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Abstract

Proof-carrying code is a framework for the mechani-
cal verification of safety properties of machine language
programs, but the problem arises ofquis custodiat ip-
sos custodes—who will verify the verifier itself? Founda-
tional proof-carrying code is verification from the small-
est possible set of axioms, using the simplest possible ver-
ifier and the smallest possible runtime system. I will de-
scribe many of the mathematical and engineering prob-
lems to be solved in the construction of a foundational
proof-carrying code system.

1 Introduction

When you obtain a piece of software – a shrink-
wrapped application, a browser plugin, an applet, an OS
kernel extension – you might like to ascertain that it’s safe
to execute: it accesses only its own memory and respects
the private variables of the API to which it’s linked. In a
Java system, for example, the byte-code verifier can make
such a guarantee, but only if there’s no bug in the verifier
itself, or in the just-in-time compiler, or the garbage col-
lector, or other parts of the Java virtual machine (JVM).

If a compiler can produce Typed Assembly Language
(TAL) [14], then just by type-checking the low-level rep-
resentation of the program we can guarantee safety – but
only if there’s no bug in the typing rules, or in the type-
checker, or in the assembler that translates TAL to ma-
chine language. Fortunately, these components are signif-
icantly smaller and simpler than a Java JIT and JVM.

Proof-carrying code (PCC) [15] constructs and verifies
a mathematical proof about the machine-language pro-
gram itself, and this guarantees safety – but only if there’s
no bug in the verification-condition generator, or in the
logical axioms, or the typing rules, or the proof-checker.
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What is the minimum possible size of the components
that must be trusted in a PCC system? This is like ask-
ing, what is the minimum set of axioms necessary to
prove a particular theorem? A foundational proof is one
from just the foundations of mathematical logic, without
additional axioms and assumptions; foundational proof-
carrying code is PCC with trusted components an order
of magnitude smaller than previous PCC systems.

Conventional proof-carrying code. Necula [15]
showed how to specify and verify safety properties of
machine-language programs to ensure that an untrusted
program does no harm – does not access unauthorized
resources, read private data, or overwrite valuable data.
The provider of a PCC program must provide both the
executable code and a machine-checkable proof that
this code does not violate the safety policy of the host
computer. The host computer does not run the given code
until it has verified the given proof that the code is safe.

In most current approaches to PCC and TAL [15, 14],
the machine-checkable proofs are written in a logic with
a built-in understanding of a particular type system. More
formally, type constructors appear as primitives of the
logic and certain lemmas about these type constructors
are built into the verification system. The semantics of
the type constructors and the validity of the lemmas con-
cerning them are proved rigorously but without mechnical
verification by the designers of the PCC verification sys-
tem. We will call this type-specialized PCC.

A PCC system must understand not only the language
of types, but also the machine language for a particular
machine. Necula’s PCC systems [15, 7] use a verification-
condition generator (VCgen) to derive, for each program,
a verification condition– a logical formula that if true
guarantees the safety of the program. The code producer
must prove, and the code consumer must check the proof
of, the verification condition. (Both producer and con-
sumer independently run the VCgen to derive the right
formula for the given program.)

The VCgen is a fairly large program (23,000 lines of C
in the Cedilla Systems implementation [7]) that examines



the machine instructions of the program, expands the sub-
stitutions of its machine-code Hoare logic, examines the
formal parameter declarations to derive function precon-
ditions, and examines result declarations to derive post-
conditions. A bug in the VCgen will lead to the wrong
formula being proved and checked.

The soundness of a PCC system’s typing rules and
VCgen can, in principle, be proved as a metatheo-
rem. Human-checked proofs of type systems are almost
tractable; the appendices of Necula’s thesis [16] and Mor-
risett et al.’s paper [14] contain such proofs, if not of the
actual type systems used in PCC systems, then of their
simplified abstractions. But constructing a mechanically-
checkable correctness proof of a full VCgen would be a
daunting task.

Foundational PCC. Unlike type-specialized PCC, the
foundational PCC described by Appel and Felty [3]
avoids any commitment to a particular type system and
avoids using a VC generator. In foundational PCC the op-
erational semantics of the machine code is defined in a
logic that is suitably expressive to serve as a foundation
of mathematics. We use higher-order logic with a few ax-
ioms of arithmetic, from which it is possible to build up
most of modern mathematics. The operational semantics
of machine instructions [12] and safety policies [2] are
easily defined in higher-order logic. In foundational PCC
the code provider must give both the executable code plus
a proof in the foundational logic that the code satisfies
the consumer’s safety policy. The proof must explicitly
define, down to the foundations of mathematics, all re-
quired concepts and explicitly prove any needed proper-
ties of these concepts.

Foundational PCC has two main advantages over type-
specialized PCC — it is more flexible and more secure.
Foundational PCC is more flexible because the code pro-
ducer can “explain” a novel type system or safety argu-
ment to the code consumer. It is more secure because the
trusted base can be smaller: its trusted base consists only
of the foundational verification system together with the
definition of the machine instruction semantics and the
safety policy. A verification system for higher-order logic
can be made quite small [10, 17].

In our research project at Princeton University (with
the help of many colleages elsewhere) we are building
a foundational PCC system, so that we can specify and
automatically prove and check the safety of machine-
language programs. In this paper I will explain the com-
ponents of the system.

2 Choice of logic and framework

To do machine-checked proofs, one must first choose
a logic and a logical framework in which to manipulate
the logic. The logic that we use is Church’s higher-order
logic with axioms for arithmetic; we represent our logic,
and check proofs, in the LF metalogic [10] implemented
in the Twelf logical framework [18]. We have chosen LF
because it naturally produces proof objects that we can
send to a “consumer.”

The Twelf system allows us to specify constructors of
our object logic. Our object logic has typestp ; its prim-
itive types are propositionso and numbersnum; there is
anarrow constructor to build function types, andpair
to build tuples. For any object-logic typeT, object-logic
expressions of that type have metalogical typetm T. Fi-
nally, for any formulaA we can talk about proofs ofA,
which belong to the metalogical typepf( A) .

tp : type.
tm : tp -> type.
o: tp. num: tp.
arrow: tp -> tp -> tp.

%infix right 14 arrow.
pair: tp -> tp -> tp.
pf : tm o -> type.

We have object-logic constructorslam (to construct
functions),@(to apply a function to an argument, written
infix), imp (logical implication), andforall (universal
quantification):

lam: (tm T1 -> tm T2) -> tm (T1 arrow T2).
@ : tm (T1 arrow T2) -> tm T1 -> tm T2.

%infix left 20 @.
imp : tm o -> tm o -> tm o.

%infix right 10 imp.
forall : (tm T -> tm o) -> tm o.

The trick of usinglam and@to coerce between met-
alogical functionstm T1 -> tm T2 and object-logic
functionstm (T1 arrow T2) is described by Harper,
Honsell, and Plotkin [10]. We need object-logic functions
so that we can quantify over them usingforall ; that is,
the type ofF in forall [F] predicate (F) must
betm T for someT such asnum arrow num , but can-
not betm T1 -> tm T2 .

We have introduction and elimination rules for these
constructors (rules for pairing omitted here):

beta_e: {P: tm T -> tm o}
pf(P (lam F @ X)) -> pf(P (F X)).

beta_i: {P: tm T -> tm o}
pf(P (F X)) -> pf(P (lam F @ X)).

imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.
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forall_i:
({X:tm T}pf(A X)) -> pf(forall A).

forall_e:
pf(forall A) -> {X:tm T}pf(A X).

not_not_e: pf ((B imp forall [A] A)
imp forall [A] A)

-> pf B.

Our proofs don’t need extensionality or the general axiom
of choice.

Once we have defined the constructors of the logic,
we can define lemmas and new operators as definitions
in Twelf:

and : tm o -> tm o -> tm o =
[A][B]
forall [C] (A imp B imp C) imp C.

%infix right 12 and.

and_i : pf A -> pf B -> pf (A and B) =
[p1: pf A][p2: pf B]
forall_i [c: tm o]
imp_i [p3] imp_e (imp_e p3 p1) p2.

and_e1 : pf (A and B) -> pf A =
[p1: pf (A and B)]
imp_e (forall_e p1 A)
(imp_i [p2: pf A] imp_i [p3: pf B] p2).

Of course, the defined lemmas are checked by machine
(the Twelf type checker), and need not be trusted in the
same way that the core inference rules are. Our interactive
tutorial [1] provides an informal introduction to our object
logic.

3 Specifying machine instructions

We start by modeling a specific von Neumann ma-
chine, such as the Sparc or the Pentium. A machine state
comprises aregister bankand amemory, each of which
is a function from integers (addresses) to integers (con-
tents). Every register of the instruction-set architecture
(ISA) must be assigned a number in the register bank: the
general registers, the floating-point registers, the condi-
tion codes, and the program counter. Where the ISA does
not specify a number (such as for the PC) we use an arbi-
trary index:

r
0: r0
1: r1

...
31: r31
32: fp0

...
63: fp31
64: cc
65: PC

unused
...

m
0:
1:
2:

...

A single step of the machine is the execution of one in-
struction. We can specify instruction execution by giving
a step relation(r,m) 7→ (r ′,m′) that describes the relation
between the prior state(r,m) and the state(r ′,m′) of the
machine after execution.

For example, to describe the instructionr1← r2 + r3

we might start by writing,

(r,m) 7→ (r ′,m′) ≡
r ′(1) = r(2)+ r(3)∧ (∀x 6= 1. r ′(x) = r(x))∧m′ = m

In fact, we can define add(i, j,k) as this predicate on
four arguments(r,m, r ′,m′):

add(i, j,k) =
λr,m, r ′,m′. r ′(i) = r( j)+ r(k)

∧ (∀x 6= i. r ′(x) = r(x))
∧m′ = m

Similarly, we can define the instructionri ←m[r j + c]
as

load(i, j,c) =
λr,m, r ′,m′. r ′(i) = m(r( j)+ c)

∧ (∀x 6= i. r ′(x) = r(x)) ∧ m′ = m

But we must also take account of instruction fetch and
decoding. Suppose, for example, that the add instruction
is encoded as a 32-bit word, containing a 6-bit field with
opcode 3 denotingadd,a 5-bit field denoting the destina-
tion registeri, and 5-bit fields denoting the source regis-
ters j,k:

3 i j k
26 21 16 5 0

The load instruction might be encoded as,
12 i j c

26 21 16 0
Then we can say that some numberw decodes to an

instructioninstr iff,
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decode(w, instr) ≡
(∃i, j,k.
0≤ i < 25 ∧ 0≤ j < 25 ∧ 0≤ k< 25 ∧
w = 3 ·226+ i ·221+ j ·216+ k ·20 ∧
instr = add(i, j,k))
∨ (∃i, j,c.

0≤ i < 25 ∧ 0≤ j < 25 ∧ 0≤ c< 216 ∧
w = 12·226+ i ·221+ j ·216+ c ·20 ∧
instr = load(i, j,sign-extend(c)))
∨ . . .

with the ellipsis denoting the many other instructions of
the machine, which must also be specified in this formula.

Neophytos Michael and I have shown [12] how to scale
this idea up to the instruction set of a real machine. Real
machines have large but semiregular instruction sets; in-
stead of a single global disjunction, the decode relation
can be factored into operands, addressing modes, and so
on. Real machines don’t use integer arithmetic, they use
modular arithmetic, which can itself be specified in our
higher-order logic. Some real machines have multiple
program counters (e.g., Sparc) or variable-length instruc-
tions (e.g., Pentium), and these can also be accommo-
dated.

Our description of the decode relation is heavily fac-
tored by higher-order predicates (this would not be pos-
sible without higher-order logic). We have specified the
execution behavior of a large subset of the Sparc archi-
tecture (without register windows or floating-point). For
PCC, it is sufficient to specify a subset of the machine ar-
chitecture; any unspecified instruction will be treated by
the safety policy as illegal, which may be inconvenient for
compilers that want to generate that instruction, but which
cannot compromise safety.

Our Sparc specification has two components, a “syn-
tactic” part (the decode relation) and a semantic part (the
definitions ofadd, load,etc.). The syntactic part is de-
rived from a 151-line specification written in the SLED
language of the New Jersey Machine-Code Toolkit [19];
our translator expands this to 1035 lines of higher-order
logic, as represented in Twelf; but we believe that a more
concise and readable translation would produce only 500–
600 lines. The semantic part is about 600 lines of logic,
including the definition of modular arithmetic.

4 Specifying safety

Our step relation(r,m) 7→ (r ′,m′) is deliberately par-
tial; some states have no successor state. In these states

the program counterr(PC) points to an illegal instruction.
Now we will proceed to make it even more partial, by
defining as illegal those instructions that violate our safety
policy.

For example, suppose we wish to specify a safety pol-
icy that “only readableaddresses will be loaded,” where
the predicatereadable is given some suitable definion
such as

readable(x) = 0≤ x< 1000

(see Appel and Felten [2] for descriptions of security poli-
cies that are more interesting than this one).

We can add a new conjunct to the semantics of theload
instruction,

load(i, j,c) =
λr,m, r ′,m′. r ′(i) = m(r( j)+ c)

∧ readable(r( j)+ c)
∧ (∀x 6= i. r ′(x) = r(x)) ∧ m′ = m.

Now, in a machine state where the program counter points
to a load instruction that violates the safety policy, our
step relation7→ does not relate this state to any succes-
sor state (even though the real machine “knows how” to
execute it).

Using this partial step relation, we can define safety; a
given state is safe if, for any state reachable in the Kleene
closure of the step relation, there is a successor state:

safe-state(r,m) =
∀r ′,m′. (r,m 7→∗ r ′,m′) ⇒ ∃r ′′,m′′. r ′,m′ 7→ r ′′,m′′

A program is just a sequence of integers (representing
machine instructions); we say that a programp is loaded
at a locationstart in memorym if

loaded(p,m,start) = ∀i ∈ dom(p). m(i + start) = p(i)

Finally (assuming that programs are written in
position-independent code), a program issafeif, no mat-
ter where we load it in memory, we get a safe state:

safe(p) =
∀r,m,start. loaded(p,m,start) ∧ r(PC) = start ⇒

safe-state(r,m)

The important thing to notice about this formulation is
thatthere is no verification-condition generator. The syn-
tax and semantics of machine instructions, implicit in a
VCgen, have been made explicit – and much more con-
cise – in the step relation. But the Hoare logic of machine
instructions and typing rules for function parameters, also
implicit in a VCgen, must now be proved as lemmas –
about which more later.
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5 Proving safety

In a sufficiently expressive logic, as we all know, prov-
ing theorems can be a great deal more difficult than
merely stating them – and higher-order logic is certainly
expressive. For guidance in proving safety of machine-
language programs we should not particularly look to pre-
vious work in formal verification of program correctness.
Instead, we should think more of type checking: auto-
matic proofs of decidable safety properties of programs.

The key advances that makes it possible to generate
proofs automatically aretyped intermediate languages
[11] and typed assembly language[14]. Whereas con-
ventional compilers type-check the source program, then
throw away the types (using the lambda-calculus principle
of erasure) and then transform the program through pro-
gressively lower-level intermediate representations until
they reach assembly language and then machine lan-
guage, a type-preserving compiler uses typed intermedi-
ate languages at each level. If the program type-checks
at a low level, then it is safe, regardless of whether the
previous (higher-level) compiler phases might be buggy
on some inputs. As the program is analyzed into smaller
pieces at the lower levels, the type systems become pro-
gressively more complex, but the type theory of the
1990’s is up to the job of engineering the type systems.

    source code

Compiler
Front-end

IR (or byte codes)

Optimizer

lower-level IR

Code
Generator

assembly-level IR

native machine code

Register
Allocator

type-
check

     source code

Compiler
Front-end

IR (or byte codes)
Type-preserving

Optimizer

typed lower-level IR

Type-preserving
Code Generator

typed assembly lang.

proof-carrying 
native machine code

Type-preserving
Reg. Allocator

type-
check

type-
check

type-
check

proof
check

Type-preserving CompilerConventional Compiler

TAL was originally designed to be used in a certify-
ing compiler, but one that certifies the assembly code and
uses a trusted assembler to translate to machine code. But
we can use TAL to help generate proofs in a PCC system
that directly verifies the machine code. In such a system,
the proofs are typically by induction, with induction hy-
potheses such as, “whenever the program-counter reaches
locationl , the register 3 will be a pointer to a pair of in-
tegers.” These local invariants can be generated from the
TAL formulation of the program, but in a PCC system
they can be checked in machine code without needing to

trust the assembler.

Typing rules for machine language. In important in-
sight in the development of PCC is that one can write
type-inference rules for machine language and machine
states. For example, Necula [15] used rules such as

m ` x : τ1× τ2

m ` m(x) : τ1 ∧m(x+ 1) : τ2

meaning that ifx has typeτ1×τ2 in memorym– meaning
that it is a pointer to a boxed pair – then the contents of
locationx will have typeτ1 and the contents of location
x+ 1 will have typeτ2.

Proofs of safety in PCC use the local induction hy-
potheses at each point in the program to prove that the
program is typable. This implies, by a type-soundness ar-
gument, that the program is therefore safe.

If the type system is given by syntactic inference rules,
the proof of type soundness is typically done by syntac-
tic subject reduction – one proves that each step of com-
putation preserves typability and that typable states are
safe. The proof involves structural induction over typing
derivations. In conventional PCC, this proof is done in the
metatheory, by humans.

In foundational PCC we wish to include the type-
soundness proof inside the proof that is transmitted to
the code consumer because (1) it’s more secure to avoid
reliance on human-checked proofs and (2) that way we
avoid restricting the protocol to a single type system. But
in order to do a foundational subject-reduction theorem,
we would need to build up the mathematical machinery to
manipulate typing derivations as syntactic objects, all rep-
resented inside our logic using foundational mathematical
concepts – sets, pairs, and functions. We would need to
do case analyses over the different ways that a given type
judgement might be derived. While this can all be done,
we take a different approach to proving that typability im-
plies safety.

We take a semantic approach. In a semantic proof one
assigns a meaning (a semantic truth value) to type judge-
ments. One then proves that if a type judgement is true
then the typed machine state is safe. One further proves
that the type inference rules are sound, i.e., if the premises
are true then the conclusion is true. This ensures that
derivable type judgements are true and hence typable ma-
chine states are safe.

The semantic approach avoids formalizing syntactic
type expressions. Instead, one formalizes a type as a set
of semantic values. One defines the operator× as a func-
tion taking two sets as arguments and returning a set. The
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above type inference rule for pair projection can then be
replaced by the following semantic lemma in the founda-
tional proof:

|=x :m τ1× τ2

|=m(x) :m τ1 ∧m(x+ 1) :m τ2

Although the two forms of the application type-
inference rule look very similar they are actually signif-
icantly different. In the second ruleτ1 andτ2 range over
semantic sets rather than type expressions. The relation
|= in the second version is defined directly in terms of a
semantics for assertions of the formx :m τ. The second
“rule” is actually a lemma to be proved while the first rule
is simply a part of the definition of the syntactic relation
`. For the purposes of foundational PCC, we view the se-
mantic proofs as preferable to syntactic subject-reduction
proofs because they lead to shorter and more manageable
foundational proofs. The semantic approach avoids the
need for any formalization of type expressions and avoids
the formalization of proofs or derivations of type judge-
ments involving type expressions.

5.1 Semantic models of types

Building semantic models for type systems is inter-
esting and nontrivial. In a first attempt, Amy Felty and
I [3] were able to model a pure-functional (immutable
datatypes) call-by-value language with records, address
arithmetic, polymorphism and abstract types, union and
intersection types, continuations and function pointers,
and covariant recursive types.

Our simplest semantics is set-theoretic: a type is a set
of values. But what is a value? It is not a syntactic con-
struct, as in lambda-calculus; on a von Neumann machine
we wish to use a more natural representation of values that
corresponds to the way procedures and data structures are
represented in practice. This way, our type theory can
match reality without a layer of simulation in between.
We can represent a value as a pair(m,x), wherem is a
memory andx is an integer (typically representing an ad-
dress).

To represent a pointer data structure that occupies a
certain portion of the machine’s memory, we letx be the
root address of that structure. For example, the boxed pair
of integers〈5,7〉 represented at address 108 would be rep-
resented as the value({108 7→ 5,109 7→ 7},108).

5

7

108

mx

108 

109 

To represent a function value, we letx be the entry ad-
dress of the function; here is the functionf (x) = x+ 1,
assuming that arguments and return results are passed in
register 1:

1111

4070

r1 := r1+1

jump(r7)

200

mx

200 

201 

This model of values would be sufficient in a semantics
of statically allocated data structures, but to have dynamic
heap allocation we must be able to indicate the seta of
allocated addresses, such that any modification of mem-
ory outside the allocated set will not disturb already al-
located values. Astateis a pair(a,m), and a value is a
pair ((a,m),x) of state and root-pointer. The allocseta
is virtual: it is not directly represented at run time, but is
existentially quantified.

Limitations. In the resulting semantics [3] we could
model heap allocation, but we could not model mutable
record-fields; and though our type system could describe

datatype ’a list = nil
| :: of ’a * ’a list

we could not handle recursions where the type being de-
fined occurs in a negative (contravariant) position, as in

datatype exp = APP of exp * exp
| LAM of exp -> exp

where the boxed occurrence ofexp is a negative occur-
rence. Contravariant recursion is occasionally useful in
ML, but it is the very essence of object-oriented program-
ming, so these limitations (no mutable fields, no con-
travariant recursion) are quite restrictive.

5.2 Indexed model of recursive types

In more recent work, David McAllester and I have
shown how to make an “indexed” semantic model that can
describe contravariant recursive types [4]. Instead of say-
ing that a type is a set of values, we say that it is a set of
pairs〈k,v〉 wherek is an approximation index andv is a
value. The judgement〈k,v〉 ∈ τ means, “v approximately
has typeτ, and any program that runs for fewer thank in-
structions can’t tell the difference.” The indicesk allow
the construction of a well founded recursion, even when
modeling contravariant recursive types.

The type system works both for von Neumann ma-
chines and forλ-calculus; here I will illustrate the latter.
We define atypeas a set of pairs〈k,v〉 wherek is a non-
negative integer andv is a value and where the setτ is
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such that if〈k,v〉 ∈ τ and 0≤ j ≤ k then〈 j,v〉 ∈ τ. For
any closed expressione and typeτ we writee :k τ if e is
safe fork steps and if whenevere 7→ j v for some valuev
with j < k we have〈k− j,v〉 ∈ τ; that is,

e :k τ ≡ ∀ j∀e′. 0≤ j < k ∧ e 7→ j e′ ∧ nf(e′) ⇒
〈k− j,e′〉 ∈ τ

where nf(e′) means thate′ is a normal form — has no suc-
cessor in the call-by-value small-step evaluation relation.

We start with definitions for the sets that represent the
types:

⊥ ≡ {}
> ≡ {〈k,v〉 | k≥ 0}
int ≡ {〈k,0〉 ,〈k,1〉 , . . . | k≥ 0}

τ1×τ2 ≡ {〈k,(v1,v2)〉 | ∀ j < k. 〈 j ,v1〉 ∈ τ1 ∧ 〈 j ,v2〉 ∈ τ2}
σ→ τ ≡ {〈k,λx.e〉 | ∀ j < k∀v. 〈 j ,v〉 ∈ σ ⇒ e[v/x] : j τ}

µF ≡ {〈k,v〉 | 〈k,v〉 ∈ Fk+1(⊥)}

Next we define what is meant by a typing judgement.
Given a mappingΓ from variables to types, we write
Γ |=k e : α to mean that

∀σ.σ :k Γ ⇒ σ(e) :k α

whereσ(e) is the result of replacing the free variables ine
with their values under substitutionσ. To drop the index
k, we define

Γ |=e : α ≡ ∀k. Γ |=k e : α

Soundness theorem: It is trivial to prove from these
definitions that if |=e : α and e 7→∗ e′ then e′ is not
stuck, that is,e′ 7→ e′′.

Well founded type constructors. We define the notion
of a well founded type constructor. Here I will not give
the formal definition, but state the informal property that
if F is well founded andx : F(τ), then to extract fromx
a value of typeτ, or to applyx to a value of typeτ, must
take at least one execution step. The constructors× and
→ are well founded.

Typing rules. Proofs of theorems such as the following
are not too lengthy:

Γ |=π1(e) : τ1 Γ |= π2(e) : τ2

Γ |=e : τ1× τ2

Γ |=e : τ1× τ2

Γ |=π1(e) : τ1

Γ |=e1 : α→ β Γ |=e2 : α
Γ |=e1e2 : β

Finally, for any well founded type-constructorF , we have
equirecursive types:µF = F(µF).

Our paper [4] proves all these theorems and shows the
extension of the result to types and values on von Neu-
mann machines.

5.3 Mutable fields

Our work on mutable fields is still in a preliminary
stage. Amal Ahmed, Roberto Virga, and I are investigat-
ing the following idea. Our semantics of immutable fields
viewed a “state” as a pair(a,m) of a memorym and a set
a of allocated addresses. To allow for the update of ex-
isting values, we enhancea to become a finite map from
locations to types. The typea(l) at some locationl speci-
fies what kinds of updates at that location will preserve all
existing typing judgements. Then, as before, a type is a
predicate on states(a,m) and root-pointersx of type inte-
ger. In our object logic, we would write the types of these
logical objects as,

allocset = num
fin→ type

value = allocset×memory×num
type = num×value → o

The astute reader will notice that the metalogical type of
“type” is recursive, and in a way that has an inconsistent
cardinality: the set of types must be bigger than itself.
This problem had us stumped for over a year, but we now
have a tentative solution that replaces the type (in the al-
locset) with the G¨odel number of a type. We hope to re-
port on this result soon; we are delayed by our general
practice of machine-checking our proofs in Twelf before
submitting papers for publication, which in this case has
saved us from some embarrassment.

5.4 Typed machine language

Morrisett’s typed assembly language [14] is at too high
a level to do proof-carrying code directly. Kedar Swadi,
Gang Tan, Roberto Virga, and I have been designing
a lower-level representation, calledtyped machine lan-
guage, that will serve as the interface between compilers
and our prover. In fact, we hope that a clean enough def-
inition of this language will shift most of the work from
the prover to the compiler’s type-checker.

In order to avoid overspecializing the typed machine
language (TML) with language-specific constructs such
as records and disjoint-union variants, our TML will use
very low-level typing primitives such as union types, in-
tersection types, offset (address-arithmetic) types, and de-
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pendent types. This will make type-checking of TML dif-
ficult; we will need to assume that each compiler will have
a source language with a decidable type system, and that
translation of terms (and types) will yield a witness to the
type-checking of the resultant TML representation.

Abstract machine instructions. One can view ma-
chine instructions at many levels of abstraction:

1. At the lowest level, an instruction is just an integer,
an opcode encoding.

2. At the next level, it implements a relation on raw ma-
chine states(r,m) 7→ (r ′,m′).

3. At a higher level, we can say that the Sparcadd in-
struction implements a machine-independent notion
of add,and similarly for other instruction.

4. Then we can viewaddas manipulating not just regis-
ters, but local variables (which may be implemented
in registers or in the activation record).

5. We can view this instruction as one of various typed
instructions on typed values; in the usual view,add
has type int× int→ int, but the address-arithmetic
addhas type

(τ0×τ1× . . .×τn)×const(i)→ (τi×τi+1× . . .×τn)

for anyi.

y0 : t0

y1 : t1

y2 : t2

y3 : t3

108

mx

x+2

110

6. Finally, we can specialize this typedadd to the par-
ticular context where some instance of it appears, for
example by instantiating thei, n, andτi in the previ-
ous example.

Abstraction level 1 is used in the statement of the theorem
(safety of a machine-language programp). Abstraction
level 5 is implicitly used in conventional proof-carrying
code [15]. Our ongoing research involves finding seman-
tic models for each of these levels, and then proving lem-
mas that can convert between assertions at the different
levels.

Hoare logic. In reasoning about machine instructions at
a higher level of abstraction, notions from Hoare logic
are useful: preconditions, postconditions, and substition.
Without adding any new axioms, we can define a notion
of predicates on states to serve as preconditions and post-
conditions, and substitution as a relation on predicates.
But this can rapidly become inefficient, leading to proofs
that are quadratic or exponential in size. Kedar Swadi,
Roberto Virga, and I have taken some steps in lemma-
tizing substitution so that proofs don’t blow up [5]; in-
teresting related work has been done in Compaq SRC’s
extended static checker [9].

Software engineering practices. We define all of these
abstraction levels in order to modularize our proofs. Since
our approach to PCC shifts most of the work to the hu-
man prover of static, machine-checkable lemmas about
the programming language’s type system, we find it im-
perative to use the same software engineering practices in
implementing proofs as are used in building any large sys-
tem. The three most important practices are (1) abstrac-
tion and modularity, (2) abstraction and modularity, and
(3) abstraction and modularity. At present, we have about
thirty thousand lines of machine-checked proofs, and we
would not be able to build and maintain the proofs without
a well designed modularization.

6 Pruning the runtime system

Just as bugs in the compiler (of a conventional system)
or the proof checker (of a PCC system) can create security
holes, so can bugs in the runtime system: the garbage col-
lector, debugger, marshaller/unmarshaller, and other com-
ponents. An important part of research in Foundational
PCC is to move components from the runtime system to
the type-checkable user code. Then, any bugs in such
components will either be detected by type-checking (or
proof-checking), or will be type-safe bugs that may cause
incorrect behavior but not insecure behavior.

Garbage collectors do two strange things that have
made them difficult to express in a type-safe language:
they allocate and deallocate arenas of memory contain-
ing many objects of different types, and they traverse (and
copy) objects of arbitrary user-chosen types. Daniel Wang
has developed a solution to these problems [22], based on
the motto,

Garbage collection= Regions+ Intensional types.

That is, the region calculus of Tofte and Talpin [20] can
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be applied to the problem of garbage collection, as no-
ticed in important recent work by Walker, Crary, and Mor-
risett [21]; to traverse objects of unknown type, the inten-
sional type calculi of originally developed by Harper and
Morrisett [11] can be applied. Wang’s work covers the
region operators and management of pointer sharing; re-
lated work by Monnier, Saha, and Shao [13] covers the
intensional type system.

Other potentially unsafe parts of the runtime system
are ad hoc implementations ofpolytypicfunctions – those
that work by induction over the structure of data types
– such as polymorphic equality testers, debuggers, and
marshallers (a.k.a. serializers or picklers). Juan Chen and
I have developed an implementation of polytypic primi-
tives as a transformation on the typed intermediate repre-
sentation in the SML/NJ compiler [6]. Like theλR trans-
formation of Crary and Weirich [8] it allows these poly-
typic functions to be typechecked, but unlike their calcu-
lus, ours does not require dependent types in the typed
intermediate language and is thus simpler to implement.

7 Conclusion

Our goal is to reduce the size of the trusted comput-
ing base of systems that run machine code from untrusted
sources. This is an engineering challenge that requires
work on many fronts. We are fortunate that during the
last two decades, many talented scientists have built the
mathematical infrastructure we need – the theory and im-
plementation of logical frameworks and automated theo-
rem provers, type theory and type systems, compilation
and memory management, and programming language
design. The time is ripe to apply all of these advances
as engineering tools in the construction of safe systems.
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