Pointer Analysis:

Haven't We Solved This
Problem Yet?

Michael Hind
IBM Watson Research Center

Pointer Analysis Pubs by Year

20
. | PhD Theses B Conf/Journals

15

10

o [N
'80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00
‘81 '83 '85 '87 '89 '91 '93 '95 '97 '99 'O1

83 Publications in 14 years! 48 in the last 4 years!

Why should I care?

= needed for any "mod/ref" analysis
»slicing, dep graph, constant prop, code motion, ...

» call graph construction
— needed for any whole program analysis

p->data - for (...){
= q->data; p->data = O;
}
x=0;
p=17: (*p)a, b, c);
q->foo();

=X+ ..

OK, I need a pointer analysis,
which one should I use?

= It depends ...
= Do you want
> high precision?
> high efficiency?
> not a simple question

m Sit back and relax for the next 45 mins

Talk Roadmap

= Ptr Analysis Dimensions
m Metrics

m Survey of Issues

m Conclusions

Feature:
input from several ptr analysis experts

Pointer Analysis

Goal: statically determine what can be accessed
by a pointer

Bad news: problem is undecidable

Good news: many approximation algorithms exist!

Pointer Analysis

Goal: statically determine what can be accessed
by a pointer

Bad news: problem is undecidable

Bad news: many approximation algorithms exist!

Worst case complexities:
linear ... doubly exponential

Is "Big-O" the same as "Big Ben"?

Pointer Analysis Dimensions

= Flow sensitivity

= Context sensitivity
= Heap modeling

= Aggregate modeling
= Alias representation

= Whole program

Pointer Analysis Dimensions

= Heap modeling
» allocation site
» connection analysis
» shape analysis

Heap

Pointer Analysis Dimensions

= Heap modeling

= Aggregate modeling

arrays structs/objects

or
or

Pointer Analysis Dimensions

= Heap modeling
m Aggregate modeling

= Alias representation
» points-to relations vs explicit alias representations

a = b e
points-to explicit alias rep
<a, b> <*a,b>, <**q,
<b, & <*b, >, <**a, *b>

Precision/efficiency tradeoffs exist [HBCC99 RLSZAOQ1],
but have not been studied!

Pointer Analysis Dimensions

= Heap modeling
= Aggregate modeling
= Alias representation

= Requires whole program?

Pointer Analysis Dimensions

= Heap modeling

= Aggregate modeling

= Alias representation

= Requires whole program?

= Flow-sensitivity

Pointer Analysis Dimensions

= Heap modeling

= Aggregate modeling

= Alias representation

= Requires whole program?

= Flow-sensitivity
» considers control flow during the analysis

Pointer Analysis Dimensions

= Heap modeling

= Aggregate modeling

= Alias representation

= Requires whole program?

= Flow-sensitivity
» considers control flow during the analysis
> Flow-sensitive
— one solution/program point
—more precise, less efficient (time and space)

Pointer Analysis Dimensions

= Heap modeling

= Aggregate modeling

= Alias representation

= Requires whole program?

= Flow-sensitivity
» considers control flow during the analysis
> Flow-sensitive
— one solution/program point

—more precise, less efficient (time and space)
» Flow-insensitive

— one solution/whole program or function
— less precise, more efficient

— equality-based (almost linear)

— subset-based (polynomial)

1: p = malloc();
2: q = malloc();

3: fp = &p:
4: fp = 4&q:

5: p = malloc();

6. ...=*p;

Example

Points-to Relations at 6

Flow-sensitive analysis

o P — heap5
\

9 — heap?

1: p = malloc();
2: q = malloc();

3: fp = &p:
4. fp = &q;

5: p = malloc();

6: ...=*p;

Example

Points-to Relations (at 6)

Subset-based flow-insensitive

9 — heap2

1: p = malloc();
2: q = malloc();

3: fp = &p:
4: fp = &q:

5: p = malloc();

6. ...=*p;

Example

Points-to Relations (at 6)

Equality-based flow-insensitive

9 — heap2

Example

1: p = malloc(); Points-to Relations (at 6)

2: q = malloc();

3: fp = &p: Equality-based flow-insensitive
4: fp = &q:

5: p = malloc(): heapl

R P heap5

|©

heap2

1: p = malloc();

2: q = malloc();
3: fp = &p:
4. fp = &q;

5: p = malloc();

6. ...=*p;

Example

Aliases of *p at 6:

Flow-sensitve: heapb
FI subset: heapb heapl
FI equality: heapb, heapl, heap?

Pointer Analysis Dimensions

= Heap modeling

m Aggregate modeling

m Alias representation

= Requires whole program?
= Flow sensitivity

= Context sensitivity
Is calling context considered when processing a method?

fO{
main() {/4: p = malloc();
1 £0: 5: g():
2: p = malloc(); FP;W
3: 9(): p—*heapZ

) 0N

}

Talk Roadmap

= Ptr Analysis Dimensions

m Metrics

= Survey of Issues

m Conclusions

Metrics

Direct method: avg num objects at ptr deref

= Most popular
= Advantages
» easy to understand
= Disadvantages
» no inherent meaning
» dependence on heap/recursive local model
» client analyses

Metrics

= Direct method

= Pct of worst-case
» not popular
» incorporates language semantics

Metrics

= Direct method
m Worst-case

= Client impact
» Adv: can see impact on client
» Dis: only reports on one client

Metrics

= Direct method
= Worst-case
= Client impact

= Dynamic metric
» direct method
» client impact
» Adv: gives lower bound
» Dis: limited to one run, is lower bound tight?

Metrics

= Direct method
= Worst-case
= Client impact

= Dynamic metric

Recommendation: use combinations [DMM97]

Reproducible Results

= Given dimensions, many experiments are possible
= Often not performed, less often repeated
= Will it be published?

= Can be difficult because of
» different intermediate representations
» benchmark suites
» benchmark versions

» Sharing infrastructure, benchmarks is crucial

= Isn't this at the heart of being a "science"?

Precision/Scalability

= Equality-based can analyze 1 MLOC
» getting more precise [LH99, DOO]
= Subset-based more precise, but haven't scaled well

» but, getting more efficient!
[FFSA98,SFAOQ,RCOO,FRDOO,RFO1,HTO1]

= Convergence may provide the answer, but ...
is subset-based precision sufficient for all clients?

= More precise/expensive ptr analysis can make clients more
efficient [SH97, HPOO]

Avg slowdown to Address Taken

80

70

60

50

40

30

20

10

Efficiency (Time)
[HPOO]

Pointer Analysis Only Ptr + All Client Analyses

1.2

Avg slowdown to Address Taken

1 0.9

AT Equality Subset FS

[Address Taken E FI Subset
] FI Equality B Flow Sensitive] clients £ ptr Analysis

Avg increase over Address Taken

Efficiency (Memory)

Pointer Analysis Only Ptr + All Client Analyses

15

=

o
o]

o
o

o
N

Avg increase over Address Taken
o
N

o

0.02 0.02
AT Subset
Equalit FS
& Address Taken & FI Subset a y
1 FI Equality M Flow Sensitive] Clients [Ptr Analysis

Precision/Scalability

"It is easy to make a pointer analysis that is very fast
and scales to large programs. But are the results worth
anything? While more people have done work in the
area, we still need a better understanding of what

pointer analysis one should use.

Amer Diwan

Precision/Scalability

= Bill Landi:
» relaxing safety
» Flow and context-sensitive analysis
— days to minutes
— false positives/negatives are a problem, maybe?
» users: false positives => poorly written code

m Susan Horwitz:

» determine part of program (code region, ptr variable, etc.)
that needs high accuracy

» find special cases where analysis works well, even if it is not
general.

Satisfying the Client

= Precision/efficiency required depends on client

= Barbara Ryder:
» should look for classes of clients with similar needs

= Manuel Fahndrich:
» two such clients
—optimizations
e current analyses may be sufficient

—error detection & program understanding tools
e lower bound on precision

= Manuvir Das:
» error detection => Killer App for pointer analysis

Does Flow-Sensitivity Matter?

= Flow-sensitive analysis does not provide significant
precision improvement over subset-based
flow-insensitive [HPOO]
> Assuming:

no CS, malloc site, pts-to, whole program, aggregates
summarized

m Need more studies, clients

Direct Precision
[HPOO]

3

3
© 30
8 —
3] e
< 25 =
= 20 o)
Q o
3 o
o 15 £
2 =a 13/23 3/23
- 10 >
2 <
= 5 22/22
> 15/22 5/22
<

0 0

M Address Taken M FI Subset [Address Taken [FI Subset

] FI Equality] Flow Sensitive 1 FI Equality "J Flow Sensitive

Live Variables and Dead Assignments

Live Variables Dead Assignments

40
0/23 9/23 0/23

N

30

20.13

20

'—\

18.3

10

Avg Live Variables/Statement
Avg Dead Assignments/Program

o

B Address Taken [FI Subset I Address Taken [FI Subset
] FI Equality] Flow Sensitive] FI Equality] Flow Sensitive

Reaching Defs and Flow Dependences

Avg Reaching Defs/Stmt

Reaching Defs

40

[Address Taken E FI Subset
] FI Equality] Flow Sensitive

Avg Flow Dependences/Function

60

50

40

Flow Dependences

& Address Taken & FI Subset

] FI Equality

] Flow Sensitive

Avg Num. of Constant Exprs/Program

=
N

=
o

(oe]

Constant Propagation and
Unexecutable Stmts

Constants Unexecutable Stmts

w
o

3/22 1/22 0/22

10.6 10.7 2/22 1722 0/22

N
ol

25.3 25.4

N
o

=
[6)]

=
o

ol

Avg Num of Unexecutable Stmts/Program

o

[Address Taken E FI Subset [Address Taken E FI Subset
] FI Equality] Flow Sensitive] FI Equality] Flow Sensitive

Does Context-Sensitivity Matter?

= Exponential worst-case => improving efficiency [EGH94 WL95]
= Does it improve precision?
» flow-sensitive analysis
— probably not [Ruf95]
» subset-based FI
— little [FFAQO]
» extended version of equality-based
—little [DLFRO1]
» for equality-based FI
—vyes [FFAQOQ]
= Assumptions
»alloc site, pts-to, aggregates summarized, whole program
» direct metric: [Ruf95, FFAOOQ]
» alias frequency; [DLFRO1]

Context-Sensitivity

= Erik Ruf:
» Fixed CS strategy may not be appropriate for client
— Ex, traditional CS approach can yield bad code

» Eagerly building clones inside a stand-alone ptr analysis is
undesirable (potentially exponential)

» Even highly parameterized standalone analyses pay costs for
unneeded contexts

» Ptr analysis should be integrated with client

Heap Modeling

= Shape analysis[SRW98, GH96,...] has high precision over
alloc site naming

= Scalability of most precise analyses is in doubt
= Tom Reps:
» plenty of interesting issues remain, such as

—a better understanding of how to identify the important
ingredients
—efficiency
» producing insights into other problems, such as

system/memory configurations that can arise as a computation
evolves

Aggregate Modeling

= Structs/objects

» C/C++: absence of strong-typing makes struct field
disambiguation nontrivial

— many analyses didn't distinguish,
exceptions [WL9D, YHR99, ...]
» Java's strong-type makes distinguishing fields easier
—most Java analyses distinguish
» Few empirical studies exist [YHR99 RLSZAO1, LPHO1,RMRO!]

= Arrays
» Only [RR99] distinguish array elements, no empirical studies
» Leverage dependence analysis work?

Aggregate Modeling

= Rakesh Ghiya:
Need to improve the basis ptr analysis info (especially
malloc-site identification in the presence of user-defined
memory management, and handling of fields), as opposed to
solely focusing on incremental improvements in the
propagation techniques.

Demand-Driven/Incremental

= Ptr analysis efficiency is important
= Precision requirements depends on the client

= Why not a demand-driven analysis?

» Solutions exists for subset-based FI
[R94 R98,D0O0,HTO1,FRDOO,RFO1,DLFRO1]

» Open problem for FS

= How about an incremental analysis?
» Some work [YRL99, VRO1]

Java and OO Languages

= Most ptr analysis work is for C

= Does this work transfer to Java?
» Good news: conservative fallback is not as bad (type info)
» Good news: can't point to stack variables
» Bad news: everything is a heap pointer
» Promising approaches
— Simpler shape analysis [GH96]
— Type-based analyses [DMM97, FKS0O]
= Need to revalidate studies based on C

Thoughts on Java

= Bjarne Steensgaard:
» Many ptr analysis that worked well for C perform poorly for Java

» Ptr analysis designers will adapt to programming languages/styles and
output (tools and other analyses)

= Laurie Hendren:

» Ex. finding properties of complex OO programs like verifying the
correctness of iterators in Java

Incomplete Programs

= Most ptr analyses require whole program

= Michael Burke:

» Component programming/library are becoming more prevalent
» Whole program analysis less useful

» Need parameterized ptr analyses wrt how they are configured ina
full application

» Some work [RRL99 RR01] exists, but problem not solved

= Manual Fahndrich:

» Interface declarations that describe sharing and non-sharing
relationships between data structures (shape descriptions) could
lead to more precise ptr info

Engineering Insights

= Efficiency (time and memory) of a pointer analysis is important
= Careful engineering of a pointer analysis, particularly for FS, can
dramatically improve its performance and scalability
= Conference ptr analysis papers
» background
» algorithm
» empirical comparison
» related work
» implementation details
m L ast section rarely gets written lll

= To impact production systems, we must describe engineering

Terminology

= "context-sensitive" = "poly-variant"
= "context-insensitive" = "mono-variant"
= flow-insensitive analyses
» equality = unification = Steensgaard-style = term or equality
constraints
» subset = Andersen-style = inclusion constraints
= pointer analysis, points-to analysis, alias analysis
= formulation

» data flow, contraint-based, abstract interpretation,
non-standard type inference

So, Have We Solved This Problem?

= No!
= Better question: will we ever "solve" this problem?
= Maybe, maybe not

» need to focus on classes of clients

— optimizations vs program understanding
» new algorithms are nice, but we need strong empirical studies

= Maybe language designers will solve it for us?
» latest ANSI C allows programmer to severely limit possible aliases
» Fortran 90, Ada 95 require programmer to declare ptr targets

= But we still need more help for abstractions, such as collections

Thanks!

= Matthew Arnold = Laurie Hendren
= Michael Burke m Susan Horwitz
m Jong-Deok Choi = Bill Landi

= Manuvir Das m 5. Ramalingam
= Amer Diwan = Tom Reps

= Manuel Fahndrich = Erik Ruf

= Stephen Fink = Barbara Ryder
= David Grove = Mooly Sagiv

= Rakesh Ghiya = Bjarne Steensgaard

