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Abstract

Utility maximization is a key element of a number of theoretical approaches to explaining

human behavior. Among these approaches are rational analysis, ideal observer theory, and signal

detection theory. While some examples of these approaches define the utility maximization pro-

blem with little reference to the bounds imposed by the organism, others start with, and emphasize

approaches in which bounds imposed by the information processing architecture are considered as

an explicit part of the utility maximization problem. These latter approaches are the topic of this

issue of the journal.
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Utility maximization is a key element of a number of theoretical approaches to

explaining human behavior. Among these approaches are rational analysis (Anderson,

1990), ideal observer theory (Geisler, 2011), and signal detection theory (Swets, Tanner,

& Birdsall, 1961). However, these approaches vary in the extent to which they consider

bounds imposed by the information processing architecture as an explicit part of the

utility maximization problem. At one extreme, rational analyses of, for example, logical

reasoning (Oaksford & Chater, 1994) focus on the explanatory force of statistical

distributions in the environment and require rather little in the way of information

processing bounds. At the another extreme, utility maximization analyses of eye move-

ments explain behavior in terms of limits such as the distribution of rods and cones on

the retina (Geisler, 2011). The current issue of topiCS is focused on examples of

approaches that require not only perceptual information processing bounds but other
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sources of bounds, including cognitive and neural bounds. While there is still substantial

variation, in all cases the articles in this issue consider the limits that these computational

mechanisms impose on utility maximization.

One reaction to this topiCS issue might be surprise that there is anything new to be

said about the relationship between utility maximization, one way to determine a rational

behavior, and bounds. The importance of bounds in limiting human adaptation and there-

fore rationality has been recognized since at least the 1950s (Simon, 1955). Approaches

to explaining this relationship include heuristics (Gigerenzer, 2004), cognitive architec-

tures (Anderson, 1990; Newell, 1990), neurally inspired architectures (McClelland et al.,

2010), and the correct inference approximation algorithms studied by (Sanborn, Griffiths,

and Navarro (2010). However, the details and theoretical implications of the relationship

have varied greatly in these different approaches. We contend that the working definitions

that underpin the articles in the current issue offer something new.

There has been much controversy over the past 20 years of the value of utility maximi-

zation and other optimality-based approaches (Anderson, 1990; Bowers & Davis, 2012;

Chase, Hertwig, & Gigerenzer, 1998; Griffiths & Tenenbaum, 2006; Griffiths, Chater,

Norris, & Pouget, 2012; Oaksford & Chater, 2007; Simon, 1992). The debates have

sometimes been polarized, focusing repeatedly on whether or not people are optimal, or

on the relationship between mechanistic theories and rationalistic theories. For Bowers

and Davis (2012), for example, concerns with Bayesian approaches include the absence

of empirical evidence, the arbitrariness of assumptions concerning priors and utility func-

tions, and the neglect of evolutionary and biological constraints. See Griffiths et al.

(2012) for a reply. For Gigerenzer and Todd (1999), the concern was with the computa-

tional intractability of optimization and the failure of optimization under constraints to

address this problem. Simon (1992) offered a critique of Anderson’s rational analysis in

which he emphasized that the study of an adaptive system is not a “logical study of

optimization,” but an empirical study of the constraints that limit the approach to the

optimum. In contrast, the articles in the current issue have put this debate to one side,

assumed that utility maximization is a valuable theoretical tool, and focused on the way

in which it is used in conjunction with theories of information processing bounds (the

constraints) to explain behavior across a broad range of domains. The issue thereby puts

greater emphasis on cognitive information processing mechanisms than has been evident

in many previous optimization accounts.

In addition to making a commitment to bounds, the articles presented in this issue all

use utility maximization, in some form, to determine a prediction. Lewis et al. provide a

framework for understanding this variation. They argue that behavior can be explained by

solving optimal program problems in which the selection of the programs that guide

behavior is delimited by the bounds set by (a) experience of the environment; (b) infor-

mation processing mechanisms; and (c) subjective utility. These three sources of bounds

define the optimization problem and constitute the theory to be tested. Predictions are

derived by assuming that utility maximizing programs, and therefore optimal strategies,

are selected given these bounds. For these theories, the failure of a prediction to corre-

spond to the data, a sub-optimality, is an opportunity to revise the theory of the bounds
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and generate further empirical tests. In this way, the optimality assumption is maintained

(but not tested). It defines a rigorous class of explanation that can be used in conjunction

with any well-formed theory of the bounds imposed by experience, mechanism, and util-

ity to explain a corresponding behavior.

For Holmes and Cohen, the bounds are initially imposed by what is known about the

computational properties of pools of neurons that are required to perform two alternative

forced-choice tasks (2AFC). They derive an optimal performance curve from these con-

straints using drift diffusion assumptions and test against data. However, they find that

human performance is sub-optimal relative to this model and they therefore propose two

revisions. The first revision reflects human experience and constraints due to a noisy abil-

ity to time reward rates. Timing uncertainty corrupts estimates of reward rate, systemati-

cally biasing performance toward longer decision times. The second reflects the costs of

control and the properties of spiking neurons in the cognitive and neural architectures.

The idea is that participants include the costs associated with the fine adjustment of stra-

tegic parameters, the advantages of which may be small relative to the costs, in their esti-

mates of reward rate. Holmes and Cohen suggest that adoption of these additional bounds

has the potential to provide successful optimality-based explanation of observed two alter-

native forced-choice behaviors. This can be viewed as an illustration of the successful

pursuit of an optimality-based program of research in which the focus is on incrementally

uncovering the mechanism bounds, revealed by gaps between human behavior and vari-

ous optimality analyses.

For Dayan, bounds are imposed by noise that is extant in the neural system but also

by higher level neural mechanisms, such as working memory. These bounds have conse-

quences for performance in tasks in which the choice of action is supported by either

model-based or model-free learning. Given unlimited memory, these tasks could be

solved with internal, model-based search, but unbounded optimization requires consider-

ation of all future moves. As the number of future moves considered by humans must be

bounded by the capacity and operation of the available memory structures, Dayan pro-

poses that heuristic pruning may be an optimal strategy given these bounds. Dayan offers

a rigorous and accessible overview of recent computational theories of how these bounds

might explain the apparent irrationalities of choice.

For Hahn, the bounds are imposed primarily by experience. Hahn shows how experi-

ence of small samples limits perceptions of randomness. It seems that it is an empirical

fact that human perceptions of randomness do not correspond to what would be expected

from an unbounded mathematical analysis of probability. Hahn explains this fact by

pointing out that people have a limited experience, so that it is an individual’s exposure

to a subset of the possible histories, through a distribution of task environments, that

defines the bounds (Hahn & Warren, 2009; Hills & Hertwig, 2010). Experience, thereby,

imposes a much more severe bound on the utility maximization problem faced by an

individual than the assumption that people optimize to some abstract specification of the

task environment.

The focus of Trimmer and Houston’s article is on bounds imposed by the ecology and

by natural selection. It is assumed that the constraints imposed by an animal’s natural
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ecological setting are the adaptation environment. The assumption that an animal is opti-

mized to its natural setting can explain departures from rationality in other settings,

including laboratories. Further, the assumption that the process of natural selection itself

constrains the acquisition of strategies can explain why organisms may sometimes appear

sub-optimal even with respect to their natural ecological settings. Some strategies, for

example, Rescorla–Wagner, may be easier to evolve than others. Again, behavior that is

sub-optimal with respect to one set of constraints can be explained as optimal with

respect to constraints that derive from a thorough analysis of the adaptive problem.

For Halpern, the concern is not to do with bounds imposed by neural information pro-

cessing mechanisms, nor those imposed by natural selection, ecology, or experience;

rather it is to do with how the fundamental theory of computation can be used to reason

about bounded information processing systems in general, whether these systems are

implemented in organisms or agents. To be sure, Halpern et al. use illustrations from

human psychology, but the force of their proposal comes with its application of computa-

tional theory to investigate bounded information processing mechanisms. Computer

Science has established tools for reasoning about computation, which is what brains do,

irrespective of the physical substrate and it is these tools that Halpern et al. describe how

to deploy. Halpern’s contribution is to consider ways of using foundational ideas about

the computational complexity of algorithms and the universality of finite state machines

as tools for explaining the behavior of bounded organisms.

In addition, the issue contains two commentaries. Chater points out that optimality-

based explanations are challenged by how little is known about how or whether brains

represent subjective utility. Chater’s article focuses on differences between theories of

subjective utility as they have been construed and tested in cognitive science and biology

and theories of preferences in economics. Barto discusses a number of issues. One is the

fact that rather than directly delimiting behavior, processing constraints delimit programs,

which in turn delimit behavioral histories. It follows that testing theories of processing

constraints must involve testing the programs that mediate between processing constraints

and behavior. Another issue is the extent to which each of the approaches is sufficient to

account for the costs of computation.

The contributions to this issue point to many unresolved questions. Key among them is

how to build a theory of the utility functions that biological organisms seek to maximize.

While much has been done to answer this question (for a review see Johnson & Buse-

meyer, 2010), it is a question that has been relatively neglected by cognitive scientists,

although see Singh, Lewis, Barto, and Sorg, (2010) in which they define an optimal
reward problem that can be used to derive subjective utility given a bounded agent, envi-

ronment, and objective/external utility function.

Another question concerns the implications of utility maximization for experimental

design. For example, are instructions to be fast and accurate sufficient to control the stra-

tegic response to utility and reveal the signatures of invariant mechanisms in behavior? A

broader question concerns how the behavioral sciences might systematize scientific

knowledge concerning the disparate sources of bounds on behavior. Bounds imposed by

physics, biology, evolution, neural substrates, task environments, cognitive architecture,
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and individual experience all have a role. At present, theories tend to focus on one or

other source of bounds. Many more questions are articulated throughout this issue of the

journal.

To end, we reflect on the fact that the usefulness of optimality analyses does not rest

on the “truth” about a grand claim concerning the optimality or sub-optimality of humans.

Rather, optimality analyses are used as a scientific tool for deriving the implications of

theories of adaptive behavior. When behavior is predicted by such a theory, then that the-

ory moves beyond description to explanation. The theory not only describes what might

be happening but also explains why it happens, a point that has been made by many,

including some of the authors in the current issue.
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