where ?v; are fresh
(R[Erator Ei ... ED] A S) =
let <Tratorasrator> be (R[[Erator]] A S) in
let (7;,5;) be (R[E;] A Srator) in

let (T,,S,) be (R[E,] A Sp—;) in
let Spna be U(Trator, (> (Ty ... T,) ?7v),S,) in
<?V, Sﬁ'nal>:
where ?v is fresh.

#u] A S) = (unit,S)
S

b
N
[

Figure 14.3: Type reconstruction algorithm for FL /R, Part I.



2994 CHAPTER 14. TYPE RECONSTRUCTION

(R[(et (UI; E;) ... (y E)) Epa)] A S) =
let <T1,S]> be (R[[El]] A S) in

let (T,,S,) be (R[E,] A S,—;) in
R(Epody,
A[l; : RgenPure(E;, T;, A, S.), ..., I,:RgenPure(E,, T,, A, S,)],
Sn)
(R[(Qetrec ((I; Ey) ... Uy Ep)) Epgd)] A S) =
let A; be All;:?vy, ..., I,:?v,] in
let <T1,S]> be (R[[El]] A1 S) in
let (T,,S5,) be (R[E,] A1 Sn—:) in
let Sg be U((?vy ... ?7v,),(Ty ... T,),S,) in
R(Ebody,
A[I; : RgenPure(E;, T;, A, Sp), ..., I,:RgenPure(E,, T,, A, Sp),
SB)

where ?v; are fresh

Figure 14.4: Type reconstruction algorithm for FL /R, Part II.

More generally, he showed that, if with respect to type environment A,
an expression £ has static type T (i.e., A+ E : T), then the denotation
of F with respect to an environment e that respects A has type T (i.e.,
(E[E] e): T). An environment e respects type environment A if for all
variables x in A, (e x) has type (A x).

2. The syntactic soundness theorem states that if the type reconstruction
algorithm R above discovers a type for an expression F, then the type it
discovers is a provable type of F, and thus F is well-typed.

Of course there are limitations to type reconstruction. For example, in Mil-
ner’s type system the following expressions are not well-typed:

(lambda (x) (x %)) ; Self-application

(lambda (f) (cons (f 1) (f #t))) ; First-class polymorphic values

The second restriction appears to be more severe than the first. In fact, there
is presently no way of giving an independent characterization of the expressions
that are not well-typed in Milner’s system.

It is important to note that the kinds of types we can infer are closely related
to the kinds of inference rules that we are using. We are often willing to reduce



14.5. DISCUSSION 995

the power of our type inference system (in terms of the range of types that
can be inferred) for an increased simplicity in the type inference rules. Simpler
rules are easier to prove sound; they generally imply an easier-to-implement
type-inference algorithm as well.

For example, Milner’s type-inference algorithm does not handle subtyping
in any way. As exhibited by the above example, we assume that the types of
procedure arguments in different calls within the same type environment must be
exactly the same; we will not search for some “least upper bound” of the two in
some type lattice. Similarly, we assume that both branches of an if expression
have exactly the same type; no subtypting is allowed here either. This means
that the type equation solver need only deal with strict equality constraints. The
standard unification algorithm is very good at solving such equality constraints.
But the minute subtyping is added to type inference, inequality constraints are
introduced and the standard unification algorithm doesn’t work any more. This
doesn’t necessarily mean that inference with subtyping is impossible; it’s just a
lot more complex.

A key advantage of Milner’s approach to type inference is that it is decidable.
If we try to make a type inference system more powerful by including features
like first-class polymorphism, type inference may become undecidable. Here’s a
table of what is currently known about the decidability of various type inference
schemes:

Type of Inference First-class User Declarations Decidability
Polymorphism?
Hindley-Milner no optional decidable
Full 2nd-order A-calculus yes none undecidable
Full 2nd-order A-calculus yes optional undecidable
Full 2nd-order A-calculus yes non-ML types declared decidable
Full 2nd-order A-calculus yes required decidable

> Exercise 14.1 After Alyssa P. Hacker finished her semantics for producer and
consumer from Exercise 9.5, she realized that she also needed to specify typing rules
for the new language constructs. Alyssa started by adding the new producer-of type
to describe producer values:

T = ... | (producer-of Tyicia Treturn)

A producer of type (producer-of Tyieiq Treturn) yields values of type Tyeiq; if no
more values are to be yielded, it returns a value of type Treturn-

a. What is the type of the identifier sum defined in the following example?



296 CHAPTER 14. TYPE RECONSTRUCTION

(define sum
(lambda (prod-fn)
(let ((ans (cell 0)))
(if (consume (prod-fn #u) n
(cell-set! ans (+ n (cell-ref ans))))
(cell-ref ans)

-1))))

b. What are the typing rules for the producer and consumer constructs?

c. What are the type reconstruction algorithm clauses for producer and consumer?

<

> Exercise 14.2 Sam Antix realizes that FL /R supports only homogeneous compound
datatypes. He decides to extend FL/R with heterogeneous values called tuples. An
n-tuple is a value that contains n component values, all of which may have different
types. Sam extends the syntax of FL /R as follows:

E == ... | (tuple E; ... E,) | (tuple-ref Eupie Nindes Nsize)

Here is an informal description of Sam’s new expressions:

e (tuple E; ... E,) packages up the values E; ... E, into an n-tuple. Unlike
lists and vectors, tuples are heterogeneous data structures: the values of the E;
expressions can all be of different types.

o (tuple-ref Fypie Nindew Nsize) evaluates Fy,pe, which should be an Ngje-
tuple t, and returns the N;,qe.-th component of ¢. For example:

(tuple-ref (tuple 17 #t (symbol captain) "abstraction") 2 4)

yields the second element, #t, from a 4-tuple. In Sam’s syntax, note that the
index and size must be integer literals — they are not general expressions to be
evaluated.

a. Extend the FL/R type grammar to handle tuples.
b. Give the typing rules for tuple and tuple-ref.
c. Specify the type reconstruction algorithm clauses for tuple and tuple-ref.

d. Louis Reasoner thinks that the form of tuple-ref is unwieldy. “I don’t see why
Ngize is at all necessary,” he complains. “Why don’t you make tuple-ref have
the following form instead?”

(tuple—ref Etuple Nindez)

Briefly explain why Louis’ suggestion would complicate type reconstruction for
FL/R.



14.5. DISCUSSION 997

e. After Sam successfully explains to Louis his rationale for Ny, Louis has another
suggestion: “I don’t see why the form of Nj,4e,; has to be so restricted. Why not
change the form of tuple-ref to be the following?”

(tuple—ref Etuple Eindem Nsize)7

where the component index is the computed value of Ej,g4., rather than a literal
integer value.

Why is this a bad idea?
<

> Exercise 14.3 Ben Bitdiddle enhanced FL/R with several parallel programming
constructs. His most important extension is a new construct called go that executes
multiple expressions in parallel. Ben extended the FL /R grammar as follows:

E:=...|(go (U ... L) E; ... Ep,) | (talk! I E) | (listen I)

Here is the informal semantics of the newly added constructs: go terminates when
all of Fy ... E,, terminate; it returns the value of E;. go includes the ability to use
communication variables I; ... I, in a parallel computation. A communication variable
can be assigned a value by talk!. An expression in go can wait for a communication
variable to be given a value with listen. listen returns the value of the variable once
it is set with talk!. For a program to be well-typed, all E; ... E,, in go must be
well-typed.

Ben extended the type grammar of FL/R as follows:

T = ... | (commof T)

Communication variables will have the unique type (commof 7T) where T is the type of
value they hold. This will ensure that only communication variables can be used with
talk! and listen, and that communication variables can not be used in any other
expression. Ben has already written the typing rules for talk! and listen:

AFE:T
AFT: (commof T) [talk!]
Al (talk! I E) : unit

AT : (commof T)

AF (listen I) : T [listen]

a. Give the typing rule for go.

b. Give the FL/R reconstruction algorithm clauses for talk!, listen, and go.

<



098 CHAPTER 14. TYPE RECONSTRUCTION

Reading

Type reconstruction in programming languages is due to Milner [Mil78], who
reinvented work previously done in logic by Curry and by Hindley. Examples
of programming languages with type reconstruction are ML [MTH90, MT91],
HaskELL [HJW192], and FX [GJSO92].



