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Abstract

The explore–exploit dilemma is one of the
central challenges in Reinforcement Learn-
ing (RL). Bayesian RL solves the dilemma
by providing the agent with information in
the form of a prior distribution over envi-
ronments; however, full Bayesian planning is
intractable. Planning with the mean MDP is
a common myopic approximation of Bayesian
planning. We derive a novel reward bonus
that is a function of the posterior distribution
over environments, which, when added to the
reward in planning with the mean MDP, re-
sults in an agent which explores efficiently and
effectively. Although our method is similar
to existing methods when given an uninfor-
mative or unstructured prior, unlike existing
methods, our method can exploit structured
priors. We prove that our method results in a
polynomial sample complexity and empirically
demonstrate its advantages in a structured
exploration task.

1 Introduction

One of the central challenges of reinforcement learning
(RL) is the explore–exploit dilemma. An agent must
maximize its rewards (exploit) while simultaneously
sacrificing immediate gains to learn about new ways
to exploit in the future (explore). In one approach
to addressing the dilemma, Bayesian Reinforcement
Learning, the agent is endowed with an explicit rep-
resentation of the distribution over the environments
it could be in. As it acts and receives observations, it
updates its belief about the environment distribution
accordingly. A Bayes-optimal agent solves the explore–
exploit dilemma by explicitly including information
about its belief in its state representation and incorpo-
rating information changes into its plans (Duff, 2003).

However, Bayes-optimal planning is intractable in gen-
eral. A number of recent methods have attempted to
approximate Bayesian planning (Poupart et al., 2006;
Asmuth et al., 2009; Kolter and Ng, 2009), but this
remains a challenging problem.

Another approach to addressing the explore–exploit
dilemma is the explicit modification of the objective re-
ward function—adding a reward bonus for exploration.
We will refer to a modified reward function as an in-
ternal reward function. An agent that always exploits
the internal reward function accomplishes both explo-
ration and exploitation (with respect to the original
objective reward function), thus solving the dilemma.
This approach is (approximately) exemplified by many
methods in the PAC framework (Kearns and Singh,
2002; Strehl et al., 2006; Strehl and Littman, 2008;
Kolter and Ng, 2009) which bound the complexity of
learning an MDP by explicitly motivating the agent to
sample state-action pairs enough times to ensure it has
explored sufficiently. Internal-reward methods have one
advantage over the Bayesian approach—modifying the
reward function can greatly influence behavior, often
without greatly affecting computational cost.

In contrast, an important advantage of the Bayesian ap-
proach is that exploration is guided by prior knowledge
of the environment. Some environments may require
more exploration than others; some areas of the state
space may be more uncertain than others; and most
interestingly, information gained in one area of the
state space may affect knowledge about other areas.
The Bayesian approach expresses all of these through
the specification of the agent’s prior belief.

In this work, we contribute an internal-reward method
for efficient exploration that takes advantage of prior
knowledge in the form of a Bayesian prior. Thus our
method retains the computational advantage of inter-
nal reward methods while obtaining guidance from a
Bayesian prior. Specifically, our method provides a
reward bonus in proportion to the square root of the
variance of the agent’s posterior distribution over envi-



ronments. Our proposed method is similar to existing
methods when using an uninformative prior, such as
the independent Dirichlet distribution over transition
dynamics. For structured priors however, we show
that our method is capable of achieving a theoretically
lower sample complexity bound than existing methods.
We demonstrate that our method compares favorably
to existing approximate Bayesian methods with both
structured and unstructured priors in two environments,
including the Hunt the Wumpus Environment (Russell
and Norvig, 2002), where prior knowledge is critical
and over-exploration can lead to permanent death.

2 Method

An MDP is the tuple 〈S,A,Rθ, Pθ, γ〉, where S is the
state space, A is the action set, Rθ(s, a) ∈ [0, 1] is
the expected reward function over state–action pairs,
Pθ(s′|s, a) is the probability of transitioning to state s′

given that action a was taken in state s, and γ is the
discount factor. We often directly refer to an MDP’s
model parameters θ in the subscripts of the MDP’s
functions. Sometimes, when it is clear from context,
we will use S and A to also refer to the cardinality of
the corresponding sets.

2.1 Bayes-Optimal Planning

Unlike the standard RL setting, in Bayesian RL the
agent is provided a-priori with the distribution of envi-
ronments it could face, called the prior or the initial
belief b0. For belief b, we denote the probability of
a particular MDP θ as b(θ). When the agent begins
acting, it does not know which specific environment it
is in, but instead updates its belief based on experience.
During planning, a Bayes-optimal agent considers the
effects of its own future changes in belief in addition to
changes to physical state. We refer to this joint system
as the information-state MDP. The full information
state is the pair 〈s, b〉, where s is the MDP state and b
is the belief state. After observing a state transition
from s to s′ and reward r, the agent updates its belief
b to the Bayesian posterior belief b′ using Bayes’ rule.
Therefore, a state transition in the information-state
MDP is from 〈s, b〉 to 〈s′, b′〉.

Let B be the set of possible belief states. We
define the mean reward function given belief b as
Rb(s, a)def=

∫
θ
Rθ(s, a)b(θ). We similarly define the mean

transition function as Pb(s′|s, a) def=
∫
θ
Pθ(s′|s, a)b(θ).

The optimal behavior in the information state MDP is
computed by solving the Bellman optimality equations:
∀〈s, b〉 ∈ S ×B, a ∈ A,

Q∗(〈s, b〉, a) = Rb(s, a) + γ
∑
s′

Pb(s′|s, a)V ∗(〈s′, b′〉),

where V ∗(〈s′, b′〉) def= maxaQ∗(〈s′, b′〉, a). The function
Q∗(〈s, b〉, a) is the Bayes-optimal action-value function.
An agent that acts greedily with respect to Q∗(〈s, b〉, ·)
acts Bayes-optimally.

Full Bayesian planning (i.e., solving the Bellman opti-
mality equations above for the Bayes-optimal action-
value function) is expensive, because for many priors,
the set of possible belief states B is large or infinite.
Furthermore, because the agent is constantly learning
and updating its belief, an agent may rarely or never
(depending on the prior) revisit belief states. For these
reasons, agents must approximate Bayes optimality in
general.

2.2 Mean MDP + Reward Bonus

Planning with the mean MDP with respect to belief b
is a simple, myopic approximation of Bayesian planning
which removes the state-space explosion of belief states
while preserving physical state dynamics. The resulting
Bellman equations are identical to the above equations
for Bayesian planning, except the belief state is not
updated on the right-hand side: ∀s ∈ S, a ∈ A,

Q∗b(s, a) = Rb(s, a) + γ
∑
s′

Pb(s′|s, a)V ∗b (s′), (1)

where V ∗b (s′) def= maxaQ∗b(s
′, a). We denote the value’s

dependence on the current belief b in the subscript to
emphasize the belief’s invariance during planning. At
each time step, the Mean MDP (MMDP) agent acts
greedily with respect to Q∗b . After observing the result
of its action, it updates its belief to b′ using Bayes’ rule
and then computes Q∗b′ . Thus, an agent which plans
in the mean MDP does update its belief as it receives
experience, but does not do so during planning.

We will use a reward bonus to help compensate for the
information not accounted for in the mean MDP plan-
ning approximation (cf. Equation 1) to full Bayesian
planning. Such a Mean MDP plus Reward Bonus
(MMDP+RB) agent is identical to the mean MDP
agent described above, except it uses an internal
reward function defined as the mean reward func-
tion plus an added reward bonus term: R̃b(s, a) =
Rb(s, a) + R̂b(s, a). Formally, an MMDP+RB agent
with belief b always acts greedily with respect to the
action-value function defined by: ∀s ∈ S, a ∈ A,

Q̃∗b(s, a) = R̃b(s, a) + γ
∑
s′

Pb(s′|s, a)Ṽ ∗b (s′), (2)

where Ṽ ∗b (s′) def= maxa Q̃∗b(s
′, a).

The approximate Bayesian algorithm of Kolter and
Ng (2009) is an existing algorithm that is of the
MMDP+RB form, albeit in a limited special case. Let



ns,a be the number of times that state–action pair (s, a)
has been sampled. They showed that a MMDP+RB
agent with a reward bonus of R̂b(s, a) = β/ns,a ap-
proximates Bayesian planning in polynomial time with
high probability (for appropriate choice of constant β),
in the special case of an independent Dirichlet prior
over transition dynamics per state–action pair and a
known reward function. We will use this algorithm as
one baseline in our experiments.

The MBIE-EB algorithm (Strehl et al., 2006) has the
same form as MMDP+RB, though it is not derived
in a Bayesian setting. In this algorithm, the agent
plans in the maximum-likelihood estimate of the MDP;
this is very similar to the mean MDP of a Dirichlet
prior. MBIE-EB features a reward bonus of R̂b(s, a) =
β/
√
ns,a. As described in detail later, this algorithm

also connects closely to our method; we will use it as
another baseline in our experiments.

Both of these baselines share the property that their re-
ward bonuses decrease independently per state–action
pair as each is sampled. Both intuitively measure the
uncertainty the agent has for that state–action pair.
However, neither accounts for information contained
in the prior distribution (unless that prior is a fac-
tored Dirichlet). In the next subsection, we define the
variance-based reward bonus, which is capable of mea-
suring the uncertainty of arbitrary Bayesian priors over
environments.

2.3 Variance-Based Reward Bonus

The variance of the model parameters are defined as:

σ2
Rb(s,a)

def=
∫
θ

Rθ(s, a)2b(θ)−Rb(s, a)2, and

σ2
Pb(s′|s,a)

def=
∫
θ

Pθ(s′|s, a)2b(θ)− Pb(s′|s, a)2.

Importantly, these are not the variance of the world
dynamics but instead are the variance of the model
parameters with respect to the agent’s belief. As the
agent gathers experience in the world—as the agent
becomes more certain of the truth—these values will
tend to decrease to 0, regardless of how stochastic the
world is. Notice that we have made no state–action
independence requirements on the prior. Therefore,
depending on the belief, experience gained in one state
may affect the variance term in any other state.

We define the variance reward bonus using these vari-
ance terms:

R̂b(s, a) def= βRσRb(s,a) + βP

√∑
s′

σ2
Pb(s′|s,a),

for some constants βR and βP . Although the precise
form of this reward may seem unintuitive, in the next

section, we will show that this reward bonus can be
used to bound the error of the mean MDP, with respect
to the random (drawn from the prior) true MDP with
high probability. Using this fact, we will show that
there exist constants βR and βP such that an agent that
acts greedily with respect to Q̃∗b(s, a) acts optimally
with respect to the random true MDP, for all but a
polynomially bounded number of time steps with high
probability.

3 Sample Complexity

The key insight behind the use of variance as a measure
of the agent’s uncertainty is that we can bound the
deviation of the mean MDP model from the true MDP
using Chebyshev’s inequality, which states that the
deviation of a random variable from its mean is no more
than a multiple of its variance, with high probability:
Pr(|X − µ| ≥ η) ≤ σ2

η2 , where X is a random variable,
µ and σ are its mean and standard deviation, and η
bounds the deviation from the mean.

Lemma 1. For any belief b and any state–action pair
(s, a), there exists a value ηP (s, a, b) which bounds the
max-norm error of the mean transition model with
probability at least 1− ρ:

Pr [‖Pθ(·|s, a)− Pb(·|s, a)‖∞ < ηP (s, a, b)] > 1− ρ,

where ‖ · ‖∞ is the max norm, and this inequality is
satisfied if

ηP (s, a, b) =
1
√
ρ

√∑
s′

σ2
Pb(s′|s,a).

Proof. We apply the union bound over next-states.

Pr [‖Pθ(·|s, a)− Pb(·|s, a)‖∞ ≥ ηP (s, a, b)]

≤
∑
s′

Pr [|Pθ(s′|s, a)− Pb(s′|s, a)| ≥ ηP (s, a, b)]

≤
∑
s′

σ2
Pb(s′|s,a)/η

2
P (s, a, b) ≤ ρ.

Solving for ηP (s, a, b) completes the proof.

We can do a similar analysis for the reward function,
though it does not require the union bound.

Lemma 2. For any belief b and any state–action pair
(s, a), if the belief distribution over rewards has finite
variance, then there exists a value ηR(s, a, b) which
bounds the error of the mean reward function with
probability at least 1− ρ:

Pr [|Rθ(s, a)−Rb(s, a)| < ηR(s, a, b)] > 1− ρ.

and this is satisfied if ηR(s, a, b) = σRb(s,a)/
√
ρ.



Algorithm 1: Bounded Variance Reward Algorithm
Input: s0, b0, βR, βP , C
∀s, a cs,a ← 0, knowns,a ← false

∀s, a Q(s, a)← Q̃∗b0(s, a)
for t← 0, 1, 2, 3, . . . do

at ← arg maxaQ(st, a)
rt, st+1 ← takeAction(at)
bt+1 ← updateBelief(bt, st, at, rt, st+1)
cst,at

← cst,at
+ 1

if ¬knownst,at
∧ (cst,at

≥ C(st, at, b0, ε, δ)) then
∀s, a Q(s, a)← Q̃∗bt+1

(s, a)
knownst,at

← true;
end

end

Although the variance reward MMDP+RB agent was
described in detail in Section 2.2, we analyze a slightly
different agent in our theoretical analysis, presented
in Algorithm 1. It differs in only one significant man-
ner. Algorithm 1 takes as input a sample complexity
parameter C(s, a), which is a prior-dependent term
indicating the number of times state–action pair (s, a)
must be sampled before it becomes known. Algorithm 1
only updates its value function estimate each time a
state–action pair becomes known. This allows us to
bound the number of times the agent plans.

In this section, we bound the sample complexity of
Algorithm 1, following the abstract PAC framework by
Strehl et al. (2006). A central aspect of this framework
is the principle of optimism in the face of uncertainty.
By ensuring the agent remains optimistic, we can ensure
that the agent does not ignore potentially lucrative
opportunities. The model error bounds above allow
us to provide a reward bonus that ensures optimism.
Unless stated otherwise, the proofs in this section are
deferred to the Appendix.

Lemma 3 (Optimism). Let the reward bonus be
R̂b(s, a) = 1√

ρ

(
σRb(s,a) + γS

1−γ

√∑
s′ σ

2
Pb(s′|s,a)

)
, then

the value function computed by Algorithm 1 is opti-
mistic with probability at least 1 − 2S2A2ρ for every
planning step during its execution.

The convergence rate of Algorithm 1 depends on the
convergence rate of the posterior distribution. Here,
we abstractly define this rate and allow it to depend
on state and action. We will later provide examples of
this function for specific classes of priors. Note that
because we have defined the reward bonus in such a
way that it is an upper bound on the error of the mean
MDP, defining the sample complexity with respect to
the reward bonus term bounds the number of samples
before we have an accurate model.

Definition 1. Define the sample complexity function,
f(b0, s, a, ε, δ, ρ), as the minimum number c such that if
d > c transitions from (s, a) have been observed, start-
ing from belief b0, the additive reward term R̂ using
the updated belief bd is less than ε, i.e., R̂bd

(s, a) =
1√
ρ

(
σRbd

(s,a) + γS
1−γ

√∑
s′ σ

2
Pbd

(s′|s,a)

)
< ε, with prob-

ability at least 1 − δ. We will refer to a state–action
pair as known if it has been sampled c or more times.

We make one important assumption about f : experi-
ence gained by sampling one state–action pair does not
increase the sample complexity of another state–action
pair. This assumption is trivially true when the prior
is independent per state–action pair. Furthermore, we
expect this to be a reasonable assumption in many
correlated priors. In fact, we believe our method’s per-
formance on correlated priors to be one of its strengths.
Rather than hurting convergence, experience gained
from one area of the state space should in general re-
duce the number of samples required from another, and
we present evidence consistent with this below.

Next, we present our central theoretical result that
bounds the sample complexity with respect to the
true MDP. This is distinct from the sample complexity
bound of Kolter and Ng (2009) which is defined with
respect to the information state MDP.

Theorem 1. Let the sample complexity of state s and
action a be C(s, a) = f(b0, s, a, 1

4ε(1− γ)2, δ
SA ,

δ
2S2A2 ).

Let the internal reward R̂b be defined as in Lemma 3
with ρ = δ

2S2A2 . Let θ∗ be the random true model
parameters distributed according to the prior belief b0.
Algorithm 1 will follow a 4ε-optimal policy from its
current state, with respect to the MDP θ∗, on all but

O

(∑
s,a C(s, a)
ε(1− γ)2

ln
1
δ

ln
1

ε(1− γ)

)
(3)

time steps with probability at least 1− 4δ.

Theorem 1 can be applied to many prior distributions.
In the remainder of this section, we apply it to two
simple special cases. First, we provide a concrete bound
in the case of an independent Dirichlet prior and a
known reward function. We use this special case to
connect our result to related work.

Lemma 4. (Independent Dirichlet Prior) Let
ns,a be the number of times state–action pair (s, a)
has been sampled. For a known reward function and an
independent Dirichlet prior over next-state transition
dynamics for each state–action pair, the internal reward
feature ηP (s, a, b) decreases at a rate of O(1/√ns,a).

Proof. The square root of the sum of the variance terms



for the Dirichlet distribution is√∑
s′

σ2
Pb(s′|s,a) =

√∑
s′ Pb(s′|s, a)(1− Pb(s′|s, a))

ns,a + 1

≤ 1/
√
ns,a + 1.

Lemma 5, which we present without proof, uses the
result in Lemma 4 to provide a sample complexity
bound for Algorithm 1 with a Dirichlet prior.

Lemma 5. The sample complexity function for an
independent Dirichlet prior over transition dynamics
and a known reward function is f(b0, s, a, ε, δ, ρ) =
γ2S2/

(
ρε2(1− γ)2

)
, where S is the number of states.

As stated before, the mean MDP for a Dirichlet prior
is analogous to the MLE estimate MDP in MBIE-EB.
Notice also that the O(1/√ns,a) reward bonus derived
here is similar to the reward bonus in MBIE-EB. In
other words, we have effectively re-derived MBIE-EB
using Bayesian methods; one could replace our vari-
ance term with a 1/

√
ns,a + 1 reward bonus in our

proofs and produce a similar result. Thus, our method
is similar to existing methods when using the Dirich-
let distribution, an unstructured and uninformative
prior. That said, the variance term provides a slightly
tighter upper bound than does 1/

√
ns,a + 1, because

it accounts for the distribution of observed data.

The advance of Algorithm 1 over prior methods lies in
its ability to take advantage of structured and informa-
tive priors. As an initial and very simple example of
this advantage, we present the sample complexity func-
tion for a stochastic prior over unknown deterministic
MDPs. Utilizing this knowledge does require full prob-
abilistic Bayesian reasoning—the effects of unknown
actions will appear stochastic. However, after sampling
a state–action pair once, the agent will know its effect.
We state this formally as a lemma without proof.

Lemma 6. (Prior over Deterministic MDPs)
Let b0 be a prior over deterministic worlds. The sample
complexity function f(b0, s, a, ε, δ, ρ) ≤ 1.

Furthermore, if the distribution is not independent
between state–action pairs, sampling one state–action
pair may cause the variance associated with other state–
action pairs to also be set to 0. In fact, the variance
feature for unobserved state–action pairs can some-
times increase with experience; however, the sample
complexity result always holds.

4 Comparison Methods

Our method benefits from the Bayesian prior in two
ways: (1) it uses the prior to generate the Mean MDP;

+0.2

+1

Figure 1: Chain Environment

(2) it uses the variance calculation to guide explo-
ration. To properly demonstrate that the variance
reward bonus deserves the credit for our method’s suc-
cess, all comparison methods will be given the same
prior belief, and all will properly update their posterior
belief given the prior.

The simplest baseline for our method to compete
against is the mean MDP agent with no reward
bonus. To fairly compare against MBIE-EB (Strehl and
Littman, 2008) and the approximate Bayesian method
of Kolter and Ng (2009), we test the corresponding
MMDP+RB agents with reward bonuses of O(1/√ns,a)
and O(1/ns,a), respectively.

The BOSS algorithm (Asmuth et al., 2009) is not an
internal-reward approach, but it is a direct competi-
tor to our method in another sense. It is the only
other algorithm we are aware of which currently pro-
vides sample complexity guarantees as a function of
a Bayesian prior. Each time it plans, it samples K
(a parameter) MDPs from the posterior distribution.
It then plans in a combined MDP that has the same
state space, but each state has K ×A available actions.
Essentially, the combined MDP allows the agent to
choose, independently in each state, which sampled
MDP’s dynamics it would like to follow. This planning
method is optimistic with enough samples K.

There are many other approximate methods for
Bayesian planning. By using a standard benchmark
task below, we are able to compare against the pub-
lished results for one such method. The BEETLE
algorithm (Poupart et al., 2006) directly approximates
full Bayesian planning by compressing the information
state space.

5 Empirical Results

In this section, we first compare our method on a
standard benchmark problem, and then on a problem
with an interesting structured prior.

5.1 Chain Environment

We will use the 5-state chain environment shown in
Figure 1 to demonstrate two points. (1) For arbi-
trary priors in this task our proposed variance reward
method compares favorably to other methods which



Table 1: Chain Experiment Results

Algorithm Tied Prior Semi Prior Full Prior
BEETLE 3, 650 3, 648 1, 754
BOSS 3, 657 3, 651 3, 003
Mean 3, 642 3, 257 3, 078
O(1/n) 3, 645 3, 642 3, 430
O(1/

√
n) 3, 645 3, 642 3, 462

Variance Reward 3, 645 3, 637 3, 465

approximate Bayesian planning. (2) When given an
unstructured prior, such as a Dirichlet distribution, the
performance of the variance reward bonus is similar
to the performance of the O(1/√ns,a) and O(1/ns,a)
reward bonuses, as discussed above.

The chain environment has two actions: Action A
(solid) advances the agent along the chain, and Action
B (dashed) resets the agent to the first node. When
taken from the last node, Action A leaves the agent
where it is and gives a reward of 1—otherwise it results
in 0 reward. Action B gives a reward of 0.2 in all states.
However, with probability 0.2 the agent “slips” and
the outcomes are switched. Optimal behavior always
chooses Action A.

This environment was designed to require smart ex-
ploration, because the optimal policy produces distant
reward while there are many sub-optimal policies which
yield immediate reward. Past works (Poupart et al.,
2006; Asmuth et al., 2009) consider the performance
of agents with different priors in this environment. In
the Full prior, the agent uses an independent Dirichlet
prior distribution for each state–action pair. Under the
Tied prior, the agent knows the underlying transition
dynamics except for the value of a single slip probabil-
ity that is shared between all state–action pairs. The
Semi-tied prior allows for a different slip probability
for each action which is shared across states. In Tied
and Semi, the prior distribution over the slip probabil-
ity is represented as a Beta distribution. In keeping
with published results on this problem, Table 1 reports
cumulative return in the first 1000 steps, averaged over
500 runs. Standard error is on the order of 20 to 50.
The optimal policy for the true MDP scores 3677.

We present the performance of our method along side
the comparison methods in Table 1. Each comparison
algorithm is given the indicated prior and maintains the
correct posterior distribution; however, each differs in
its method used to approximate full Bayesian planning.
Each of the reward-based methods is parameterized
by a coefficient on the reward bonus. In Table 1, that
coefficient was optimized separately for each result.

The reward bonus methods, including our method,
perform as well as the other methods in general and
outperform the alternatives in the case of the Full prior.
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Figure 2: Hunt the Wumpus Environment

As predicted, the reward bonus methods perform simi-
larly in the case of the Full (Dirichlet) prior. Although
the Tied and Semi priors are structured, they essen-
tially make the problem too easy—other than from the
naive mean MDP approach, they fail to differentiate
the methods.

5.2 Hunt the Wumpus

Next, we demonstrate the advantages of our method
on a task with non-trivial correlated belief reasoning
requirements, and in which poor early decisions can
lead to the agent’s death. The Hunt the Wumpus en-
vironment, adapted from Russell and Norvig (2002)
and pictured in Figure 2, is a discrete world based on
an old computer game which requires intelligent explo-
ration. The world consists of a 4 × 4 cave. The agent
always starts in the top-left corner. It can navigate by
turning left, turning right, or moving forward one
location. Lurking in the cave in a uniformly random
location (other than the agent’s starting location) is
the wumpus, a beast that eats anyone who enters its
location (ending the episode). The agent cannot see
the wumpus, but if it is in a location cardinally adja-
cent to the wumpus, it can smell a vile stench. Each
location also has a prior 0.2 probability of containing
a deep pit that will trap a wandering adventurer (but
not the wumpus), ending the episode. If the agent is
next to any pit, it can feel a breeze, though it cannot
sense in what direction the originating pit is. The
agent carries a bow with one arrow and a has a shoot
action. When executed, it fires an arrow the entire
length of the cave in the direction it is facing. If it hits
the wumpus, the wumpus dies and the agent receives 1
reward. Otherwise, the episode ends with 0 reward. At
all other time steps, the agent receives a small penalty
of -0.01 reward. In summary, the agent senses the
tuple 〈location, orientation, stench, breeze〉. We rep-
resent the end conditions with two terminal states. In
one, the agent receives 1 reward for killing the wumpus.
In the other, the agent receives 0 for dying. We provide
the agent with the true prior over environments.



Table 2: Hunt the Wumpus Results.
Parameter Objective Reward/Episode

Variance βP = 0.24 0.508
1/n β = 0.012 0.293
1/
√
n β = 0.012 0.291

BOSS K = 20 0.183
Mean MDP N/A 0.266

We evaluate the agents in a setting in which they have
one chance to kill the wumpus—each episode is in-
dependently drawn from the prior. In other words,
the pit and wumpus locations are resampled between
episodes. Because the world’s dynamics can be ex-
pressed as a function of the agent’s observable location,
and because they do not change during an episode, we
can model each episode as a Bayesian distribution over
MDPs. However, this environment is an unforgiving
exploration benchmark; if the agent over-explores, it
can fall into a pit or get eaten. There is no opportunity
to learn from dying, because the agent only lives for
one episode. In order to avoid likely death, while taking
enough risks to find and kill the wumpus, an agent will
need to properly utilize its prior.

In spite of the fact that the dynamics are determinis-
tic, probabilistic Bayesian reasoning is necessary due
to the stochastic nature of the prior. It is often the
case that, given the agent’s experience, some adjacent
locations are more likely to contain pits than others.
Information gathered in one location can increase or
decrease the probabilities of the existence of pits or the
wumpus in other locations. At times, the agent must
take calculated risks—stepping into locations that have
nonzero probability of containing a pit—in order to
gain the information it needs to locate the wumpus.

We present the empirical results in Table 2. For each
method, we present the mean objective reward obtained
per episode, averaged over 500 episodes. Each episode
is capped at a maximum length of 1,000 steps. As
before, each reported method is given the same prior
and properly updates its belief through experience; the
algorithms differ in how they approximate Bayesian
planning given those beliefs. Several of the algorithms
have a free parameter which we optimized. For the
internal reward methods, we searched over all reward
bonus scalars β in the range [0, 0.04] in increments of
0.002 and [0.04, 1] in increments of 0.04. For the vari-
ance method, we present βP only, because the reward
function is known. For the BOSS method, we tested
sample sizes (K) of 1,5,10,20,40, and 80.

The variance internal reward method achieves the top
performance, because it follows an effective controlled
exploration strategy. It is not optimal, however; be-
cause it enjoys exploring, it will occasionally spend
time identifying the location of a few more pits after

having already located the Wumpus. The BOSS agent
performs poorly. As mentioned above, BOSS ensures
optimism by building in the assumption that the agent
knows, and in fact is in control of, which MDP the
agent is in. Its control policy immediately turns and
fires an arrow at time step 1—it chooses the imagined
MDP in which the Wumpus is in its current line of
sight. The mean MDP baseline agent performs better
than BOSS, though its policy is merely a slightly better
heuristic. It walks in a straight line until it encounters
a breeze, at which point it fires in the direction of the
most unexplored locations, unless it experiences a rare
situation which disambiguates the wumpus’s location,
in which case it fires in the correct direction. The
O(1/n) and O(1/

√
n) reward bonus methods’ policies

are a small deviation from the mean MDP’s policy—
notice the small magnitude of the reward coefficient,
just above the per-step penalty of the objective reward.

Figure 2(b) illustrates the effect of the choice of the
reward scaling parameter β on performance for both
the variance and O(1/

√
n) reward methods (the graph

is similar for O(1/n)). Note that the choice of β = 0
results in the mean MDP agent. As can be seen, the
variance reward results in good performance for many
choices of β, but O(1/

√
n) performs extremely poorly

for large reward values—the agent spends the majority
of its time following safe actions, such as turning in
circles, that provide it with no information.

6 Conclusion

Although full Bayesian planning produces optimal be-
havior, it is intractable. In this work, we contributed
a novel internal-reward algorithm with a sample com-
plexity bound which derives its reward bonus from a
Bayesian prior distribution. Our method is similar to
existing approaches when given unstructured priors,
such as the factored Dirichlet distribution; however,
unlike previous reward bonuses, our approach is capa-
ble of exploiting structure in the prior. In addition to
providing theoretical results supporting these claims,
we demonstrated that our method exploits structured
prior knowledge in the Hunt the Wumpus environment.
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A Technical Proofs

Proof of Lemma 3. Define the random variable V ∗θ (s)
to be the value of state s given the true model θ. Let
ηP (s, a, b) and ηR(s, a, b) be defined as in Lemmas 1 and
2. Given belief b, with probability at least 1− 2SAρ,

V ∗θ (s) = max
a

Rθ(s, a) + γ
∑
s′

Pθ(s′|s, a)V ∗θ (s′)

≤ max
a

Rb(s, a) + ηR(s, a, b)

+ γ
∑
s′

(Pb(s′|s, a) + ηP (s, a, b))V ∗θ (s′)

≤ max
a

R̃b(s, a) + γ
∑
s′

Pb(s′|s, a)Ṽ ∗b (s′) = Ṽ ∗b (s).

The first inequality is true with probability at least
1− 2ρ, and the final step can be shown by induction.
This must be true for all state–action pairs, resulting
in truth with probability greater than 1 − 2SAρ by
a union bound. For this to be true for the entire
execution of Algorithm 1, it must be true for all value
function updates, of which there are no more1 than
SA, resulting in the final bound of 1−2S2A2ρ through
another application of the union bound.

1Technically, including the initial planning phase, there
are up to SA+ 1 value updates.

Definition 2. Let θ = 〈S,A, P,R, γ〉 be an MDP.
Given a set of Q value estimates Q(s, a) and a set
K of state–action pairs called the known state–action
pairs, we define the known state–action MDP θK =
〈S∪s0, A, TK , RK , γ〉 as follows. For each known state–
action pair (s, a) ∈ K, PK(·|s, a) = P (·|s, a) and
RK(s, a) = R(s, a). Define an additional absorbing
state s0 with PK(s0|s0, ·) = 1 and RK(s0, ·) = 0. For
each unknown state–action pair, the world determin-
istically transitions to s0 (∀(s, a) /∈ K,P (s0|s, a) = 1)
with reward function RK(s, a) = Q(s, a).

Let Vt(s) = maxaQt(s, a) denote the agent’s estimate
of the value function at time t. Let V πt

θKt
denote the

value of the agent’s policy at time t in the known state–
action MDP defined with respect to the true MDP θ
and the agent’s value estimate Qt.

Lemma 7. If the state–action sample complexity in Al-
gorithm 1 is C(s, a) = f(b0, s, a, 1

4ε(1− γ)2, δ
SA ,

ρ
2S2A2 )

then Vt(s)− V πt

θKt
(s) ≤ ε for all time steps t with prob-

ability at least 1− δ − ρ.

Proof. Let δ′ = δ
SA . Because the sample complexity

bound holds for each state–action pair with probability
δ′, the sample complexity bound holds overall by union
bound with probability 1− SAδ′ = 1− δ.

For the remainder of the lemma, it suffices to show
that the mean MDP has low error in known states. Let
A = 1

4ε(1 − γ)2. In the known states, R̂b(s, a) <
A; therefore ηR(s, a, b) < A and ηT (s, a, b) <
(1−γ)A
γS . These imply |Rθ(s, a)−Rb(s, a)| < A and

‖Pθ(·|s, a)− Pb(·|s, a)‖∞ < (1−γ)A
γS . For the transition

bound, we can convert the max norm bound into an L1

norm by multiplying by S: ‖Pθ(·|s, a)− Pb(·|s, a)‖1 <
(1−γ)A

γ . It can be shown by Lemma 1 in Strehl and
Littman (2008) that these bounds on the reward and
transition errors lead to at most |Vt(s) − V πt

θKt
(s)| <

2A
(1−γ)2 = ε

2 error, if using the mean reward function in
known states. Because Algorithm 1 uses the internal
reward function even in known states, there is an addi-
tional error less than A

1−γ . However, A
1−γ + ε

2 < ε.

Proof of Theorem. (Sketch) This theorem is a straight-
forward application of Proposition 1 in Strehl et al.
(2006). The theorem requires three conditions: (1)
Optimism: Vt(s) ≥ V ∗(s) − ε. This was shown in
Lemma 3 to hold with probability 1− δ. (2) Accuracy:
Vt(s) − V πt

MKt
(s) ≤ ε. This was shown in Lemma 7

to hold with probability 1 − 2δ. (3) Sample com-
plexity: The number of escape events is bounded by∑
s,a C(s, a). These three conditions are sufficient to

prove the stated bound.


