
Design and Implementation of Generics for the
.NET Common Language Runtime

Andrew Kennedy Don Syme

Microsoft Research, Cambridge, U.K.
fakenn,dsymeg@microsoft.com

Abstract

The Microsoft .NET Common Language Runtime provides a
shared type system, intermediate language and dynamic execution
environment for the implementation and inter-operation of multiple
source languages. In this paper we extend it with direct support for
parametric polymorphism (also known as generics), describing the
design through examples written in an extended version of the C#
programming language, and explaining aspects of implementation
by reference to a prototype extension to the runtime.

Our design is very expressive, supporting parameterized types,
polymorphic static, instance and virtual methods, “F-bounded”
type parameters, instantiation at pointer and value types, polymor-
phic recursion, and exact run-time types. The implementation takes
advantage of the dynamic nature of the runtime, performing just-
in-time type specialization, representation-based code sharing and
novel techniques for efficient creation and use of run-time types.

Early performance results are encouraging and suggest that pro-
grammers will not need to pay an overhead for using generics,
achieving performance almost matching hand-specialized code.

1 Introduction

Parametric polymorphism is a well-established programming lan-
guage feature whose advantages over dynamic approaches to
generic programming are well-understood: safety (more bugs
caught at compile time), expressivity (more invariants expressed in
type signatures), clarity (fewer explicit conversions between data
types), and efficiency (no need for run-time type checks).

Recently there has been a shift away from the traditional com-
pile, link and run model of programming towards a more dynamic
approach in which the division between compile-time and run-time
becomes blurred. The two most significant examples of this trend
are the Java Virtual Machine [11] and, more recently, the Common
Language Runtime (CLR for short) introduced by Microsoft in its
.NET initiative [1].

The CLR has the ambitious aim of providing a common type
system and intermediate language for executing programs written
in a variety of languages, and for facilitating inter-operability be-
tween those languages. It relieves compiler writers of the burden of
dealing with low-level machine-specific details, and relieves pro-
grammers of the burden of describing the data marshalling (typi-

cally through an interface definition language, or IDL) that is nec-
essary for language interoperation.

This paper describes the design and implementation of support
for parametric polymorphism in the CLR. In its initial release, the
CLR has no support for polymorphism, an omission shared by the
JVM. Of course, it is always possible to “compile away” polymor-
phism by translation, as has been demonstrated in a number of ex-
tensions to Java [14, 4, 6, 13, 2, 16] that require no change to the
JVM, and in compilers for polymorphic languages that target the
JVM or CLR (MLj [3], Haskell, Eiffel, Mercury). However, such
systems inevitably suffer drawbacks of some kind, whether through
source language restrictions (disallowing primitive type instanti-
ations to enable a simple erasure-based translation, as in GJ and
NextGen), unusual semantics (as in the “raw type” casting seman-
tics of GJ), the absence of separate compilation (monomorphizing
the whole program, as in MLj), complicated compilation strategies
(as in NextGen), or performance penalties (for primitive type in-
stantiations in PolyJ and Pizza). The lesson in each case appears to
be that if the virtual machine does not support polymorphism, the
end result will suffer.

The system of polymorphism we have chosen to support is very
expressive, and, in particular, supports instantiations at reference
and value types, in conjunction with exact runtime types. These to-
gether mean that the semantics of polymorphism in a language such
as C# can be very much “as expected”, and can be explained as a
relatively modest and orthogonal extension to existing features. We
have found the virtual machine layer an appropriate place to sup-
port this functionality, precisely because it is very difficult to im-
plement this combination of features by compilation alone. To our
knowledge, no previous attempt has been made to design and im-
plement such a mechanism as part of the infrastructure provided by
a virtual machine. Furthermore, ours is the first design and imple-
mentation of polymorphism to combine exact run-time types, dy-
namic linking, shared code and code specialization for non-uniform
instantiations, whether in a virtual machine or not.

1.1 What is the CLR?

The .NET Common Language Runtime consists of a typed, stack-
based intermediate language (IL), an Execution Engine (EE) which
executes IL and provides a variety of runtime services (storage
management, debugging, profiling, security, etc.), and a set of
shared libraries (.NET Frameworks). The CLR has been success-
fully targeted by a variety of source languages, including C#, Vi-
sual Basic, C++, Eiffel, Cobol, Standard ML, Mercury, Scheme
and Haskell.

The primary focus of the CLR is object-oriented languages, and
this is reflected in the type system, the core of which is the defini-



tion of classes in a single-inheritance hierarchy together with Java-
style interfaces. Also supported are a collection of primitive types,
arrays of specified dimension, structs (structured data that is not
boxed, i.e. stored in-line), and safe pointer types for implementing
call-by-reference and other indirection-based tricks.

Memory safety enforced by types is an important part of the se-
curity model of the CLR, and a specified subset of the type system
and of IL programs can be guaranteed typesafe by verification rules
that are implemented in the runtime. However, in order to support
unsafe languages like C++, the instruction set has a well-defined
interpretation independent of static checking, and certain types (C-
style pointers) and operations (block copy) are never verifiable.

IL is not intended to be interpreted; instead, a variety of na-
tive code compilation strategies are supported. Frequently-used
libraries such as the base class library and GUI frameworks are
precompiled to native code in order to reduce start-up times. User
code is typically loaded and compiled on demand by the runtime.

1.2 Summary of the Design

A summary of the features of our design is as follows:

1. Polymorphic declarations. Classes, interfaces, structs, and
methods can each be parameterized on types.

2. Runtime types. All objects carry “exact” runtime type
information, so one can, for example, distinguish a
List<string> from a List<Object> at runtime, by look-
ing at the runtime type associated with an object.

3. Unrestricted instantiations. Parameterized types and poly-
morphic methods may be instantiated at types which have
non-uniform representations, e.g. List<int>, List<long>
and List<double>. Moreover, our implementation does not
introduce expensive box and unbox coercions.

4. Bounded polymorphism. Type parameters may be bounded
by a class or interface with possible recursive reference to
type parameters (“F-bounded” polymorphism [5]).

5. Polymorphic inheritance. The superclass and implemented
interfaces of a class or interface can all be instantiated types.

6. Polymorphic recursion. Instance methods on parameterized
types can be invoked recursively on instantiations different to
that of the receiver; likewise, polymorphic methods can be
invoked recursively at new instantiations.

7. Polymorphic virtual methods. We allow polymorphic meth-
ods to be overridden in subclasses and specified in interfaces
and abstract classes. The implementation of polymorphic vir-
tual methods is not covered here and will be described in de-
tail in a later paper.

What are the ramifications of our design choices? Certainly,
given these extensions to the CLR, and assuming an existing CLR
compiler, it is a relatively simple matter to extend a “regular” class-
based language such as C#, Oberon, Java or VisualBasic.NET with
the ability to define polymorphic code. Given the complexity of
compiling polymorphism efficiently, this is already a great win.

We wanted our design to support the polymorphic constructs
of as wide a variety of source languages as possible. Of course,
attempting to support the diverse mechanisms of the ML family,
Haskell, Ada, Modula-3, C++, and Eiffel leads to (a) a lot of fea-
tures, and (b) tensions between those features. In the end, it was
necessary to make certain compromises. We do not currently sup-
port the higher-order types and kinds that feature in Haskell and

in encodings of the SML and Caml module systems, nor the type
class mechanism found in Haskell and Mercury. Neither do we
support Eiffel’s (type-unsafe) covariant subtyping on type construc-
tors, though we are considering a type-safe variance design for the
future. Finally, we do not attempt to support C++ templates in full.

Despite these limitations, the mechanisms provided are suf-
ficient for many languages. The role of the type system in the
CLR is not just to provide runtime support – it is also to facili-
tate and encourage language integration, i.e. the treatment of cer-
tain constructs in compatible ways by different programming lan-
guages. Interoperability gives a strong motivation for implement-
ing objects, classes, interfaces and calling conventions in compati-
ble ways. The same argument applies to polymorphism and other
language features: by sharing implementation infrastructure, un-
necessary incompatibilities between languages and compilers can
be eliminated, and future languages are encouraged to adopt de-
signs that are compatible with others, at least to a certain degree.
We have chosen a design that removes many of the restrictions pre-
viously associated with polymorphism, in particular with respect
to how various language features interact. For example, allowing
arbitrary type instantiations removes a restriction found in many
languages.

Finally, one by-product of adding parameterized types to the
CLR is that many language features not currently supported as
primitives become easier to encode. For example, n-ary product
types can be supported simply by defining a series of parameter-
ized types Prod2, Prod3, etc.

1.3 Summary of the Implementation

Almost all previous implementation techniques for parametric
polymorphism have assumed the traditional compile, link and run
model of programming. Our implementation, on the other hand,
takes advantage of the dynamic loading and code generation capa-
bilities of the CLR. Its main features are as follows:

1. “Just-in-time” type specialization. Instantiations of parame-
terized classes are loaded dynamically and the code for their
methods is generated on demand.

2. Code and representation sharing. Where possible, compiled
code and data representations are shared between different in-
stantiations.

3. No boxing. Due to type specialization the implementation
never needs to box values of primitive type.

4. Efficient support of run-time types. The implementation
makes use of a number of novel techniques to provide op-
erations on run-time types that are efficient in the presence
of code sharing and with minimal overhead for programs that
make no use of them.

2 Polymorphism in Generic C#

In this section we show how our support for parametric poly-
morphism in the CLR allows a generics mechanism to be added to
the language C# with relative ease.

C# will be new to most readers, but as it is by design a deriva-
tive of C++ it should be straightforward to grasp. The left side of
Figure 1 presents an example C# program that is a typical use of the
generic “design pattern” that programmers employ to code around
the absence of parametric polymorphism in the language. The type
object is the top of the class hierarchy and hence serves as a poly-
morphic representation. In order to use such a class with primitive
element types such as integer, however, it is necessary to box the

2



Object-based stack Generic stack

class Stack {
private object[] store;
private int size;
public Stack()
store=new object[10]; size=0;

}
public void Push(object x) {

if (size>=store.Size) {
object[] tmp = new object[size*2];
Array.Copy(store,tmp,size);
store = tmp;

}
store[size++] = x;

}
public object Pop() {
return store[--size];

}
public static void Main() {

Stack x = new Stack();
x.Push(17);
Console.WriteLine((int) x.Pop() == 17);

}
}

class Stack<T> {
private T[] store;
private int size;
public Stack()
store=new T[10]; size=0;

}
public void Push(T x) {

if (size>=store.Size) {
T[] tmp = new T[size*2];
Array.Copy(store,tmp,size);
store = tmp;

}
store[size++] = x;

}
public T Pop() {
return store[--size];

}
public static void Main() {
Stack<int> x = new Stack<int>();
x.Push(17);
Console.WriteLine(x.Pop() == 17);

}
}

Figure 1: C# and Generic C# Stack implementations

values. C# inserts box coercions automatically (as in x.Push(17))
and requires the programmer to write unbox coercions explicitly (as
in (int) x.Pop()). Of course, the latter can fail at run-time.

2.1 Using parameterized types

For the average user, polymorphism provides nothing more than
an expanded set of type constructors, along with some polymor-
phic static methods to help manipulate them. For example, a class-
browsing tool might show a parameterized version of our example
Stack class as:

class Stack<T> {
Stack(); // constructor
void Push(T); // instance methods
T Pop();

}

The user now has access to a new family of types which include
Stack<int>, Stack<Stack<int>> and Stack<string>. He can
write code using these types, such as the following fragment of an
arithmetic evaluator:

enum op { Add, Neg };
Stack<int> s = new Stack<int>();
...
switch (op) {

case Add : s.Push(s.Pop() + s.Pop()); break;
case Neg : s.Push(- s.Pop()); break;

}

With the vanilla C# implementation of Figure 1 he would have writ-
ten:

Stack s = new Stack();
...
switch (op) {

case Add :
s.Push((int) s.Pop() + (int) s.Pop()); break;

case Neg :
s.Push(- (int) s.Pop()); break;

}

The programmer can therefore replace the casts at every use of s
with some extra annotations at the point where s is created. The
implementation of the arithmetic evaluator using the parameterized
Stack class will also be much more efficient, as the integers will not
be boxed and unboxed.

2.2 Exact runtime types

The type system of the CLR is not entirely static as it supports
run-time type tests, checked coercions and reflection capabilities.
This entails maintaining exact type information in objects, a feature
that we wished to preserve in our design for polymorphism. Thus
each object carries with it full type information, including the type
parameters of parameterized types.

In the following example, this ensures that the third line raises
an InvalidCastException:

Object obj = new Stack<int>();
Stack<int> s2 = (Stack<int>) obj; // succeeds
Stack<string> s3 = (Stack<string>) obj; // exception

Exact runtime types are primarily useful for reflection, type-safe
serialization and for interacting with components that do not, for
whatever reason, use fully exact types (e.g. use type Object):

// Read some serialized form of an object:
Object s = ReadFromStream();
// Check "s" is a Stack<int>:
Stack<int> s2 = (Stack<int>) s;

2.3 Using polymorphic methods

Polymorphic methods take type parameters in addition to normal
parameters. Typically such methods will be associated with some

3



interface IComparer<T> {
int Compare(T x, T y);

}
interface ISet<T> {

bool Contains(T x);
void Add(T x);
void Remove(T x);

}
class ArraySet<T> : ISet<T> {

private T[] items;
private int size;
private IComparer<T> c;
public ArraySet(IComparer<T> _c) {
items = new T[100]; size = 0; c = _c;

}
public bool Contains(T x) {
for (int i = 0; i < size; i++)

if (c.Compare(x,items[i]) == 0) return true;
return false;

}
public void Add(T x) { ... }
public void Remove(T x) { ... }

}

Figure 2: A parameterized interface and implementation

parameterized class or built-in type constructor such as arrays, as
in the following example:

class Array { ...
static void Reverse<T>(T[]);
static T[] Slice<T>(T[], int ix, int n);

}

Here Reverse and Slice are polymorphic static methods defined
within the class Array, which in the CLR is a super-type of all
built-in array types and is thus a convenient place to locate opera-
tions common to all arrays. The methods can be called as follows:

int[] arr = new int[100];
for (int i = 0; i<100; i++) arr[i]= 100-i;
int[] arr2 = Array.Slice<int>(arr, 10, 80);
Array.Reverse<int>(arr2);

The type parameters (in this case, <int>) can be inferred in most
cases arising in practice [4], allowing us here to write the more
concise Array.Reverse(arr).

2.4 Defining parameterized types

The previous examples have shown the use of parameterized types
and methods, though not their declaration. We have presented this
first because in a multi-language framework not all languages need
support polymorphic declarations – for example, Scheme or Visual
Basic might simply allow the use of parameterized types and poly-
morphic methods defined in other languages. However, Generic C#
does allow their definition, as we now illustrate.

We begin with parameterized classes. We can now complete a
Generic C# definition of Stack, shown on the right of Figure 1 for
easy comparison. The type parameters of a parameterized class can
appear in any instance declaration: here, in the type of the private
field store and in the type signatures and bodies of the instance
methods Push and Pop and constructor Stack().

C# supports the notion of an interface which gives a name to a
set of methods that can be implemented by many different classes.
Figure 2 presents two examples of parameterized interfaces and
a parameterized class that implements one of them. A class can

class Array { ...
static T[] Slice<T>(T[] arr, int ix, int n) {

T[] arr2 = new T[n];
for (int i = 0; i < n; i++)

arr2[i] = arr[ix+i];
return arr2;

} }
class ArraySet<T> { ...
ArraySet<Pair<T,U>> Times<U>(ArraySet<U> that) {

ArraySet<Pair<T,U>> r = new ArraySet<Pair<T,U>>();
for (int i = 0; i < this.size; i++)
for (int j = 0; j < that.size; j++)
r.Add(new Pair<T,U>(this.items[i],that.items[j]));

return r;
} }

Figure 3: Polymorphic methods

also implement an interface at a single instantiation: for example,
CharSet : ISet<char> might use a specialized bit-vector repre-
sentation for sets of characters.

Also supported are user-defined “struct” types, i.e. values repre-
sented as inline sequences of bits rather than allocated as objects on
the heap. A parameterized struct simply defines a family of struct
types:

struct Pair<T,U> {
public T fst; public U snd;
public Pair(T t, U u) {

fst = t; snd = u;
}

}

Finally, C# supports a notion of first-class methods, called dele-
gates, and these too can be parameterized on types in our extension.
They introduce no new challenges to the underlying CLR execution
mechanisms and will not be discussed further here.

2.5 Defining polymorphic methods

A polymorphic method declaration defines a method that takes type
parameters in addition to its normal value parameters. Figure 3
gives the definition of the Slice method used earlier.

It is also possible to define polymorphic instance methods that
make use of type parameters from the class as well as from the
method, as with the cartesian product method Times shown here.

3 Support for Polymorphism in IL

The intermediate language of the CLR, called IL for short, is best
introduced through an example. The left of Figure 4 shows the IL
for the non-parametric Stack implementation of Figure 1. It should
be apparent that there is a direct correspondence between C# and
IL: the code has been linearized, with the stack used to pass ar-
guments to methods and for expression evaluation. Argument 0 is
reserved for the this object, with the remainder numbered from 1
upwards. Field and method access instructions are annotated with
explicit, fully qualified field references and method references. A
call to the constructor for the class Object has been inserted at
the start of the constructor for the Stack class, and types are de-
scribed slightly more explicitly, e.g. class System.Object in-
stead of the C# object. Finally, box and unbox instructions have
been inserted to convert back and forth between the primitive int
type and Object.

4



Object-based stack Generic stack

.class Stack {
.field private class System.Object[] store
.field private int32 size
.method public void .ctor() {

ldarg.0
call void System.Object::.ctor()
ldarg.0
ldc.i4 10
newarr System.Object
stfld class System.Object[] Stack::store
ldarg.0
ldc.i4 0
stfld int32 Stack::size
ret

}
.method public void Push(class System.Object x) {

.maxstack 4

.locals (class System.Object[], int32)

.

.

.
ldarg.0
ldfld class System.Object[] Stack::store
ldarg.0
dup
ldfld int32 Stack::size
dup
stloc.1
ldc.i4 1
add
stfld int32 Stack::size
ldloc.1
ldarg.1
stelem.ref
ret

}
.method public class System.Object Pop() {

.maxstack 4
ldarg.0
ldfld class System.Object[] Stack::store
ldarg.0
dup
ldfld int32 Stack::size
ldc.i4 1
sub
dup
stfld int32 Stack::size
ldelem.ref
ret

}
.method public static void Main() {
.entrypoint
.maxstack 3
.locals (class Stack)
newobj void Stack::.ctor()
stloc.0
ldloc.0
ldc.i4 17
box System.Int32
call instance void Stack::Push(class System.Object)
ldloc.0
call instance class System.Object Stack::Pop()
unbox System.Int32
ldind.i4
ldc.i4 17
ceq
call void System.Console::WriteLine(bool)
ret

} }

.class Stack<T> {
.field private !0[] store
.field private int32 size
.method public void .ctor() {
ldarg.0
call void System.Object::.ctor()
ldarg.0
ldc.i4 10
newarr !0
stfld !0[] Stack<!0>::store
ldarg.0
ldc.i4 0
stfld int32 Stack<!0>::size
ret

}
.method public void Push(!0 x) {
.maxstack 4
.locals (!0[], int32)

.

.

.
ldarg.0
ldfld !0[] Stack<!0>::store
ldarg.0
dup
ldfld int32 Stack<!0>::size
dup
stloc.1
ldc.i4 1
add
stfld int32 Stack<!0>::size
ldloc.1
ldarg.1
stelem.any !0
ret

}
.method public !0 Pop() {
.maxstack 4
ldarg.0
ldfld !0[] Stack<!0>::store
ldarg.0
dup
ldfld int32 Stack<!0>::size
ldc.i4 1
sub
dup
stfld int32 Stack<!0>::size
ldelem.any !0
ret

}
.method public static void Main() {
.entrypoint
.maxstack 3
.locals (class Stack<int32>)
newobj void Stack<int32>::.ctor()
stloc.0
ldloc.0
ldc.i4 17

call instance void Stack<int32>::Push(!0)
ldloc.0
call instance !0 Stack<int32>::Pop()

ldc.i4 17
ceq
call void System.Console::WriteLine(bool)
ret

} }

Figure 4: The IL for Stack and Generic Stack

5



The right of Figure 4 shows the IL for the parametric Stack im-
plementation on the right of Figure 1. For comparison with the non-
generic IL the differences are underlined. In brief, our changes to
IL involved (a) adding some new types to the IL type system, (b) in-
troducing polymorphic forms of the IL declarations for classes, in-
terfaces, structs and methods, along with ways of referencing them,
and (c) specifying some new instructions and generalizations of ex-
isting instructions. We begin with the instruction set.

3.1 Polymorphism in instructions

Observe from the left side of Figure 4 that:

� Some IL instructions are implicitly generic in the sense that
they work over many types. For example, ldarg.1 (in Push)
loads the first argument to a method onto the stack. The JIT
compiler determines types automatically and generates code
appropriate to the type. Contrast this with the JVM, which has
instruction variants for different types (e.g. iload for 32-bit
integers and aload for pointers).

� Other IL instructions are generic (there’s only one variant) but
are followed by further information. This is required by the
verifier, for overloading resolution, and sometimes for code
generation. Examples include ldfld for field access, and
newarr for array creation.

� A small number of IL instructions do come in different vari-
ants for different types. Here we see the use of ldelem.ref
and stelem.ref for assignment to arrays of object types.
Separate instructions must be used for primitive types, for ex-
ample, ldelem.i4 and stelem.i4 for 32-bit signed integer
arrays.

Now compare the polymorphic IL on the right of Figure 4.

� The generic, type-less instructions remain the same.

� The annotated generic instructions have types that involve T
and Stack<T> instead of System.Object and Stack. No-
tice how type parameters are referenced by number.

� Two new generic instructions have been used for array access
and update: ldelem.any and stelem.any.

Two instructions deserve special attention: box and a new instruc-
tion unbox.val. The box instruction is followed by a value type
� and, given a value of this type on the stack, boxes it to produce
a heap-allocated value of type Object. We generalize this instruc-
tion to accept reference types in which case the instruction acts as a
no-op. We introduce a new instruction unbox.val which performs
the converse operation including a runtime type-check. These re-
finements to boxing are particularly useful when interfacing to code
that uses the Object idiom for generic programming, as a value of
type T can safely be converted to and from Object.

Finally, we also generalize some existing instructions that are
currently limited to work over only non-reference types. For ex-
ample, the instructions that manipulate pointers to values (ldobj,
stobj, cpobj and initobj) are generalized to accept pointers to
references and pointers to values of variable type.

3.2 Polymorphic forms of declarations

We extend IL class declarations to include named formal type pa-
rameters. The names are optional and are only for use by compilers
and other tools. The extends and implements clauses of class
definitions are extended so that they can specify instantiated types.

Interface, structure and method definitions are extended in a
similar way. At the level of IL, the signature of a polymorphic
method declaration looks much the same as in Generic C#. Here is
a simple example:

.method public static void Reverse<T>(!!0[]) { ... }

We distinguish between class and method type variables, the latter
being written in IL assembly language as !!n.

3.3 New types

We add three new ways of forming types to those supported by the
CLR:

1. Instantiated types, formed by specifying a parameterized type
name (class, interface or struct) and a sequence of type spec-
ifications for the type parameters.

2. Class type variables, numbered from left-to-right in the rele-
vant parameterized class declaration.

3. Method type variables, numbered from left-to-right in the rel-
evant polymorphic method declaration.

Class type variables can be used as types within any instance decla-
ration of a class. This includes the type signatures of instance fields,
and in the argument types, local variable types and instructions of
instance methods within the parameterized class. They may also be
used in the specification of the superclass and implemented inter-
faces of the parameterized class. Method type parameters can ap-
pear anywhere in the signature and body of a polymorphic method.

3.4 Field and method references

Many IL instructions must refer to classes, interfaces, structs, fields
and methods. When instructions such as ldfld and callvirt re-
fer to fields and methods in parameterized classes, we insist that
the type instantiation of the class is specified. The signature (field
type or argument and result types for methods) must be exactly that
of the definition and hence include formal type parameters. The
actual types can then be obtained by substituting through with the
instantiation. This use of formal signatures may appear surprising,
but it allows the execution engine to resolve field and method refer-
ences more quickly and to discriminate between certain signatures
that would become equal after instantiation.

References to polymorphic methods follow a similar pattern.
An invocation of a polymorphic method is shown below:

ldloc arr
call void Array::Reverse<int32>(!!0[])

Again, the full type instantiation is given, this time after the name
of the method, so both a class and method type instantiation can be
specified. The types of the arguments and result again must match
the definition and typically contain formal method type parameters.
The actual types can then be obtained by substituting through by the
method and class type instantiations.

3.5 Restrictions

There are some restrictions:

� .class Foo<T> extends !0 is not allowed, i.e. naked type
variables may not be used to specify the superclass or imple-
mented interfaces of a class. It is not possible to determine
the methods of such a class at the point of definition of such

6



a class, a property that is both undesirable for programming
(whether a method was overridden or inherited could depend
on the instantiation of the class) and difficult to implement
(a conventional vtable cannot be created when the class is
loaded). Constraints on type parameters (“where clauses”)
could provide a more principled solution and this is under
consideration for a future extension.

� An instruction such as newobj void !0::.ctor() is out-
lawed, as is call void !0::myMethod(). Again, in the
absence of any other information about the type parameter, it
is not possible to check at the point of definition of the enclos-
ing class that the class represented by !0 has the appropriate
constructor or static method.

� Class type parameters may not be used in static declara-
tions. For static methods, there is a workaround: simply re-
parameterize the method on all the class type parameters. For
fields, we are considering “per-instantiation” static fields as a
future extension.

� A class is not permitted to implement a parameterized inter-
face at more than one instantiation. Aside from some tricky
design choices over resolving ambiguity, currently it is diffi-
cult to implement this feature without impacting the perfor-
mance of all invocations of interface methods. Again, this
feature is under consideration as a possible extension.

4 Implementation

The implementation of parametric polymorphism in programming
languages has traditionally followed one of two routes:

� Representation and code specialization. Each distinct instan-
tiation of a polymorphic declaration gives rise to data repre-
sentation and code specific to that instantiation. For example,
C++ templates are typically specialized at link-time. Alterna-
tively, polymorphic declarations can be specialized with re-
spect to representation rather than source language type [3].
The advantage of specialization is performance, and the rel-
ative ease of implementing of a richer feature set; the draw-
backs are code explosion, lack of true separate compilation
and the lack of dynamic linking.

� Representation and code sharing. A single representation
is used for all instantiations of a parameterized type, and
polymorphic code is compiled just once. Typically it is a
pointer that is the single representation. This is achieved ei-
ther by restricting instantiations to the pointer types of the
source language (GJ, NextGen, Eiffel, Modula-3), by box-
ing all non-pointer values regardless of whether they are used
polymorphically or not (Haskell) or by using a tagged rep-
resentation scheme that allows some unboxed values to be
manipulated polymorphically (most implementations of ML).
Clearly there are benefits in code size (although extra box and
unbox operations are required) but performance suffers.

Recent research has attempted to reduce the cost of using uniform
representations through more sophisticated boxing strategies [10]
and run-time analysis of types [9].

In our CLR implementation, we have the great advantage over
conventional native-code compilers that loading and compilation
is performed on demand. This means we can choose to mix-and-
match specialization and sharing. In fact, we could throw in a bit
of boxing too (to share more code) but have so far chosen not to do
this on grounds of simplicity and performance.

4.1 Specialization and sharing

Our scheme runs roughly as follows:

� When the runtime requires a particular instantiation of a pa-
rameterized class, the loader checks to see if the instantia-
tion is compatible with any that it has seen before; if not,
then a field layout is determined and new vtable is created, to
be shared between all compatible instantiations. The items
in this vtable are entry stubs for the methods of the class.
When these stubs are later invoked, they will generate (“just-
in-time”) code to be shared for all compatible instantiations.

� When compiling the invocation of a (non-virtual) polymor-
phic method at a particular instantiation, we first check to see
if we have compiled such a call before for some compatible
instantiation; if not, then an entry stub is generated, which
will in turn generate code to be shared for all compatible in-
stantiations.

Two instantiations are compatible if for any parameterized class its
compilation at these instantiations gives rise to identical code and
other execution structures (e.g. field layout and GC tables), apart
from the dictionaries described below in Section 4.4. In particu-
lar, all reference types are compatible with each other, because the
loader and JIT compiler make no distinction for the purposes of
field layout or code generation. On the implementation for the In-
tel x86, at least, primitive types are mutually incompatible, even
if they have the same size (floats and ints have different parameter
passing conventions). That leaves user-defined struct types, which
are compatible if their layout is the same with respect to garbage
collection i.e. they share the same pattern of traced pointers.

This dynamic approach to specialization has advantages over
a static approach: some polymorphism simply cannot be special-
ized statically (polymorphic recursion, first-class polymorphism),
and lazy specialization avoids wasting time and space in generating
specialized code that never gets executed. However, not seeing the
whole program has one drawback: we do not know ahead of time
the full set of instantiations of a polymorphic definition. It turns
out that if we know that the code for a particular instantiation will
not be shared with any other instantiation then we can sometimes
generate slightly better code (see x4.4). At present, we use a global
scheme, generating unshared code for primitive instantiations and
possibly-shared code for the rest.

The greatest challenge has been to support exact run-time types
and at the same time share representations and code as much as
possible. There’s a fundamental conflict between these features:
on the one hand, sharing appears to imply no distinction between
instantiations but on the other hand run-time types require it.

4.2 Object representation

Objects in the CLR’s garbage-collected heap are represented by a
vtable pointer followed by the object’s contents (e.g. fields or array
elements). The vtable’s main role is virtual method dispatch: it
contains a code pointer for each method that is defined or inherited
by the object’s class. But for simple class types, at least, where
there is a one-to-one correspondence between vtables and classes,
it can also be used to represent the object’s type. When the vtable
is used in this way we call it the type’s type handle.

In an implementation of polymorphism based on full special-
ization, the notion of exact run-time type comes for free as dif-
ferent instantiations of the same parameterized type have different
vtables. But now suppose that code is shared between different in-
stantiations such as List<string> and List<object>. The vta-
bles for the two instantiations will be identical, so we need some

7



1(a)

�elds
...

int
object

�elds
...

bool
string

...
vtable

...

1(b)

�elds
...

int
object

�elds
...

bool
string

...
vtable

...

2(a)

int
object

�elds
...

bool
string

�elds
...

...
vtable

...

2(b) �elds
...

...
vtable

...
int

object

�elds
...

...
vtable

...
bool
string

Figure 5: Alternative implementations of run-time types for objects
of type Dict<int,object> and Dict<bool,string>

way of representing the instantiation at run-time. There are a num-
ber of possible techniques:

1. Store the instantiation in the object itself. Either

(a) inline; or

(b) via an indirection to a hash-consed instantiation.

2. Replace the vtable pointer by a pointer to a combined vtable-
and-instantiation structure. Either

(a) share the original vtable via an indirection; or

(b) duplicate it per instantiation.

Figure 5 visualizes the alternatives, and the space and time impli-
cations of each design choice are presented in Figure 6. The times
presented are the number of indirections from an object required to
access the vtable and instantiation.

In our implementation we chose technique 2(b) because

� Polymorphic objects are often small (think of list cells) and
even one extra word per object is too great a cost.

� We expect the number of instantiations to be small compared
to the number of objects, so duplicating the vtable should not
be a significant hit.

Technique Space (words) Time (indirections)
per-object per-inst vtable inst

1(a) n 0 1 0
1(b) 1 n 1 1
2(a) 0 n+ 1 2 2
2(b) 0 n + s 1 2

Figure 6: Time/space trade-offs for run-time types (n = number of
type parameters and s = size of vtable)

class C { virtual void m(int) { ... } }
class D<T> : C {
void p(Object x) { ... (Set<T[]>) x ... }
override void m(int) { ... new List<T> ... }

}
class E<U> : D<Tree<U>> {
// m inherited
void q() { ... y is U[] ... }

}

Figure 7: Run-time types example

� Run-time types are typically not accessed very frequently, so
paying the cost of an indirection or two is not a problem.

� Virtual method calls are extremely frequent in object-oriented
code and in typical translations of higher-order code and we
don’t want to pay the cost of an extra indirection each time.
Also, technique 2(a) is fundamentally incompatible with the
current virtual method dispatch mechanism.

It should be emphasised that other implementations might make
another choice – there’s nothing in our design that forces it.

4.3 Accessing class type parameters at run-time

We now consider how runtime type information is accessed within
polymorphic code in the circumstances when IL instructions de-
mand it. For example, this occurs at any newobj instruction that
involves constructing an object with a type that includes a type pa-
rameter T, or a castclass instruction that attempts to check if an
object has type List<T> for an in-scope type parameter T. Con-
sider the Push method from the stack class in Figure 1. It makes
use of its type parameter T in an operation (array creation) that must
construct an exact run-time type. In a fully-specialized implemen-
tation, the type T would have been instantiated at JIT-compile time,
but when code is shared the instantiation for T is not known until
run-time.

One natural solution is to pass type instantiations at run-time to
all methods within polymorphic code. But apart from the possible
costs of passing extra parameters, there is a problem: subclassing
allows type parameters to be “revealed” when virtual methods are
called. Consider the class hierarchy shown in Figure 7. The call-
ing conventions for C.m and D.m must agree, as an object that is
statically known to be of type C might dynamically be some instan-
tiation of D.

But now observe that inside method D.m we have access to an
instance of class D<T> – namely this – which has exact type infor-
mation available at runtime and hence the precise instantiation of
T. Class type parameters can then always be accessed via the this
pointer for the current method.

Method m might be invoked on an object whose type is a sub-
class of an instantiation of D – such as E<string> which is a sub-
class of D<Tree<string>> – in which it is inherited. Therefore

8



we must also include the type parameters of superclasses in the in-
stantiation information recorded in the duplicated vtable (solution
2(b) above).

4.4 Instantiating open type expressions at run-time

Given we can access class type parameters, we must now consider
when and where to compute type handles for type expressions that
involve these parameters. These handles are required by instruc-
tions such as newobj and castclass mentioned above. For exam-
ple, the code for method D.m in Figure 7 must construct a run-time
representation for the type List<T> in order to create an object of
that type.

For monomorphic types, or when code is fully-specialized, the
answer is simple: the JIT compiler just computes the relevant type
handle and inserts it into the code stream. A newobj operation then
involves allocation and initialization, as normal.

However, for open type expressions (those containing type vari-
ables) within shared code, we have a problem. For example, if
we use vtable pointers to represent type handles (see x4.2) then
the implementation must perform a look-up into a global table to
see if we’ve already created the appropriate vtable; if the look-up
fails, then the vtable and other structures must be set up. Whatever
representation of run-time types is used, the required operation is
potentially very expensive, involving at least a hash-table look-up.
This is not acceptable for programs that allocate frequently within
polymorphic code.

Luckily, however, it is possible to arrange things so that the
computation of type handles is entirely avoided in “normal” execu-
tion. As we will see later, we can achieve an allocation slowdown
of only 10–20%, which we consider acceptable.

4.4.1 Pre-computing dictionaries of type handles

We make the following observation: given the IL for a method
within a parameterized class such as D, all the sites where type han-
dles will be needed can be determined statically, and furthermore
all the type expressions are fully known statically with respect to
the type parameters in scope. In class D there are two such open
type expressions: Set<T[]> and List<T>. Given this information
we can pre-compute the type handles corresponding to a particular
instantiation of the open types when we first make a new instan-
tiation of the class. This avoids the need to perform look-ups re-
peatedly at run-time. For example, when building the instantiation
D<string>, we compute the type handles for Set<string[]> and
List<string>. These type handles are stored in the vtable that
acts as the unique runtime type for D<string>. That is, for each
open type expression, a slot is reserved in a type handle dictionary
stored in the vtable associated with a particular instantiation.

As with type parameters, these slots must be inherited by sub-
classes, as methods that access them might be inherited. For ex-
ample, suppose that m is invoked on an object of type E<int>.
The method code will expect to find a slot corresponding to
the open type List<T>, in this case storing a type handle for
List<Tree<int>>. So for the example class E, the information
that is stored per instantiation in each the vtable has the layout
shown in Figure 8.

4.4.2 Lazy dictionary creation

In classes with many methods there might be many entries in the
dictionary, some never accessed because some methods are never
invoked. As it is expensive to load new types, in practice we fill
the dictionary lazily instead of at instantiation-time. The code se-
quence for determining the type for List<T> in method D.m is then

Class Slot no. Type parameter or open type
D 0 T = Tree<U>
D 1 Set<T[]> = Set<Tree<U>[]>
D 2 List<T> = List<Tree<U>>

E 3 U
E 4 U[]

Figure 8: Dictionary layout for example in Figure 7

vtptr = thisptr->vt; // extract the vtable ptr
rtt = vtptr->dict[2]; // slot no. 2 in dictionary
if (rtt != NULL) goto Done; // it's been filled in
rtt = rtt_helper(...); // look it up the slow way...
vtptr->dict[2] = rtt; // and update the dictionary
Done:

This is just a couple of indirections and a null-test, so hardly im-
pacts the cost of allocation at all (see x5).

Moreover, laziness is crucial in ensuring termination of the
loader on examples such as

class C<T> { void m() { ... new C<C<T>>() ... } }

which are a form of polymorphic recursion. In fact, it is even nec-
essary to introduce some laziness into determining a type handle
for the superclass in cases such as

class C<T> : D<C<C<T>>> { ... }

which in turn means that inherited dictionary entries cannot simply
be copied into a new instantiation when it is loaded.

4.4.3 Determining dictionary layout

There is some choice about when the location and specification of
the open type expressions is determined:

1. At source compile-time: compilers targeting IL must emit
declarations for all open types used within a parameterized
class definition.

2. At load-time: when first loading a parameterized class the
CLR analyses the IL of its methods.

3. At JIT compile-time: the open types are recorded when com-
piling IL to native code.

We regard (1) as an excessive burden on source-language compil-
ers and an implementation detail that should not be exposed in the
IL, (2) as too expensive in the case when there are many methods
most of which never get compiled, and therefore chose (3) for our
implementation. The only drawback is that discovery of open type
expressions is now incremental, and so the dictionary layout must
grow as new methods are compiled.

4.5 Polymorphic methods

So far we have considered the twin problems of (a) accessing class
type parameters, and (b) constructing type handles from open type
expressions efficiently at run-time. We now consider the same
questions for method type parameters.

As with parameterized types, full specialization is quite
straightforward: for each polymorphic method the JIT-compiler
maintains a table of instantiations it has seen already, and uses this
when compiling a method invocation. When the method is first
called at an instantiation, code is generated specific to the instanti-
ation.

9



Once again for shared code things are more difficult. One might
think that we often have enough exact type information in the pa-
rameters to the methods themselves (for example, using arr in the
Slice method from Figure 3), but this is not true in all cases, and,
anyway, reference values include null which lacks any type infor-
mation at all.

So instead we solve both problems by passing dictionaries as
parameters. The following example illustrates how this works.

class C {
static void m<T>(T x) {

... new Set<T> ... new T[] ...

... p<List<T>>(...); ...
}

static void p<S>(S x) { ... new Vector<T> ... }
static void Main() { ... m<int>(...) ... }

}

When m is invoked at type int, a dictionary of type handles con-
taining int, Set<int> and int[] is passed as an extra parameter
to m. The first handle is to be used for whenever T itself is required,
and the latter two handles are ready to be used in the new operations
of the method body.

Note, however, that more is required: m in turn invokes a poly-
morphic method p, which needs a dictionary of its own. We ap-
pear at first to have a major problem: the “top-level” invocation
of m<int> must construct dictionaries for the complete transitive
closure of all polymorphic methods that could ever be called by m.
However, laziness again comes to the rescue: we can simply leave
an empty slot in the dictionary for m<int>, filled in dynamically
the first time that p<List<int>> is invoked. And, again, laziness
is crucial to supporting polymorphic recursion in examples such:

static void f<T>(T x) { ... f<List<T>>(...) ... }

Finally we note that polymorphic virtual methods are altogether
more challenging. If the code for a polymorphic virtual method was
shared between all instantiations, as it is in non-type-exact systems
such as GJ, then virtual method invocations could be made in the
usual way through a single slot in the vtable. However, because the
caller does not know statically what method code will be called, it
cannot generate an appropriate dictionary. Moreover, in a system
like ours that generates different code for different type instanti-
ations, there is no single code pointer suitable for placement in a
vtable. Instead, some kind of run-time type application appears to
be necessary, and that could be very expensive. We will discuss
efficient solutions to both of these problems in a future paper.

4.6 Verification

As with the existing CLR, our extensions have a well-defined se-
mantics independent of static type checking, but a subset can be
type-checked automatically by the verifier that forms part of the
run-time. The parametric polymorphism of languages such as Core
ML and Generic C# can be compiled into this verifiable subset;
more expressive or unsafe forms of polymorphism, such as the co-
variance of type constructors in Eiffel, might be compiled down to
the unverifiable subset.

The static typing rules for the extension capture the parametric
flavour of polymorphism so that a polymorphic definition need only
be checked once. This contrasts with C++ templates and extensions
to Java based on specialization in the class loader [2] where every
distinct instantiation must be checked separately.

Element type Time (seconds)
Object Poly Mono

object 2.9 2.9 2.9
string 3.5 2.9 3.1
int 8.5 1.8 2.0
double 10.4 2.0 2.0
Point 10.5 4.3 4.3

Figure 9: Comparing Stacks

Type Time (seconds)

Specialized
Runtime
look-up

Lazy
Dictionary

List<T> 4.2 288 4.9
Dict<T[],List<T>> 4.2 447 4.9

Figure 10: Costing run-time type creation

5 Performance

An important goal of our extension to the CLR was that there
should be no performance bar to using polymorphic code. In par-
ticular, polymorphic code should show a marked improvement over
the Object-based generic design pattern, and if possible should be
as fast as hand-specialized code, another design pattern that is com-
mon in the Base Class Library of .NET. Furthermore, the presence
of run-time types should not significantly impact code that makes
no use of them, such as that generated by compilers for ML and
Haskell.

Figure 9 compares three implementations of Stack: the C#
and Generic C# programs of Figure 1 (Object and Poly) and hand-
specialized variants for each element type (Mono). The structure
of the test code is the following:

S := new stack
c := constant
for m 2 1 : : : 10000 do
S:push(c)m times
S :pop()m times

As can be seen, polymorphism provides a significant speedup over
the crude use of Object, especially when the elements are of value
type and hence must be boxed on every Push and unboxed on every
Pop. Moreover, the polymorphic code is as efficient as the hand-
specialized versions.

Next we attempt to measure the impact of code sharing on the
performance of operations that instantiate open type expressions at
run-time. Figure 10 presents the results of a micro-benchmark: a
loop containing a single newobj applied to a type containing type
parameters from the enclosing class. We compare the case when the
code is fully specialized, when it is shared but performs repeated
runtime type lookups, and when it is shared and makes use of the
lazy dictionary creation technique described in x4.4. The run-time
lookups cause a huge slowdown whereas the dictionary technique
has only minor impact, as we hoped.

6 Related work

Parametric polymorphism and its implementation goes back a long
way, to the first implementations of ML and Clu. Implementations
that involve both code sharing and exact runtime types are rare:
one example is Connor’s polymorphism for Napier88, where exact

10



types are required to support typesafe persistence [7]. Connor re-
jects the use of dynamic compilation as too slow – the widespread
acceptance of JIT compilation now makes this possible. Much
closer to our work is the extension to Java described by Viroli and
Natali [16]. They live with the existing JVM but tackle the combi-
nation of code-sharing and exact run-time types by using reflection
to manage their own type descriptors and dictionaries of instanti-
ated open types, which they call “friend types”. Such friend types
are constructed when a new instantiation is created at load-time; the
problems of unbounded instantiation discussed in Section 4.4 are
avoided by identifying a necessary and sufficient condition that is
used to reject such unruly programs. Our use of laziness is superior,
we believe, as it avoids this restriction (polymorphic recursion can
be a useful programming technique) and at the same time reduces
the number of classes that are loaded. In a companion technical
report [17] the authors discuss the implementation of polymorphic
methods using a technique similar to the dictionary passing of Sec-
tion 4.5. The observation that the pre-computation of dictionaries
of types can be used to avoid run-time type construction has also
been made by Minamide in the context of tagless garbage collec-
tion for polymorphic languages [12].

Other proposals for polymorphism in Java have certainly helped
to inspire our work. However, the design and implementation of
these systems differ substantially from our own, primarily because
of the pragmatic difficulty of changing the design of the JVM. Age-
sen, Freund and Mitchell’s [2] uses full specialization by a modi-
fied JVM class loader, but implements no code sharing. The PolyJ
team [13] made trial modifications to a JVM, though have not pub-
lished details on this. GJ [4] is based on type-erasure to a uni-
form representation, and as a result the expressiveness of the system
when revealed in the source language is somewhat limited: instan-
tiations are not permitted at non-reference types, and the runtime
types of objects are “non-exact” when accessed via reflection, cast-
ing or viewed in a debugger. Furthermore, the lack of runtime types
means natural operations such as new T[] for a type parameter T
are not allowed, as Java arrays must have full runtime type infor-
mation attached. NextGen [6] passes runtime types via a rather
complex translation scheme, but does not admit instantiations at
non-reference types. Pizza [14] supports primitive type instantia-
tions but implements this by boxing values on the heap so incurring
significant overhead.

7 Conclusion

This paper has described the design and implementation of support
for parametric polymorphism in the CLR. The system we have cho-
sen is very expressive, and this means that it should provide a suit-
able basis for language inter-operability over polymorphic code.
Previously, the code generated for one polymorphic language could
not be understood by another, even when there was no real reason
for this to be the case. For example, it is now easy to add the “con-
sumption” of polymorphic code (i.e. using instantiated types and
calling polymorphic methods) to a CLR implementation of a lan-
guage such as Visual Basic.

Potential avenues for future investigation include the following:

� Many systems of polymorphism permit type parameters to be
“constrained” in some way. F-bounded polymorphism [5] is
simple to implement given the primitives we have described
in this paper, and, if dynamic type checking is used at call-
sites, does not even require further verification type-checking
rules. Operationally, we believe that many other constraint
mechanisms can be implemented by utilizing the essence of
the dictionary-passing scheme described in x4, i.e. by lazily

creating dictionaries that record the essential information that
records how a type satisfies a constraint.

� Our polymorphic IL does not support the full set of operations
possible for analysing instantiated types at runtime: for exam-
ple, given an object known to be of type List<�> for some
unknown � , the type � cannot be determined except via the
CLR Reflection library. Instructions could be added to permit
this, though this might require further code generation.

� Some systems of polymorphism include variance in type
parameters, some safely, and some unsafely (e.g. Eiffel).
Adding type-unsafe (or runtime type-checked) variance is
clearly not a step to be taken lightly, and no source languages
currently require type-safe variance.

� The absence of higher-kinded type parameters makes com-
piling the module system of SML and the higher-kinded type
abstraction of Haskell difficult. We plan on experimenting
with their addition.

� The presence of runtime types for all objects of constructed
type is objectionable for languages that do not require them,
even with careful avoidance of overheads. A refined type sys-
tem that permits their omission in some cases may be of great
value.

It would also be desirable to formalize the type system of polymor-
phic IL, for example by extending Baby IL [8].

With regard to implementation, the technique of x4.4 is abso-
lutely crucial to ensure the efficiency of polymorphic code in the
presence of runtime types. In effect, the computations of the han-
dles for the polymorphic types and call sites that occur within the
scope of a type variable are lifted to the point where instantiation
occurs. Making this computation lazy is essential to ensure the ef-
ficient operation on a virtual machine.

In the future we would like to investigate a wider range of
implementation techniques, and in particular obtain performance
measurements for realistic polymorphic programs. The tradeoffs
in practice between specialization and code sharing are only begin-
ning to be properly understood (see [15, 2, 3] for some preliminary
results). We have deliberately chosen a design and implementation
strategy that allows flexibility on this point.

Acknowledgements

We would like to thank the anonymous referees for their construc-
tive remarks. Also we are grateful to Jim Miller, Vance Morrison
and other members of the CLR development team, Anders Hejls-
berg, Peter Hallam and Peter Golde from the C# team, and our
colleagues Nick Benton, Simon Peyton Jones and others from the
Programming Principles and Tools group in Cambridge.

References

[1] The .NET Common Language Runtime. See website at
http://msdn.microsoft.com/net/.

[2] O. Agesen, S. Freund, and J. C. Mitchell. Adding parameterized types
to Java. In Object-Oriented Programming: Systems, Languages, Ap-
plications (OOPSLA), pages 215–230. ACM, 1997.

[3] P. N. Benton, A. J. Kennedy, and G. Russell. Compiling Standard ML
to Java bytecodes. In 3rd ACM SIGPLAN International Conference
on Functional Programming, September 1998.

[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.
Making the future safe for the past: Adding genericity to the Java
programming language. In Object-Oriented Programming: Systems,
Languages, Applications (OOPSLA). ACM, October 1998.

11



[5] Peter S. Canning, William R. Cook, Walter L. Hill, John C. Mitchell,
and William Olthoff. F-bounded quantification for object-oriented
programming. In Conference on Functional Programming Languages
and Computer Architecture, 1989.

[6] R. Cartwright and G. L. Steele. Compatible genericity with run-time
types for the Java programming language. In Object-Oriented Pro-
gramming: Systems, Languages, Applications (OOPSLA), Vancouver,
October 1998. ACM.

[7] R. C. H. Connor. Types and Polymorphism in Persistent Programming
Systems. PhD thesis, University of St. Andrews, 1990.

[8] A. Gordon and D. Syme. Typing a multi-language intermediate code.
In 27th Annual ACM Symposium on Principles of Programming Lan-
guages, January 2001.

[9] R. Harper and G. Morrisett. Compiling polymorphism using inten-
sional type analysis. In 22nd Annual ACM Symposium on Principles
of Programming Languages, January 1995.

[10] X. Leroy. Unboxed objects and polymorphic typing. In 19th Annual
ACM Symposium on Principles of Programming Languages, pages
177–188, 1992.

[11] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, second edition, 1999.

[12] Y. Minamide. Full lifting of type parameters. Technical report, RIMS,
Kyoto University, 1997.

[13] A. Myers, J. Bank, and B. Liskov. Parameterized types for Java. In
24th Annual ACM Symposium on Principles of Programming Lan-
guages, pages 132–145, January 1997.

[14] M. Odersky, P. Wadler, G. Bracha, and D. Stoutamire. Pizza into Java:
Translating theory into practice. In ACM Symposium on Principles of
Programming Languages, pages 146–159. ACM, 1997.

[15] Martin Odersky, Enno Runne, and Philip Wadler. Two Ways to Bake
Your Pizza – Translating Parameterised Types into Java. Technical
Report CIS-97-016, University of South Australia, 1997.

[16] M. Viroli and A. Natali. Parametric polymorphism in Java: an ap-
proach to translation based on reflective features. In Conference on
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). ACM, October 2000.

[17] M. Viroli and A. Natali. Parametric polymorphism in Java through
the homogeneous translation LM: Gathering type descriptors at load-
time. Technical Report DEIS-LIA-00-001, Università degli Studi di
Bologna, April 2000.

12


