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ABSTRACT

The reliability of infrastructure software, such as operating sys-
tems and web servers, is often hampered by the mismanagement
of resources, such as memory and network connections. The Vault
programming language allows a programmer to describe resource
management protocols that the compiler can statically enforce.
Such a protocol can specify that operations must be performed in a
certain order and that certain operations must be performed before
accessing a given data object. Furthermore, Vault enforces stati-
cally that resources cannot be leaked. We validate the utility of our
approach by enforcing protocols present in the interface between
the Windows 2000 kernel and its device drivers.

1. INTRODUCTION

The past several years have witnessed the wide-spread acceptance
of safe programming languages, due mostly to the popularity of
Java. A safe language uses a combination of exhaustive static anal-
ysis and run-time checks and management to ensure that a pro-
gram is free from entire classes of errors, like type errors and
memory management errors. Ironically, one class of software in
which the safe language movement has not made many inroads is
low-level “infrastructure” software that needs to be highly reliable,
like operating systems, database management systems, and Inter-
net servers. The exhaustive analysis that a safe language provides
seems a promising way to increase the reliability of this class of
software, for which inexhaustive methods, like testing, have previ-
ously proved useful but incapable by themselves of achieving the
goal of high reliability.

Such infrastructure software manipulates many resources, like
memory blocks, files, network connections, database transactions
and graphics contexts. The correctness of such software depends
both on correctly managing references to these resources (no dan-
gling references, no leaks, no race conditions) and on obeying re-
source specific usage rules (for example, the order in which opera-
tions on the resource must be applied). Together, we refer to these
as resource management protocols. Today, such protocols are typi-
cally recorded in documentation and enforced through testing. The
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Vault programming language provides a new feature called type
guards, with which a programmer can specify domain-specific re-
source management protocols. Such a protocol can specify that
operations must be performed in a certain order, that certain op-
erations must be performed before accessing a given data object,
and that an operation must be in a thread’s computational future1.
Vault’s type checker exhaustively seeks and reports any violation
of such a protocol. In short, we move the description of resource
management protocols from a software project’s documentation to
its source code, where it can be automatically enforced at compile
time. To validate the utility of type guards, we have used them
to describe and enforce resource management protocols in the ex-
isting interface between the Windows 2000 kernel and its device
drivers.

This paper describes the resource management features of Vault,
keys and type guards, and their application to Windows 2000 de-
vice drivers. In Section 2, we discuss the general framework of type
guards and its instantiation in Vault’s current design. We informally
introduce keys through two widely known examples: memory re-
gions and Unix sockets. Section 3 explains how Vault’s type system
enforces resource management protocols. Section 4 describes some
of the protocols in the interface between the Window 2000 kernel
and its drivers and how we enforce them. Section 5 discusses re-
lated work, and Section 6 concludes.

2. DESCRIBING RESOURCE PROTOCOLS

To check resource management protocols, Vault uses an extended
notion of type checking. A typical type checker uses types to dis-
criminate the values that the program manipulates to ensure that
each operation is applied only to appropriate values. Vault’s type
system extends a type with a predicate called a type guard, which
is an auxiliary condition on the use of a value of a given type. The
Vault type checker tracks an abstraction of the computation’s global
state at each program point. For a program to access2 a value at a
given program point, the value’s type guard must be true in the
computation’s global state at that point. In this light, we say that
a type describes which operations are valid and a type guard de-
scribes when operations are valid.

2.1 Using Keys to Track Resources
In the current design of Vault, the abstract global state of the com-
putation and the predicate language of type guards are intentionally

�

Statically checking whether a thread actually reaches a given op-
eration is clearly undecidable.

�

Accessing a value means applying a primitive operation such as
reading or writing through a pointer, or using an arithmetic opera-
tion on a numerical value.



kept simple to enable an efficient decision procedure. The global
state, called the held-key set, consists of a set of keys, which are
simply compile-time tokens representing run-time resources. Each
distinct key represents a unique run-time resource in each context,
ie., two distinct keys represent two distinct resources. Keys can
be neither duplicated nor lost, thereby providing the fundamen-
tal mechanism for tracking resource management at compile-time.
Keys are purely compile-time entities that have no impact on run-
time representations or execution time.

The atomic predicate of type guards is whether a given key is
in the held-key set. A type guard is either true or a conjunction
of one or more of these atomic predicates. Thus, a data object is
guarded by zero or more keys; at a given program point, all the
object’s keys must be in the held-key set in order for the program
to access the data object at that point. The type checker evaluates
these predicates at compile-time. Type guards have no impact on
run-time representation or execution time.

Vault’s statement and expression syntax is based on the C pro-
gramming language [11], hence the declaration
����������	�
�����

declares the variable
��	�
���

to be of type
�������

. The declaration
��������������	�
�����

declares the variable
��	�
���

to be of the guarded type
�����������

,
which means that the variable has type

�������
and that the key

�
must be in the held-key set at any point in the program at which the
variable

��	�
���
is accessed.

For further expressiveness, the held-key set actually tracks a lo-
cal state called a key state for each key. Key states are simply
names. For instance, the programmer may choose to describe files
as having two local states, “open” and “closed”. A variation on the
previous declaration
�����
���	�������������	�
�����

declares that a key
�

in local state
��
���	

guards the variable
��	�
���

.
In order to access this variable, the key

�
must be in the held-key

set and
�

’s local state must be
��
���	

. In examples where local key
states are of no importance we simply omit them. Depending on
syntactic context, omitted key states default to a fixed unique state
or represent any possible state.

In summary, keys model two properties of resources: (1) whether
a resource is accessible (whether the key is in the held-key set), and
(2) what conceptual state a resource is in (the key’s local state).

There are four features in Vault that are used to manipulate keys:
tracked types associate keys with resources; functions filter keys
in the held-key set; types with key parameters specialize types to
particular keys; and keyed variants turn keys into values and static
checks into dynamic checks.

Tracked types. Since Vault keeps track of the availability and
state of individual run-time objects, the Vault type checker needs
a way to distinguish the identities of run-time objects (that is, not
to confuse one for another). The challenge is that the program text
may contain many names for the same run-time object (aliases).
In Vault, a key provides a symbolic name for an object’s iden-
tity, and a tracked type provides a one-to-one correspondence be-
tween a compile-time key and a run-time object. The declaration������ ���"!�#�$&%('*)

states, as usual, that the variable
)

names some
run-time object of type

'
(call it + ). Further, the declaration pro-

vides alias information that the type-checker checks: within the
scope of the key

$
, all program names of type

������ ���"!�#�$&%('
refer

to the same object + , and no other program names refer to the ob-
ject + . Vault’s type rules guarantee that calls to other functions that

manipulate the object + reflect state changes through key
$

as well.
In short, the benefit of giving an object a tracked type is that the
Vault type checker can trace the availability and state of that object
throughout the program’s text; the cost is that there are limitations
on how program names may alias that object.

Tracked allocation acts as the primitive key granting mechanism:
������ ���"!�#��&%,
����	�*
.-(	���/.������ ���"!0
����	�21�)-�34�65-"7��98:�
���9��	�0).-(7��

At run time, the
	���/

operation allocates a fresh

����	�

object on the
heap. At compile time, the compiler generates a fresh key (named�

here3) associated with the fresh data object, and adds this key to
the held-key set. The key

�
represents the availability of a mem-

ory resource, namely a heap-allocated

����	�

data structure. The
example above also uses key

�
to guard the integer

)
; that is, the

programmer has chosen to tie the availability of the variable
)

to
the availability of



. At those program points at which key

�
is in

the held-key set, the program may access both



and
)
; at those

points at which the key is not in the set, the program may access
neither.

Sometimes, the local name of a key is not important. In those
cases, the programmer may let the compiler manage the key names.
������ ���"!0
����	�*
2-,	���/.������ ���"!0
����	�21�)-�34�;5-"7��98:�

This code is similar to the one above except that we can’t refer to
the key name in this scope directly. However, since we can pass
the value of



to other functions, the key may be named in other

scopes.
The primitive key revoking mechanism in Vault is the < ���� op-

eration.
������ ���"!�#��&%,
����	�*
.-(	���/.������ ���"!0
����	�21�)-�34�=5-"7��98:�
< ����4#�
&%>�

In this example, the < ���� operation takes an argument of type������ ���"!�#��&%(' 4 and requires that key
�

be in the held-key set. At
compile-time, after the operation, key

�
is no longer in the held-

key set. At run-time, the operation deletes the given heap-allocated
data structure.

Functions. In Vault, a function’s type has a pre- and postcon-
dition, which respectively state which keys must be in the held-key
set to call the function and which keys are in the held-key set when
the function returns. For brevity’s sake, the pre- and postconditions
are written together as an effect clause, which states how the func-
tion changes the key set. An effect clause is written within square
brackets. For a given key

�
, the effect clause ? �����@�A�BC states that

the key must be held before (in state
�
) and is held when the func-

tion returns (in state
B

). The effect clause ? @������C states that the
key must be held before in state

�
but won’t be held when the func-

tion returns. The effect clause ?�D ����BC states that the key is not held
before but is held after the function call. Finally, the effect clause
? 	���/0����BC

states that on return, a fresh key (unknown to the con-
text) is held in state

B
. As a shorthand, we write ? �����C for the

common case ? �����@�A���C , and we omit key states altogether when
they are of no importance. For example, the following function
signature (akin to a function prototype in C)
E ���! < �"F��G��4#=������ ���"!�#=�H%*������� < % ? @���C��

describes a function that takes a tracked file parameter whose key
I
Key names such as

�
are bound when first referenced and have the

same scope as a program variable bound at that point.J
There are some restrictions on the type

'
, such as

'
must not be

abstract in the context of the operation. Other restrictions have to
do with keys embedded within

'
.



is consumed by calling the function.
Types with key parameters. Vault supports parameterized

types. The familiar case is to parameterize types by other types. For
instance, a two-dimensional array that can be used at many types
of data is declared as follows5:
��5"
��.��������5���!�����5"
��.'�A*-*' ? C ? C��

Given this type definition,
��������5���!�� < F�������A is the type of a two-

dimension array of floating-point numbers. Less familiarly, a Vault
type may be parameterized by a key set. (Currently, we restrict key
set parameters to singleton sets.) For instance, the type declaration
��5"
����"������!�"!����	�������"52��A*-,���9��	���

declares a type abbreviation for a single integer that is guarded with
the key on which the type is instantiated. For example, the signature
E ���! < ���:#=������ ���"!�#=�H%*������� <�� �"������!�"!����	������A����% ? ��C��

describes a function that takes two parameters: a tracked file < ,
whose key is called

�
; and a record

���
whose field

)
is guarded

by the same key
�
. Since guards and keys are purely compile-time

entities, the function < ��� will be compiled into a function taking an
ordinary

�������
parameter and an ordinary

��	�
parameter.

Keyed variants. Vault supports algebraic data types, called
variants, as found in most functional languages. For example, an
optional integer is described with the following type declaration
E �����"��	� ��
� ��	� ?
	�� ���	�� 	�� ���H����	��# ��	�H%*C��

This variant has two constructors, the constant constructor 	�� ���	�
(called “constant” because it takes no parameters) and the construc-
tor 	�� ���H����	� which takes an integer parameter. The values of type��
� ��	�

are 	�� ���	� and 	 ��	��#�	&% for any value
	

of type
��	�

.
Vault’s

G�/H�������
statement supports pattern matching over variants.

Variants are important for key management in Vault because con-
structors may have key parameters (written in braces). For exam-
ple, given the variant declaration
E �����"��	� ��
� ���"5������"50��A ?
	�� �����"5� 	�� ���H�����"5 1���8(C��

constructing a value of type
��
� ���"5�����A

with the constructor
	�� ���H�����"5 both requires that the key

�
be in the held-key set and re-

moves the key from the set. Pattern matching against a value of type��
� ���"5�����A
restores the key to the held-key set in the 	�� ���H�����"5

case. For example, given the following code template
E ���! < ���:#=������ ���"!�#=�H%*������� < % ? @���C21

������ ���"! ��
� ���"5�����A < F������������������! �"$#%��#'&�(*)
� < # �"F��G�� �����F�5H%*1

< �"F��G��4# < %>� �����+#,"�&-�����! 
< F����.- 	�� �����"5�� ���% �"$#/.0&1#'���� 2�%����(��

8(�FG��.1
< F����.- 	�� ���H�����"5�1���8:� ���3#'���� 2�54�6*"$#87*9�:;�<�

8
���3=���>�&���?'��(%@$(�>$#�6$��=�>�7�&�>*A,��#'4<�CB�7�D�"$#'�-����(��
���%6*"� ��<E
G�/H������� # < F����H%*1

�"�G�� 	�� �����"5 �����3=��� �"$#/.0&FDG��&H�IB�#�&���B�7�6*>�7��
���%6*"� ��2J

�"�G�� 	�� ���H�����"5 �<���3=��FDG��&H�CB�#%&���B�7+6*>�7�����%6*"� ���K
< �"F��G��4# < %>�L���%6*"$#87*9�:;�<�

8
8

M
The default bit-width of a type parameter is 32bits. Other widths

must be explicitly declared in Vault.

��	��"� < ����*$���N�� +$� 1
��5"
��*��*���"��	 �
������ ���"!�#�$&%,��*���"��	���������4# % ? 	���/0$C��
E ���!0!�F"�"��4#=������ ���"!�#�$&%*��*���"��	&% ? @�$C��8

Figure 1: A Vault interface describing a region abstraction.

the key
�

would appear in the held-key set as follows. The key is
held on entry to foo. The code then determines using

�"F��G�� �����F�5
whether or not to close the file early. After the < �"F��G�� in the true
branch, key

�
is no longer held, and we record this fact in the < F����

variable. In the false branch, we record the fact that we still hold
the key. Note that creating the value 	�� ���H�����"5,O��,P removes key

�
from the held-key set by conceptually attaching it to the flag value
(there is no run-time representation for keys). Thus in code section
A, key

�
is not in the held-key set. But we can recover it by testing

the value of < F���� . In the 	�� �����"5 case, code section B still does
not hold key

�
. In the 	�� ���H�����"5 case however, the type checker

knows that during code section C, key
�

is held again. Assuming
code section C does not consume key

�
, the call to < �"F��G�� after

section C is valid, and all code paths of < ��� end in the state where
key

�
is not held, which corresponds to < ��� ’s declared effect.

A detail we glossed over in the code above is that the
��
� ���"5

type of the < F���� variable is itself tracked. This is necessary, since
the variant type may hold a key. If we allowed the < F���� variable to
be copied without tracking aliases, then key

�
might be extracted

multiple times from < F���� , or worse, it might never be extracted and
thus lost. The code above does not show the key associated with the
< F���� variable, but forgetting to test the flag would manifest itself
by an extra key at the end of the function.

Using keyed variants, the programmer can turn static knowledge
(whether a particular key is held) into a dynamic value (the vari-
ant). Pattern matching on keyed variants enables the programmer
to help the compiler recover static knowledge (whether a particular
key is held) from dynamic values. The variant type acts as an in-
variant that enables the type checker to safely move between static
and dynamic knowledge regarding the held-key set. Variant types
are also useful for expressing correlations between different state
changes and return values of functions. This aspect of variants is
illustrated in Section 2.3 to encode failure conditions.

Together, these four features allow the programmer to describe a
useful variety of resource management protocols. To provide fur-
ther introduction to these features, the remainder of this section
applies them to two simple examples. Section 4 later shows how
we used these features to check some of the resource protocols in
the interface between a Windows 2000 device driver and the kernel.

2.2 Checking Memory Regions With Keys
A typical C program uses the functions

�&��F�F���
and < ���� to allo-

cate and deallocate individual heap objects. An alternative is to use
regions [18, 8], also called arenas or heaps. A region is a named
subset of the heap. A program individually allocates objects from
a region, but it deallocates the region as a whole rather than deallo-
cating individual objects. Based on the work of Crary, Walker, and
Morrisett [3], we can create a safe region abstraction in Vault, as
shown in Figure 1.

This interface declares an abstract type6, called
��*���"��	

. The
Q
An abstract type is one whose representation is private to the mod-

ule that implements the interface.



�")���"�"	��&��!"��F"�*$��*���"��	 � $���N�� +$� �

E ���!2���H��5�# %*1
������ ���"!�#�$&%,��*���"��	2���"	2-,$��*���"��	��9��������4# %>�
$�� 
����	�0
�0-(	���/ #=���"	&% 
����	�21�)-�� �;5-8�:�98:�

����) D�D �$��*���"��	���!�F"�"��4#=���"	&%>�

8

E ���!0!���	8��F��	8��# %01
������ ���"!�#�$&%,��*���"��	2���"	2-,$��*���"��	��9��������4# %>�
$�� 
����	�0
�0-(	���/ #=���"	&% 
����	�21�)-�� �;5-8�:�98:�
$��*���"��	���!�F"�"��4#=���"	&%>�

����) D�D �<��� ��(�(�"�(��FA,��)��+#,"�&�B�# �����! 
	�A,��)37���&

8

E ���!2F"�����5�# %*1
������ ���"!�#�$&%,��*���"��	2���"	2-,$��*���"��	��9��������4# %>�
$�� 
����	�0
�0-(	���/ #=���"	&% 
����	�21�)-�� �;5-8�:�98:�

����) D�D ���� ��(�(�"�(��
���'&�(�>�A,��)��IB�#������! 
	�A,��)+7���&

8

Figure 2: A Vault program that uses the region abstraction.
The function

���H��5
correctly uses it; the function

!���	8��F"�
ac-

cesses a dangling reference; and the function
F"�����5

contains a
region memory leak.

function
��������

creates a new region, which is individually
tracked. The function

!�F"�"��
deletes the region and removes its

key from the key set. To allocate an object in a region, Vault pro-
vides a primitive

	���/
operation taking the following form:

	���/ #=���"	&%,'�$B�#'B�&��

Given a tracked region
���"	

with key
$

, the new construct returns
an object of type

$���'
, that is, an object guarded by key

$
.7 Thus,

this object is accessible as long as the region is accessible. After a
call to delete, all objects allocated within a region are inaccessible.

Figure 2 shows three functions that use this region abstraction,
two of which have errors. The function

���H��5
correctly uses the

region abstraction. Calling
$��*���"��	��9��������

creates a new region
whose key we label

$
. The point object


�
is allocated from this

region and is guarded with the key
$

. The increment to

�

’s field
)

requires

�

’s guarding key
$

to be in the held-key set, which it is.
Finally, the call to

$��*���"��	���!�F"�"��
deletes the region and removes

its key from the held-key set, thereby invalidating access to the
variables

���"	
and


�
. The function

!���	8��F��	8�
reverses the region

delete operation and the increment of

�

’s field
)
. Because the

effect of calling
$��*���"��	���!�F"�"��

removes the key
$

from the held-
key set, the increment expression is incorrect since it requires the
key

$
. The function

F"�����5
contains a more subtle error. Because

this function has no explicit effect clause, it promises that the pre
and post key set will be the same (no keys added, no keys removed).
Because there is no call to

$��*���"��	���!�F"�"��
, the function has one

extra key (
$

) in the held-key set at the end of the function than it
did at the beginning. Hence the function’s implementation violates
its (implicit) effect clause, which is an error. This region interface
thus catches both dangling references and memory leaks.

�
We ignore the possibility of allocation failure here. In practice,	���/

returns a variant indicating success or failure.

��	��"� < ���� ��+�� ���' 1
��5"
��2G"�� ���

E �����"��	�0!����&���	 ?
	��8� ���� 	 � � �'.C��
E �����"��	� �"�����'�G���5�F"� ?
	�� '"$��
���  	�� N�$
���.C��
������ ���"!�# �"����/&%.G"�� ��G"�� ���"��#=!����&���	 � �"�����'�G���5�F"� � ��	�H%>�

G����"�H��� G"�� �H��!�!�� 1������ 8:�
E ���!*BH��	!�#=������ ���"!�# � %.G"�� � � G"�� �H��!�!��H%

? � �"����/�@�A�	����H�"!�C��E ���!2F��G����	 #=������ ���"!�# � %2G"�� � � ��	�H%
? � ��	����H�"!�@�A�F��G����	H��	8��C�������� ���"!�# � %0G"�� ���������
��#=������ ���"!�# � %2G"�� � � G"�� �H��!�!��H%
? � �F��G����	H��	8� � 	���/ � �"����!�5�C��E ���!0�������� E �4#=������ ���"!�# � %2G"�� � � B5��� ? CH% ? � �"����!�5�C��

E ���! �"F��G��4#=������ ���"!�# � %2G"�� � % ? @ � C��8

Figure 3: A Vault interface that describes a socket abstraction.

2.3 Checking Sockets With Keys
Connection-oriented sockets are a popular software abstraction for
inter-process and inter-machine communication in client/server ar-
chitectures. Developing a server for such an architecture can be
error-prone because setting up the socket to accept connections and
communicate through them involves several steps—omitting one
or more of these steps is a common beginner’s mistake. To prevent
such mistakes, we can create a Vault interface to a socket library
like that in Figure 3. This interface uses the ability for keys to have
states to enforce the necessary steps to create a connection-oriented
socket that is ready to receive messages. The function

G"�� ���"�
cre-

ates a new socket whose key is in the “raw” state. We can see
that in order to receive a message on a socket, its key must be in
the “ready” state. The effect clauses for the functions

BH��	!
andF��G����	

show how these functions change the state of the key from
“raw” to “named” and from “named” to “listening,” respectively.
Finally, the function

�������
�
takes a tracked socket whose key � is

in the “listening” state and returns a new tracked socket whose key
� is in the “ready” state, the state needed to receive a message.

This interface to sockets is somewhat naive, in that it ignores the
possibility of failure. To describe, for example, the fact that theBH��	!

operation can fail, we can change its function signature to the
following:
E �����"��	��G������"�HG*�����"50��A ?�	9+ � 1�����	����H�"!�8 

	 ���������# �"����������"��!��%�1����"����/�82C��
������ ���"!�G������"�HG*� � A(BH��	!�#=������ ���"!�# � %2G"�� � � G"�� �H��!�!��H%

? @ � �"����/C��
The

BH��	!
function now consumes the tracked socket’s key in the

“raw” state and returns a variant. This variant has two constructors:
the 	 �������� constructor describes the failure case and its parameter
provides an error code that explains the error; the 	9+ � constructor
describes the success case. Both constructors have attached the key�

, but in different states. In the 	9+ � case, the socket has correctly
changed to the “named” state, whereas in the 	 �������� case, the
socket remains in the “raw” state.

The use of this variant type forces the programmer to check the
status result of calling

BH��	!
. Consider a program that forgets to

check the status result:
������ ���"!�# �"����/&%.G"�� ����5�G"�� ���"�2-2G"�� ���"��# 	��8� ��� ��	 � � �' ��� %>�



BH��	!�# ��5�G"�� ���"� � ��5�G"�� �H��!�!��H%>�F��G����	 # ��5�G"�� ���"� ��� %>�1��� ��(�(�"�(��
Here, the call to

BH��	!
removes the socket’s key from the held-key

set, hence the precondition for
F��G����	

is violated. In order to callF��G����	
, the programmer must first check the status result fromBH��	!

:
������ ���"!�# �"����/&%2G"�� ����5�G"�� ���"�2-.G"�� ���"��# 	��8� ��� ��	 � � �' ��� %>�G�/H������� #�BH��	!�# ��5�G"�� ���"� � ��5�G"�� �H��!�!��H%�% 1

�"�G�� 	9+ � �
F��G����	 # ��5�G"�� ���"� ��� %>�1�����8A8>$) #,"�=��� � �

�"�G�� 	 ���������# �"��!��% ���� �5���5"�(�&�>$#���(�(�"�(��
� � �
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By checking the return status, the 	9+ � case puts the socket’s key
back in the held-key set in state “named”, which makes the call toF��G����	

legal. In the 	 �������� case, we have the key in the “raw”
state and can for example try another

BH��	!
operation.

2.4 Limitations of the Approach
Extending a type system to track compile-time names for resources
has two limitations to consider: resources kept in collections be-
come “anonymous;” and the types of values must agree at program
join points.

Tracking arbitrary numbers of resources. Given that
Vault uses compile-time names to track resources, how can Vault
statically track an unbounded number of resources? In previous ex-
amples, the programs dealt with fixed numbers of resources whose
keys were given names statically bound in the program’s text. A
programmer obviously cannot write down static names for an un-
known number of resources. Using anonymous tracked types gets
around this problem. For instance, we can declare the type of a list
that contains an unbounded number of tracked regions:
E �����"��	�.��*��F��G�� ?�	�� �"F  	�� ��	HG #=������ ���"!���*���"��	 ������� ���"!.��*��F��G��H%�C��
The type

��*��F��G��
allows the program to store an unbounded num-

ber of regions. However, placing a region on such a list makes it
“anonymous”–that is, we lose track of exactly which key guards
which region.

For example, the program in Figure 4 creates a region and allo-
cates a point data structure out of the region. To access this point,
its guarding key

$
must be in the held-key set. Once we put the

region in the list, we lose the key
$

. (Since keys cannot be dupli-
cated, we cannot both put the region with its key on the list and
retain the key.) We then take the same region back out of the list
by pattern matching. However, by placing the region on the list, its
key becomes “anonymous” – the type checker knows that some key
is associated with the tracked region but does not know that this key
is the same as the key

$
. Hence, incrementing


�
’s

)
field is illegal

since this requires the key
$

and instead the held-key set contains
some fresh key. (To fix the error in this program, we could use a
list of pairs of regions and points, that is a list of type
��5"
��*��*�"
�"
����� - #=������ ���"!�#�$&%(��*���"��	 � $�� 
����	�H%>�
E �����"��	�.��*�"
��F��G�� ?�	�� �"F  	�� ��	HG #=������ ���"!���*�"
�"
����� ������� ���"!.��*�"
��F��G��H%�C��
which maintains the correlation between the region’s key and the
point’s key guard.) In short, the Vault type checker can track both a
fixed number of resources whose keys have statically bound names
and an arbitrary number of resources whose keys are anonymous.

E ���!
�&���	 # %*1
������ ���"!�#�$&%,��*���"��	2���"	2-,$��*���"��	��9��������4# %>�
$�� 
����	�*
�.-(	���/ #=���"	&% 
����	�21�)-"7��=5-8�:�98:�
������ ���"!0��*��F��G�� F��G��.- 	�� ��	HG #=���"	 ��	�� �"F�%>����	�����!"�7�&
A,��)��
�
� � �
G�/H������� #9F��G��H%01

�"�G�� 	�� ��	HG #=���"	,� � ��% � ���	���FD�"�&-7�"�:;�
A,��)�@*>86�A��
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Figure 4: An illegal Vault program that illustrates the
“anonymizing” aspect of tracked collections.
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����	�*
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Figure 5: An illegal Vault program that uses data correlation
to encode a region’s availability.

The type theory behind this “anonymity” is discussed in the next
section.

Type agreement at join points. Consider the program in
Figure 5, which correlates the value of the variable


����)
and the

region
���"	

’s deletion status. Although this program is, in fact,
memory-safe, the Vault type checker will reject it. At the com-
mented join point, the held-key set either does or does not contain
the key

$
, depending on which branch is taken. As a result, the

type checker cannot know whether the precondition for the subse-
quent call to

$��*���"��	���!�F"�"��
is satisfied. The limitation that types

must agree at program join points is a common limitation of the
type checking approach to program verification. In order to make
the example acceptable to Vault, the corelation between the sign of
����)

and whether or not we hold key
$

needs to be made explicit
using a keyed variant, similarly to the example in Section 2.1. In-
stead of correlating the two tests with the condition on


����)
, the

second branch would switch on a variant initialized in the branches
of the first test.

3. VAULT’S TYPE SYSTEM

Vault’s type system is based on the Capability Calculus [3] and alias
types [15, 20]. The language’s complete typing rules are lengthy.
Here we only sketch how tracked types and type guards are repre-
sented in the underlying type language and the overall structure of
the type checker. Because Vault’s typing rules are very similar to
the Capability Calculus, we rely on their soundness proof to ensure
the soundness of Vault’s type checking.

The type checker’s job is to translate the Vault surface syntax



kinds ��� � � �����
	����	��
���	�����	�������������	

variables ��� � ��� �"!#�%$��'&
contexts ()� � �+* � (��%���,� � (
key set -+� � �.$ key set variable��/

empty key set� O10�243%5768:9�P
key mapping� - �<; - � key set union

key
0 � � �=! key token

state
3%5 � � ��& state variable� &4> 3%?#@BADC

bounded variable� 3%?#@BADC
state token�FE
default state

existentials
9 � � �HG�I ( � -KJ � 9 existential type�ML

types
L � � �ON�I (�J � L universal type� -QP L guarded type�SR

named type�MT1U 0�V
singleton type�XWYL

� � ����� � L1Z�[ tuple type� � type variable�XU -\� 9<V�8 U -\]^� 9 ] V function type� I�_ �
U 9

�
V, *�*�*  _ Z�U 9 Z V J variant type

Figure 6: Underlying type language

types to the internal type language in Figure 6 and to assign internal
types to the program’s terms (statements and expressions). We dis-
cuss the roles that these various types play below. Part of the type
checking is standard: for each lexical scope, the type checker keeps
an environment that maps program names to types, keys, etc., and
checks inductively that each program term is applied to subterms
of the correct type.

In addition, the type checker ensures that no type guards are vi-
olated. To do this, the type checker forms a control flow graph for
each function and computes the held-key set before and after each
node in the graph. The held-key set before the function’s entry
node is the precondition key set from the function’s effect clause.
The type checker ensures that the held-key set at each of the func-
tion’s exit nodes is the postcondition key set from the function’s
effect clause.

On control-flow join points, we abstract over the actual names of
local keys in incoming key sets so as to analyze the remainder of
the control-flow graph only for distinct alias relationships of local
variables. Imperative loops may require declared loop invariants,
unless the invariant can be inferred in a fixed number of iterations.
Loop invariants take the form of a function type with multiple out-
comes, one for each possible loop exit. Inputs to the function are
the variables that are used within the loop. For all of the loops in
our device driver case study, the type checker automatically infers
the loop invariants, since they are trivial.

3.1 Tracking aliases
The key to ensuring that a program does not reference a resource
after that resource has been released is to keep track of the various

names by which the program refers to the resource. Without track-
ing aliases, a program could delete a resource through one name
and then reference it through another. In Vault, a key8 serves as a
unique name for a resource; the type checker uses the same key to
refer to the resource, no matter how many aliases for this resource
the program’s text contains.

A type
������ ���"!.'

in the surface syntax, which gives rise to a
key, is translated to a singleton type

T`U 0�V
in the internal type lan-

guage. Such a singleton type represents the run-time value (handle)
used to manipulate the unique resource whose key is

0
. Every alias

for the resource in the program text is given the same singleton typeT1U 0�V
. Hence, given the pair of assignments

������ ���"!.��*���"��	2���"	 � -,$��*���"��	��9��������4# %>�
������ ���"!.��*���"��	2���"	,�*-(���"	 � �
Both the variables

���"	 �
and

���"	,�
are assigned the same singleton

type
T1U 0�V

for some fresh
0
. Calling

$��*���"��	���!�F"�"��
on either

���"	 �
or

���"	,�
deletes the key

0
from the held-key set, which prevents the

region from being referenced under either name after the deletion.
Another important aspect of tracking aliases is ensuring that keys

are never duplicated. For instance, if the type system were to allow
a region’s key to end up twice in the held-key set, then a program
that deletes the region twice would type check correctly, but would
cause an error at run time.

3.2 Functions
Whereas Vault’s surface syntax for functions combines a function’s
pre- and postcondition into a single effect clause, the internal func-
tion type

U -\� 9<V78 U -\]a� 9 ] V separates them into the key set - that
must be held to call the function and the key set -�] that is held
after the function returns. Functions in Vault are always polymor-
phic. First a function is polymorphic in the keys of its arguments.
For example, the function signature
E ���! < �"F��G��4#=������ ���"!�#=�H%*�������&% ? @���C��

can be called on any tracked file, regardless of its particular key.
Second, since the state of key

�
is omitted here, the function is

polymorphic in the state & of
�
. Third, a function affects only those

keys mentioned in its signature; other keys in the held-key set are
irrelevant. To make a Vault function callable from many different
contexts, we make its type polymorphic over the “rest” of the held-
key set not mentioned in the function’s signature. Given these three
forms of polymorphism, the function < �"F��G�� above is assigned the
type
Nb!�c � N#& � N�$ � U $ ; O !�c 2 & 68 �������'P � T`U !�c V'V
8 U $�� E ���!dV .
The variable $ refers to the “rest” of the held-key set that the func-
tion does not affect, the variable !bc refers to key

�
, and the variable

& refers to the state of that key. This function can be called on any
value of type

T1U ! V at any program point whose held-key set includes
some key ! associated with type

�������
.

3.3 Existential types
Existential types are useful for encoding that certain values carry
capabilities with them. The existential type G�I ( � -KJ � L represents
a value of type

L
, holding on to capabilities - . The existentially

bound variables ( provide a way to abstract the actual names used
for keys, states, and types in - and

L
. For instance, consider a

function whose signature is
������ ���"!.��*���"��	���������4# %>�

Calling this function returns a tracked region, that is, it returns bothe
In the Capability Calculus, a key is called a resource and a key set

is called a capability.



a new resource and the key needed to access that resource. This
function is assigned the type
N�$ � U $�� E ���!�V78 U $�� G�I 0 � �	�� � O10�2 E 68 ��*���"��	'P J � T1U 0�V'V .
The returned existential type binds together both the new region
(the singleton type) and the key needed to access that region.

To access a value of an existential type, the type must first be un-
packed. Unpacking means creating fresh names for the existentially
bound variables and acquiring the capability carried by the value.
Clearly, since unpacking yields a capability, values of existential
types cannot be freely copied by a program, for otherwise capabil-
ities could be duplicated. To control the duplication of existential
types which carry capabilities, we maintain the invariant that envi-
ronments map program variables to unpacked types

L
only. Thus,

existential types must be unpacked before they are bound in the
environment. For example, function parameters are unpacked on
entry to a function.

Existential types are the basis for keeping “anonymous” tracked
resources in collections. For instance, the type

��*��F��G��
in the pre-

vious section has the following type in the internal type language:

I � ( ���  � -����
	 U G�I ! � � �	�� �"! � � �	�� �O ! �
2 E 68 ��*���"��	'P ; O ! �

2 E 68 ��*��F��G���P J �WYT1U ! �
V � T1U ! �

V [ V J
Each element in this list is of existential type. To use an element
from this list, it must first be unpacked, which generates a fresh
name for the existentially bound key. This is the technical sense in
which these keys are “anonymous.”

Our use of existential types is related to the unique types of the
programming language Concurrent Clean. In Clean, a unique type
is written

L��
. Its equivalent Vault type is G�I ! � �	�� � O ! 2 E 68

L P J � T1U ! V , i.e., an anonymous tracked type. However, Clean does
not support named tracked types and is thus unable to express alias
relationships.

4. CASE STUDY: WINDOWS 2000 DRIVERS

Device drivers pose an important reliability risk to operating sys-
tems, since drivers generally execute in the kernel’s protected
mode. Because a device driver is used in many different machine
configurations and sits within a multithreaded kernel, reproducing
erroneous behavior in a driver is very difficult. Hence, testing has
not proven to be a good way to achieve high reliability in drivers. In
this section, we describe how Vault’s type checker catches at com-
pile time many of the errors that are difficult to reproduce at run
time.

What is the difficulty in writing a correct device driver? Typi-
cally, the company that manufactures a device also provides the de-
vice driver for it. Because the developer creating the device driver
is very familiar with the device itself, the interface between the
driver and the hardware, though complex, is not often the source of
errors. Instead, faults often lie in the interface between the device
driver and the kernel. This interface is quite complex, in part due
to the variety of devices that interact with the kernel and in part due
to the need for good performance.

One source of complexity in the interface between the kernel and
a driver is its asynchronous nature. A driver provides a collection
of services to the kernel, like starting the device, reading from the
device, writing to the device, and shutting down the device. The
driver is implemented as a module with one function per service.
However, the lifetime of a request to the driver is not the same as the
lifetime of a call to the corresponding service function. To keep the
kernel from blocking on a driver request, a driver’s service function
is expected to return quickly, regardless of whether the driver has

completed the request.
To achieve the desired asynchronous interface in Windows 2000,

each request is encapsulated in a data structure, called an I/O Re-
quest Packet (IRP). The kernel passes this data structure to the
driver when it calls one of its service functions, and the driver
handles the request by updating this data structure over time.
Whenever the driver completes a request, it calls the function�"� � ����
�F"�"���$���"����G�� on the IRP to signal the completion to the
kernel and to return the IRP.

As a further complication, a driver does not work in isolation, but
instead sits within a driver stack. For example, in between the ker-
nel and a floppy disk drive would typically sit the following drivers,
in order: a file system driver; a driver for a generic storage device;
a floppy disk driver; and a bus driver. Each driver in the stack may
choose to handle a request itself, to pass the request down to the
next driver in the stack, or to pass a new request (or set of requests)
down to the next driver in the stack.

Finally, as part of the kernel, a device driver must deal with the
contingencies of kernel-level programming. For instance, at any
given moment, the processor can be at one of several interrupt lev-
els. The processor’s current interrupt level governs both which ker-
nel functions can be called and what memory is available. The
kernel’s memory space is divided into those pages that the virtual
memory system manages and those that are locked down and there-
fore always accessible. A pointer to a block of paged memory can
only be accessed if the particular page is known to be resident or
if the current interrupt level is such that the virtual memory sys-
tem can handle a page fault to make the page resident. If a driver
dereferences a pointer to a non-resident paged block when the in-
terrupt level prevents the the virtual memory system from running,
the entire operating system deadlocks.

This section shows how each of these aspects of device drivers
can be described in Vault. To test our ideas, we wrote a Vault de-
scription of the interface between the Windows 2000 kernel and a
device driver. We then translated an existing driver for a floppy
disk device from C (4900 lines) into Vault (5200 lines).9 This Vault
driver uses the Vault interface to interact with the kernel and is
therefore subject to the checking we describe in this section. We
then used the Vault compiler to compile the driver’s source code
into C. In some cases we chose to deviate from the original kernel
interface, for example, by choosing to represent a status code with
a variant rather than an integer in order to allow static checking.
As such, our driver could not be directly linked against the origi-
nal kernel. Instead, we wrote a thin wrapper in C to make up for
these differences in data representation. The driver linked with the
wrapper runs successfully under Windows 2000, although it is not
of production quality due to incomplete modeling of memory allo-
cations and deallocations. We also have not run any performance
measurements on the resulting code.

4.1 I/O Requests Packets
The Windows 2000 documentation describes an “ownership”
model for the I/O Request Packets (IRPs). Initially, the IRP “be-
longs” to the kernel. When the kernel calls a driver’s service func-
tion, it gives ownership of the IRP to the driver. The driver can
then take one of three actions: it can complete the request by
calling

�"� � ����
�F"�"���$���"����G�� , which gives ownership of the IRP
back to the kernel; it can call

�"� � ��F�F � ��� E �"� to pass ownership
of the IRP down to the next driver in the stack; or it can call
�
So far, we have not concentrated on keeping Vault as syntacti-

cally close as possible to C. Hence these numbers do not reflect
an inherent blow-up in using Vault’s type system. Evaluating the
programming burden of Vault’s annotations is future work.



�"���������&���"
�����	!���	8�
to retain ownership of the IRP after the call

to the service function. A driver may only legally access an IRP
when it has ownership of it.

This IRP ownership model corresponds naturally to tracked
types. In Vault, a typical driver service routine is given the fol-
lowing signature:

�,� ' ��' ��� ��"A*$����!�# � ���H� � � +���� � � ' � ������ ���"!�# �%.��$��&% ? @��C��

The signature states that a service routine obtains the ownership
of the parameter IRP and does not pass the ownership back to the
caller. Furthermore, the service routine must return a value of type
�,� ' ��' ��� ��"A , which we use to enforce that one of the three possible
functions mentioned above are called:

�,� ' ��' ��� ��"A�"� � ����
�F"�"���$���"����G���#=������ ���"!�# �%���$�� � � ' � ' ��' ��� % ? @��C��
�,� ' ��' ��� ��"A�"� � ��F�F � ��� E �"��# � ���H� � � +���� � � ' � ������ ���"!�# �%.��$��&% ? @��C��
�,� ' ��' ��� ��"A�"���������&���"
�����	!���	8��#=������ ���"!�# �%���$��&% ? ��C��

Since we keep the type �,� ' ��' ��� ��"A abstract from the service rou-
tine, and since the type of the return status is parameterized by the
key

�
of the IRP request, the only way a service routine can gen-

erate a �,� ' ��' ��� ��"A value is by calling one of the above functions
in the context of that particular invocation. This avoids the com-
mon error that some drivers exhibit code paths on which IRPs are
neither completed, passed on, nor pended.

We leave it up to the driver to manage queues of pending IRP
requests, thus

�"���������&���"
�����	!���	8�
does not consume the IRP key.

A driver consumes the key by storing the IRP on a pending list,
thus anonymizing and packaging the key with the IRP.

4.2 Thread Coordination
The Windows 2000 kernel provides several thread coordination
mechanisms, one of which is events. An event allows one thread
to block until another thread takes some action. Our Vault descrip-
tion of events can be used to pass a key from one thread to another,
thereby coordinating access to whatever data that key protects:
��5"
��(������� � '������"5.��A:�
������� � '�����A*������	���"��F������ E ��	������5"
�� '�A:#=������ ���"!�#��&%('H% ? �C��E ���!*��� � �$�"	���F�� E ��	��#�������� � '�����A�% ? @��C��E ���!*���	������"� E ��	��#�������� � '�����A�% ?�D �C��

The initialization function takes a tracked object whose key is to be
transferred from one thread to another. In a multithreaded program,
there is one key set per thread. To pass the key between threads, the
first thread calls

���	������"� E ��	� and blocks until the second thread
calls

��� � �$�"	���F�� E ��	� . After the call to
��� � �$�"	���F�� E ��	� , the sec-

ond thread no longer has the key in its held-key set, while the first
thread unblocks and gains the key in its held-key set. As is typical
of Windows 2000 drivers, the floppy driver uses this event mecha-
nism to pass IRP ownership from one driver to another, as described
in the next section.

We can similarly describe kernel spin locks in Vault:
��5"
��(� � �H� � ��� +�� �,�����"52��A:�
� � �H� � ��� +�� �,����A������	H�����"��F���� � 
H��	����� ������5"
���'�A:#=������ ���"!�#��&%('H% ? @��C��E ���!*������� "�H���� � 
H��	����� ��#�� � �H� � ��� +�� �,����A�% ?�D �C��E ���!*����$��F"��G�� � 
H��	����� ��#�� � �H� � ��� +�� �,����A�% ? @��C��

This interface protects against common locking errors. First, once
a lock has been created on a tracked data object, the only way to ac-
cess the object is first to acquire the lock. Second, in the same way

that Vault can detect memory leaks (by finding keys in a function’s
final held-key set that were not promised in its signature’s post key
set), Vault can similarly detect missing lock releases. Third, since
a key cannot appear in the held-key set multiple times, Vault will
detect when a program acquires a lock that it already holds, since
the second acquire will introduce a key into the held-key set that
is already present. This approach however is inadequate to model
reentrant locks.

4.3 I/O Request Completion Routines
As mentioned earlier, when a driver passes an IRP down to the next
driver in the stack (by calling

�"� � ��F�F � ��� E �"� ), it loses ownership
of the IRP. However, a driver often needs first to pass an IRP to
the next lower driver and then to regain ownership of the IRP after
the lower driver has completed it. To do this, a driver attaches a
completion routine to the IRP, which is a function that is called on
the IRP when the lower driver completes it. If a driver’s comple-
tion routine returns a status of “more processing required” then the
driver once again gains ownership of the IRP.

We describe completion routines in Vault with the following def-
initions:
E �����"��	� �+ �������'�� +$� $�� � � �'������"5��"A ?
	 ������	��������G�G���	8�"$���"�H����"! 
	 ����	H��G����"!�# � ' � ' ��' ��� %.1�"8(C��

��5"
�� �+ �������'�� +$� $ + � '�� � �,�����"50��A*-
������ ���"! �+ �������'�� +$� $�� � � �'�����A($��������	��4#
� ���H� � � +���� � � ' � ������ ���"!�#��&%.��$��&% ? @��C��

E ���! �"� � �"� � ����
�F"�"���"��	�$��������	��4#������ ���"!�# �%0��$�� � �+ �������'�� +$� $ + � '�� � �,��"A�%>�
The function

�"� � �"� � ����
�F"�"���"��	�$��������	�� sets an IRP’s comple-
tion routine, which is a function that takes a device object and a
tracked IRP and consumes the IRP’s key.

The code in Figure 7 shows shows a common idiom for regain-
ing ownership of an IRP after it is passed to a lower driver. The
code uses a completion routine to learn when the lower driver has
finished and an event to resume processing where it left off before
calling the lower driver.

The figure shows a service function for a “plug and play” re-
quest, like a request to shut down the device. The function first de-
clares an event,

���"
H��G � �� � , which is parameterized by the IRP’s
key, and declares the local function

$��*�����	H���"

. The function��	�
�$���"����G��

then sets the IRP’s completion routine to the func-
tion

$��*�����	H���"

and passes the IRP down to the next driver with

a call to
�"� � ��F�F � ��� E �"� . After this call, ownership of the IRP

has been passed to the next driver, which is reflected in the fact
that the key

�
is no longer in the held-key set. The function

then waits for the event
���"
H��G � �� � . When the lower driver com-

pletes the IRP, the kernel owns the IRP until it calls the com-
pletion routine

$��*�����	H���"

. The completion routine in turn sig-

nals the event
���"
H��G � �� � , thereby passing ownership back to the��	�
�$���"����G��
function. The completion routine returns the sta-

tus 	 ������	��������G�G���	8�"$���"�H����"! to tell the kernel that this driver
has once again accepted ownership of the IRP.10 When the call to

��

A careful reader might be concerned that the completion rou-

tine could signal that the driver owns the IRP, but then for-
get to return 	 ������	��������G�G���	8�"$���"�H����"! –a situation that would
lead to a dangling reference. This in fact cannot happen since
the only other constructor for this variant ( 	 ����	H��G����"! ) takes
the IRP’s key as a parameter, a key which is no longer in the
held-key set after the call to

��� � �$�"	���F�� E ��	� . Given the defi-
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&% ? @��C 1

������� � '���"A2���"
H��G � �� ��-(������	H�����"��F������ E ��	��# ���"
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�+ �������'�� +$� ��$�� � � �'���"A$��*�����	H���"
 # � ���H� � � +���� � � ' � � E ������� ���"!�# �%0��$������"
&% ? @��C21
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Figure 7: A driver uses an event and a completion routine to
regain ownership of an IRP after passing it to a lower driver.

���	������������"� E ��	� returns, key
�

again appears in the held key set.
The code after the call to

���	������������"� E ��	� is therefore free to ac-
cess the variable

���"

.

4.4 Interrupt Levels and Paging
To represent the processor interrupt level (or IRQL, in Windows
2000 terminology), we use two details of Vault that were previously
unmentioned. First, although keys typically arise from tracked
types, a programmer can also statically declare a key. Second, we
can optionally define a partial order over the states of a key and
constrain state variables by states. Using both these features, we
represent the current processor interrupt level as a global key

��$����
:

G��������G��"����$�� ��������� - ? �
� ��� � ��� �����������
� � � ���������+� � � � �
��' ��� ���������+� � ��$����.C��

���"5 ��$����2�2��$�� ��������� �

Given these definitions, we can describe the preconditions of var-
ious kernel functions. The function

��� � �"� ����"��������5�'*�����! re-
quires the interrupt level to be at

�
� ��� � ��� ���������
:

����$H� + $H��'��2��� � �"� ����"��������5�'*�����!�#��' � $��
� � � ����$&� + $H��'��&%
? ��$����2� �
� ��� � ��� ���������.C��

The kernel function
����$��F"��G�� � ���&��
������� is more flexible.

It requires the interrupt level to be less than or equal to
� � � �
��' ��� ���������

:
F���	8�*����$��F"��G�� � ���&��
�������4#�� � � �
� � ��+ $�� � � ��$H� + $&��'�� � F���	8�H%

? ��$����2� #9F"� E �F��"- � � � �
��' ��� ���������&%,C��

This function is polymorphic in the local state of the key
��$����

as captured by the explicit state variable
F"� E �F , which is upper-

bounded by state � � � �
��' ��� ���������
. Finally, the function

���@
��� "�H���� � 
H��	����� � is more complicated. It requires that the in-
terrupt level be less than or equal to � � � �
��' ��� ���������

on entry

nition of the variant �+ �������'�� +$� $�� � � �' , if a completion rou-
tine consumes its IRP parameter, it has no choice but to re-
turn 	 ������	��������G�G���	8�"$���"�H����"! , since no other option will type
check.

and raises the interrupt level to � � � �
��' ��� ���������
on exit. It also

returns as its result a value that represents whatever the interrupt
level was on entry. Given the definitions above and a type

�H��$����
that is parameterized by a state (which is similar to having a type
parameterized by a key), we can describe this complex behavior:
��5"
��(�H��$����,�G������� � A:�
�H��$����,��F"� E �F�A*������� "�H���� � 
H��	����� ��#�� � �H� � � +�� �&%

? ��$����2� #9F"� E �F��"- � � � �
��' ��� ���������&%*@�A
� � � �
��' ��� ���������.C��

Like the previous kernel function, this function uses bounded poly-
morphism over the local state of the key

��$����
. Further, it uses the

state variable
F"� E �F to refer to the state of key

��$����
at the call site

in order to reflect this level in the result type. Finally it uses the ar-
row notation to state that the function changes the key

��$����
’s state

from the state represented by
F"� E �F to the state � � � �
��' ��� ���������

.
The examples above thus make use of constrained state variables

of the form
G E �"-2G��

. The type checker uses the partial order
specified in

G��������G��"�
declarations to determine when such con-

straints are satisfied.
Using constrained states, we can describe types

'
in paged mem-

ory by introducing a type guard on the interrupt level.
��5"
��(
�����"!�����5"
��.'�A(- # ��$����2� #9F"� E �F��"-�� � � ���������&%�% ��'��

A value of a paged type may thus only be accessed at program
points where the interrupt request level is at or below

� � � ���������
,

ensuring that the page handler can service possible page faults. In-
ternally, a paged type


�����"!���'�A
is represented as

N�I &4� ��������	 J � O"��$����b2 U &4> � � � ����������V
68 E ���!�P P '

If a driver accesses data in paged kernel memory at an interrupt
level that prevents the virtual memory system from running, the
result is unpredictable behavior: if the data’s page happens to be
resident, then the access is fine; otherwise, the kernel deadlocks
when it tries to run the virtual memory system. Such a subtle error
is very difficult is reproduce and correct. By using the interrupt
level to guard data in paged memory, the Vault type checker finds
such errors at compile time.

5. RELATED WORK

Our work is inspired in part by the typestate approach provided in
the programming language NIL [17, 16]. In NIL, states are attached
to objects along with their types. NIL does not allow any aliasing
of objects, thus severely restricting the class of programs that can
be expressed in NIL.

The work involving the calculus of capabilities by Crary, Walker,
Smith, and Morrisett [3, 19, 15, 20] shows how to track states of
objects in the presence of aliasing. The essential improvement over
the typestate approach is to add a level of indirection between ob-
jects and their state through keys. Now the non-aliasing require-
ment is confined to keys whereas the aliasing relationships among
objects are made explicit. This work provides the theoretical basis
for Vault’s type system. Our system differs in minor details such
as using direct pre/post conditions of functions instead of continu-
ation-passing style, which leads us to infer join-point abstractions
or reanalyzing path fragments under different key sets. A more
fundamental difference introducing a number of complications is
exposing this rich type language to the programmer in an intuitive
way.

In order to allow general graph structures, objects cannot always
be tracked individually, but must be tracked as groups. The canon-



ical example of such group tracking are memory regions for safe
explicit deallocation [3, 19]. Region annotations on types are one
particular kind of predicate, stating that the named region must not
be freed in order to access the data.

A related approach to tracking individual objects is present in the
programming language Concurrent Clean [2]. Concurrent Clean
uses unique types to represent unaliased objects. Operations such
as array updates may be performed destructively on objects of
unique type even in a purely functional language, since the mod-
ification cannot be distinguished from a copy. Clean’s unique types
correspond to Vault’s anonymous tracked types, where the key re-
mains unnamed. More technically, unique types correspond to sin-
gleton types where the key is existentially bound [20].

Sagiv, Reps, and Wilhelm provide a framework for intraproce-
dural shape analysis via 3-valued logic [14]. Their framework can
express more detailed alias relations not currently expressible in
Vault, as for example a function returning a pointer to the last ele-
ment of a list, while leaving the list intact.11

At first glance, type guards are similar to type qualifiers [7].
However, type qualifiers refine the type (how the object can be
manipulated) rather than guarding the access (when the object can
be accessed). Furthermore, type qualifiers are constant and cannot
change state.

Guarded types can be viewed as a form of qualified types [9,
10] N�� � ��� L

, where the qualification quantifies over the abstract
store � . At each use, the type must be instantiable to the current
store ��� and the predicate

�
must be satisfied ����� � . However,

the framework of qualified types lacks a notion of state.
Vault shares much of the motivation with the work on Extended

Static Checking (ESC) [12]. ESC however starts with a memory
safe language (Module-3/Java) and thus precludes its use in low-
level system code such as device drivers. Furthermore, ESC takes
a pragmatic approach to aliasing, tracking aliasing correctly within
a procedure, but it does not consider all possible aliasing relation-
ships created by procedure calls [4]. ESC is based on first-order
logic with arithmetic pre and post-conditions. The presence of
specification or ghost variables allows for tracking the state of an
object, similarly to our local key states. However, this is not enough
to describe the creation and disappearance of resources as is pos-
sible with keys and key sets, since there is no object available to
attach presence information to. On the other hand, Vault’s formal-
ism is much less ambitious in terms of expressible pre and post
conditions, since it cannot for example express arithmetic relation-
ships. Thus, the techniques described here complement those of
ESC.

Flanagan et. al. propose a type system for Java to statically detect
data races [6]. In their approach, the compiler tracks held lock sets
and checks lock guards on class fields. Although similar to keys
and type guards, their system differs from ours in that lock acquire
and releases have to be syntactically scoped using a synchronize
expression. Thus, a method call cannot change the lock set. Fur-
thermore, locks are not first class values, but a restricted form of
syntactic expressions. Thus it is not possible in their system to pass
an object and a separate lock protecting that object to a method.

Like the Vault project, the SLAM project at Microsoft Research
is also focussed on using exhaustive static analysis to enforce pro-
tocols of low-level software [1]. Unlike Vault however, SLAM fo-
cusses on existing software written in C. The SLAM tools use an
iterative approach: the SLAM tools create an ever more precise ab-

� �

Walker [20] shows how to express lists with pointers to the last
element explicitly, but the point here is that such alias relationships
would need to be anticipated, whereas they don’t in Sagiv et. al.’s
work.

straction of the C program and use a model checker to search this
abstraction for protocol violations. This interative refinement stops
when either a violation is found, or no violation is present in the
abstration, or a limitation of the tools has been reached.

In the context of the Metal project, Engler et. al. use programmer
written compiler extensions to check properties of code at compile
time [5]. The properties their system is able to check are similar to
the ones described here, e.g., proper matching of lock acquire and
release. In contrast to Vault, the Metal approach relies on syntacti-
cally recognizing state transitions, such as lock acquire and release,
by matching against the names of specific functions. While suffi-
cient for checking stylized properties such as acquiring and releas-
ing a lock within the same function, the approach would require
annotations similar to the ones proposed here to check invariants
that are established inter-procedurally.

6. CONCLUSIONS AND FUTURE WORK

Our case study on Windows 2000 drivers gives us an initial confi-
dence that the resource management features of Vault are sufficient
to model “real world” interfaces. Nevertheless, we need to continue
validating these features in other domains, like graphic interfaces
and other parts of the kernel interface.

Providing resource management features in a new language
rather than an existing one allows us to design the language to make
type checking tractable. The downside of a new language is the in-
vestment in existing languages, both in terms of legacy code and in
terms of training. We hope that by basing our syntax on the popular
language C, we can leverage some of the training cost. Wrapping
Vault interfaces around existing C code allows that legacy code to
be reused. However, the wrapper code can be a new source of er-
rors, and we are looking into tool support in this area as well. We
are also considering adding keys to the new language C 	 currently
being deployed within Microsoft.

Finally, the device driver, while complex, is only a single compi-
lation unit. To ensure that Vault’s typing rules are not so restrictive
as to prevent useful programs, we are writing a front-end for Vault
in Vault. This system is a multi-stage pipeline where each stage’s
results are stored in its own region. This experience will allow us to
evaluate the burden of Vault’s annotations and typing restrictions.
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