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Abstract

Factored models of multiagent systems address the complexity of joint behavior by exploiting locality in agent
interactions. History-dependent graphical multiagent models (hGMMs) further capture dynamics by conditioning
behavior on history. The hGMM framework also brings new elements of strategic reasoning and more expressive
powers to modeling information diffusion over networks. We propose a greedy algorithm for learning hGMMs
from time-series data, inducing both graphical structure and parameters. To evaluate this learning method, we
employ human-subject experiment data for a voting consensus scenario, where agents on a network attempt to reach
a unanimous vote. We empirically show that the learned hGMMs directly expressing joint behavior outperform
alternatives in predicting dynamic voting behavior.

I. INTRODUCTION

There has been much interest in modeling and analyzing social behaviors that facilitate the diffusion of information
in various online network scenarios. Recommendation network studies for example have identified node-centric and
network-related factors dictating the spread of recommendations on videos and books across social networks [15,
14, 12]. Within the realm of electronic commerce, some researchers proposed to model one’s product endorsement
decisions as a function of his or her friends’s choosing the same action [16, 18]. Similarly Bakshy et al. [1]
employed information about individuals’ adoption rates in capturing the spread of information in the virtual world
of Second Life.

These research works mostly focus on online activities, and often fail to incorporate offline interactions. As
the expressive power to specify local joint behavior provides advantages over models that assume conditional
independence [5], the absence of offline interaction data in online social studies presents a need for directly modeling
joint actions. Even if nodes or agents make decisions independently, conditioning actions on each other’s prior
decisions or on commonly observed history induces interdependencies over time. Moreover, most network research
does not represent and capture the nodes’ strategic reasoning. We have addressed these concerns in the context
of multiagent behavior modeling by introducing the history-dependent graphical multiagent models (hGMMs) that
express multiagent behavior on a graph, and capture dynamic relations and strategic decisions by conditioning
action on history [5].

However, information the modeler may have about the agents’ interaction network, such as scientific research
partnerships or Facebook’s friendship links, is not definitive, as there is no inherent reason that the interaction graph
should constitute the ideal structure for a predictive graphical model for agent behavior. Even though actual agent
behavior is naturally conditioned on its observable history (as captured by the interaction graph), once we abstract
the history representation it may well turn out that non-local historical activity provides more useful predictive
information. Moreover, these networks may be too complex for practical computation without imposing strong
independence assumptions on behavior. We thus consider learning the graphical structure a necessary part of the
modeling effort. As the interaction network structures and the hGMM interaction graphs do not necessarily overlap,
learning the hGMM graphical structures can not only help bolster the hGMM’s predictive power, but also provide
insights on human subjects’ behavior on a network. We thus consider learning the graphical structure a necessary
part of the modeling effort.

We motivate and empirically evaluate our learning technique with the voting consensus experiments conducted
by Kearns et al. [10]. The human subjects in these experiments were arranged on a network, specifying for each



subject (also called player, or agent) the set of other players whose voting decisions he or she can observe. Each
agent chooses to vote either blue (0) or red (1), and can change votes at any time. The scenario terminates when:
(i) agents converge on action a ∈ {0, 1}, in which case agent i receives reward ri(a) > 0, or (ii) they cannot agree
by the time limit T , in which case rewards are zero. Agents may have different preferences for the available vote
options. As nobody gets any reward without a unanimous vote, agents have to balance effort to promote their own
preferred outcomes against the common goal to reach consensus, while taking into account their neighbors’ voting
patterns. Figure 1 illustrates the dynamic behavior of an example voting experiment network.

Fig. 1. Time snapshots of an experiment run where the densely connected minority group (red) exerts strong influences on others’ votes
[10].

Our aim is to capture dynamic voting behavior, which facilitates the spread of outcome preference information
across the network. We propose a greedy algorithm for learning the graphical structure and parameters of an
hGMM that can effectively and compactly capture joint dynamic behavior. We then empirically investigate the
learned models’ predictions of voting behavior and compare their performance with those of different baseline
multiagent models, and demonstrate that models expressing joint behavior outperform the alternatives in predicting
voting behavior.

II. HISTORY-DEPENDENT GRAPHICAL MULTIAGENT MODELS

We model behavior of n nodes or agents over a time interval divided into discrete periods, [0, . . . , T ]. At time t,
agent i ∈ {1, . . . , n} chooses an action ati from its action domain, Ai, according to its strategy, σi. Agents observe
others’ and their own past actions, as captured in history Ht, up to time t. Limited memory capacity or other
computational constraints restrict an agent to focus on a subset of history Ht

i considered in its probabilistic choice
of next action: ati ∼ σi(Ht

i ).
A history-dependent graphical multiagent model (hGMM) [5], hG = (V,E,A, π), is a graphical model with

graph elements V , a set of vertices representing the n agents, and E, edges capturing pairwise action dependencies
between them. A = (Ai, . . . , An) represents the action domains, and π = (π1, . . . , πn) potential functions for each
agent. The graph defines a neighborhood for each agent i: Ni = {j | (i, j) ∈ E}∪{i}, including i and its neighbors
N−i = Ni \ {i}. The hGMM captures agent interactions in dynamic scenarios by conditioning joint agent behavior
on an abstracted history of actions Ht. The history available to agent i, Ht

Ni
, is the subset of Ht pertaining to agents

in Ni. Each agent i is associated with a potential function πi(atNi
| Ht

Ni
):
∏

j∈Ni
Aj → R+, which specifies a local

action configuration’s likelihood of being included in the global outcome, conditioning on history. Specifically, the
joint distribution of the system’s actions taken at time t is the product of neighbor potentials [2, 5]:

Pr(at | Ht) =

∏
i πi(a

t
Ni
| Ht

Ni
)

Z
. (1)

We construct and examine four multiagent behavior model forms for capturing voting behavior dynamics in the
voting consensus experiments. All are expressible as hGMMs. Only the first, however, exploits the flexibility of
hGMMs to express dependence of actions within a neighborhood given history by (1), hence we refer to this as
the joint behavior model (JBM). JBM incorporates the historical frequency of local configurations aNi

for each i
as a summarized version of history Ht

Ni
of length h. The other three forms model agent behaviors individually:

for each agent we specify a probabilistic strategy σi(Ht
i ) = Pr(ati | Ht

i ). The agents’ actions are probabilistically
dependent, but conditionally independent given this common history, yielding the joint distribution

Pr(at | Ht) =
∏
i

σi(H
t
i ). (2)



We refer to a dynamic multiagent model expressible by (2) as an individual behavior hGMM (IBMM). Conditional
independence given history is a compelling assumption for autonomous agents. However, it is often infeasible to
specify the entire history for conditioning, and the assumption may not hold with respect to partial history. One of
these three IBMMs is designed as an independent behavior version of JBM; thus, we call it the individual behavior
model (IBM). The remaining two models are based on proposals and observations from the original experimental
analysis [10], and are labeled proportional response model (PRM) and sticky proportional response model (sPRM),
respectively.

III. LEARNING PARAMETERS AND GRAPHICAL STRUCTURES

We first address the problem of learning the parameters of an hGMM hG given the underlying graphical structure
and data in the form of a set of joint actions for m time steps, X = (a0, . . . , am). For ease of exposition, let θ
denote the set of all the parameters that define the hGMM’s potential functions. We seek a θ maximizing the log
likelihood of X using gradient ascent for updating the parameters.

We developed a structure learning algorithm that produces graphs for hGMMs within specified complexity
constraints. Our learning algorithm starts with a completely disconnected graph and keep alternating between
greedily adding edges that maximally improve the testing data’s likelihood and tuning the model’s parameters
using gradient ascent optimization.

We evaluate the learned multiagent models by their ability to predict future outcomes, as represented by a test
set Y . Given two models M1 and M2, we compute the ratio of their corresponding log-likelihood measures for
the test data set Y : RM1/M2

(Y ) =
LM1

(Y )
LM2

(Y ) . We are particularly interested in the ratios RJBM/IBMM, for IBMM ∈
{IBM,PRM, sPRM}. Note that since log-likelihood is negative, RJBM/IBMM < 1 indicates that JBM is better than
IBMM at predicting Y , and vice versa if the ratio exceeds one.

IV. EMPIRICAL STUDY
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Fig. 2. JBM provides better predictions than IBM, PRM, sPRM, and nM in three experiment sets: coER 0.5 (left), coER 2 (middle), and
power22 (right).

We empirically evaluate the predictive power of JBM in comparison with IBM, PRM, and sPRM, using the voting
consensus experiment data from Kearns et al. [10]. We also compare JBM against a naive guessing model, nM,
which initially assigns each ai a probability proportional to ri(ai) and linearly converges to a uniform distribution
of agent actions as the game progresses. The human-subject experiments are divided into nine different sets, each
associated with a network structure. We reuse Kearns et al.’s labels, coER 0.5, coER 2 and power22, for the three
network sets studied in this analysis.

In our study, we learn predictive models for each network structure, pooling data across subject assignments and
incentive schemes. This approach is based on the premise that network structure is the main factor governing the
system’s collective behavior, in line with the findings of Kearns et al. [10]. In each experiment set, we use four
of the nine trials for training the predictive models for each form. The hGMM graphical structures are learned
with node degree constraint 10, while the maximum degree of the individual behavior models is restricted to the
greatest node degree of the original network. We then evaluate these models based on their predictions over a test
set comprising the other five experimental trials. This process is repeated five times, each of which uses a different
training trial set randomly chosen from the original trials.

We first examine hGMMs’ predictions of players’ votes in each time period conditional on available history.
Figure 2 shows the log likelihood ratios between JBM and M ∈ {IBM,PRM, sPRM,nM}, RJBM/M(Y ), computed



on the test data set. We observe that JBM performs significantly better than IBM, PRM, sPRM, and nM in
predicting dynamic agent behavior in the voting consensus experiments (differences significant at p < 0.02). As
the history length h decreases, this difference in prediction performance decreases, which is likely a consequence
of the fact that shorter history lengths significantly reduce the amount of information summarized in the historical
frequency functions. These outcomes in general demonstrate JBM’s ability to capture joint dynamic behavior,
especially behavior correlations induced by limited historical information, as opposed to different IBMMs and a
naive guessing model.

We also evaluated the models’ capacity to predict the end state of a voting consensus experiment. The original
aim of modeling in these domains was to predict this final outcome. Indeed, the convergence of PRM to consensus
strongly correlates with observed experimental results. In contrast, we find that simulated runs drawn from JBM*
rarely converge to a consensus, and thus this model is not directly useful for predicting end state specifically.
That the model’s success in capturing transient dynamics fails to translate to outcome prediction is an interesting
anomaly. It will be worth further investigating whether incorporating time dependence or other additional factors
can remedy the discrepant effectiveness.
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