Where Do Rewards Come From?

Satinder Singh
baveja@umich.edu
Computer Science & Engineering
University of Michigan, Ann Arbor

Abstract

Reinforcement learning has achieved broad and successful ap-
plication in cognitive science in part because of its general for-
mulation of the adaptive control problem as the maximization
of a scalar reward function. The computational reinforcement
learning framework is motivated by correspondences to ani-
mal reward processes, but it leaves the source and nature of the
rewards unspecified. This paper advances a general computa-
tional framework for reward that places it in an evolutionary
context, formulating a notion of an optimal reward function
given a fitness function and some distribution of environments.
Novel results from computational experiments show how tra-
ditional notions of extrinsically and intrinsically motivated be-
haviors may emerge from such optimal reward functions. In
the experiments these rewards are discovered through auto-
mated search rather than crafted by hand. The precise form of
the optimal reward functions need not bear a direct relationship
to the fitness function, but may nonetheless confer significant
advantages over rewards based only on fitness.

Introduction

In the computational reinforcement learning (RL) frame-
work (Sutton & Barto, 1998), rewards—more specifically, re-
ward functions—determine the problem the learning agent is
trying to solve. Properties of the reward function influence
how easy or hard the problem is, and how well an agent may
do, but RL theory and algorithms are completely insensitive
to the source of rewards (except requiring that their magni-
tude be bounded). This is a strength of the framework be-
cause of the generality it confers, capable of encompassing
both homeostatic theories of motivation in which rewards are
defined as drive reduction, as has been done in many motiva-
tional systems for artificial agents (Savage, 2000), and non-
homeostatic theories that can account, for example, for the
behavioral effects of electrical brain stimulation and addic-
tive drugs. But it is also a weakness because it defers key
questions about the nature of reward functions.

Motivating the RL framework are the following correspon-
dences to animal reward processes. Rewards in an RL system
correspond to primary rewards, i.e., rewards that in animals
have been hard-wired by the evolutionary process due to their
relevance to reproductive success. In RL, they are thought of
as the output of a “critic” that evaluates the RL agent’s be-
havior. Further, RL systems that form value functions, us-
ing, for example, Temporal Difference (TD) algorithms, ef-
fectively create conditioned or secondary reward processes
whereby predictors of primary rewards act as rewards them-
selves. The learned value function provides ongoing evalu-
ations that are consistent with the more intermittent evalu-
ations of the hard-wired critic. The result is that the local
landscape of a value function gives direction to the system’s
preferred behavior: decisions are made to cause transitions to

Richard L. Lewis
rickl@umich.edu
Department of Psychology
University of Michigan, Ann Arbor

Andrew G. Barto
barto@cs.umass.edu
Department of Computer Science
University of Massachusetts, Amherst

’—> External Environment

Actions Sensations

Internal Environment
Environment

|
»|
- ‘
Rewards

T
Rewards Decisions States

Actions States
Agent

aiin

L

Agent ¢

"Organism"

Figure 1: Agent-environment interactions in reinforcement learn-
ing; adapted from Barto et al. (2004). See text for discussion.

higher-valued states. A close parallel can be drawn between
the gradient of a value function and incentive motivation (Mc-
Clure, Daw, & Montague, 2003).

In the usual view of an RL agent interacting with an ex-
ternal environment (left panel of Figure 1), the primary re-
ward comes from the external environment, being generated
by a “critic” residing there. But as Sutton and Barto (1998)
and Barto, Singh, and Chentanez (2004) point out, this is a
seriously misleading view of RL if one wishes to relate this
framework to animal reward systems.

In a less misleading view of this interaction (right panel
of Figure 1), the RL agent’s environment is divided into ex-
ternal and internal environments. For an animal, the inter-
nal environment consists of the systems that are internal to
the animal while still being parts of the learning system’s
environment. This view makes it clear that reward signals
are always generated within the animal, for example, by its
dopamine system. Therefore, all rewards are internal, and
the internal/external distinction is not a useful one, a point
also emphasized by Oudeyer and Kaplan (2007). This is the
viewpoint we adopt in this paper.

But what of a distinction between intrinsic and extrinsic
reward? Psychologists distinguish between extrinsic motiva-
tion, which means doing something because of some specific
rewarding outcome, and intrinsic motivation, which refers to
“doing something because it is inherently interesting or en-
joyable” (Ryan & Deci, 2000). According to this view, in-
trinsic motivation leads organisms to engage in exploration,
play, and other behavior driven by curiosity in the absence of
explicit reinforcement or reward.

Barto et al. (2004) used the term intrinsic reward to re-
fer to rewards that produce analogs of intrinsic motivation in
RL agents, and extrinisic reward to refer to rewards that de-
fine a specific task as in standard RL applications. We use
this terminology here, but the distinction between intrinsic

2601

and extrinsic reward is difficult to make precise. Oudeyer and
Kaplan (2007) provide a thoughtful typology. Space does not
permit providing more detail, except to point out that a wide
body of data shows that intrinsically motivated behavior does
not occur because it had previously been paired with the sat-
isfaction of a primary biological need in the animal’s own
experience (Deci & Ryan, 1985). That is, intrinsic reward is
not the same as secondary reward. It is likely that the evo-
lutionary process gave exploration, play, discovery, etc., pos-
itive hedonic valence because these behaviors contributed to
reproductive success throughout evolution. Consequently, we
regard intrinsic rewards in the RL framework as primary re-
wards, hard-wired from the start of the agent’s life. Like any
other primary rewards in RL, they come to be predicted by the
value system. These predictions can support secondary rein-
forcement so that predictors of intrinsically rewarding events
can acquire rewarding qualities through learning just as pre-
dictors of extrinsically rewarding events can.

In short, once one takes the perspective that all rewards
are internal (Figure 1), it is clear that the RL framework nat-
urally encompasses and provides computational clarity to a
wide range of reward types and processes, and thus has the
potential to be a source of great power in explaining behav-
ior across a range of domains. But fully realizing this scien-
tific promise requires a computational framework for reward
itself—a principled framework with generative power. Our
main purpose here is to specify and illustrate a candidate for
such a framework with the following desired properties:

Criteria for a Framework for Reward

1. The framework is formally well-defined and computation-
ally realizable, providing clear answers to the questions of
what makes a good reward and how one may be derived.

2. The framework makes minimal changes to the existing RL
framework, thereby maintaining its generality.

3. The framework abstracts away from specific mechanisms
associated with RL agents, such as whether their learning
mechanisms are model-based or model-free, whether they
use options or other kinds of richer internal structure, etc.
But it is in principle powerful enough to exploit such agent
structure when present.

4. The framework does not commit to specific search pro-
cesses for finding good reward functions, but it does define
and give structure to the search problem.

5. The framework derives rewards that capture both intrinsic
and extrinsic motivational processes.

Taken together, these features of our framework distin-
guish it from other efforts aimed at deriving or specify-
ing the form of reward functions, e.g., Schmidhuber (1991);
Singh, Barto, and Chentanez (2005); Ng, Harada, and Rus-
sell (1999). While these computational approaches are all
valuable explorations of reward formulations, they still in-
corporate some notion of pre-defined extrinsic reward, and

are not concerned with explaining how their intrinsic rewards
come about. Closer to our aims is early work by Ackley and
Littman (1991) and recent work by Uchibe and Doya (2008).
The former differs from our work in that it directly evolves
secondary reward functions and lacks a theoretical frame-
work. The latter proposes a specific mechanism—embodied
evolution—for evolving primary reward but is still concerned
with combining intrinsic and extrinsic rewards, depending on
specialized RL algorithms for guaranteeing that the asymp-
totic policy does not differ from the one implied by the ex-
trinsic reward. The framework we propose here shares the
goal of providing an evolutionary basis, but dispenses with
pre-defined extrinsic rewards and seeks maximum generality
in its theoretical formulation.

Optimal Rewards

Adopting an evolutionary perspective leads naturally to an ap-
proach in which adaptive agents, and therefore their reward
functions, are evaluated according to their expected fitness
given an explicit fitness function and some distribution of en-
vironments of interest. The fitness function maps trajectories
of agent-environment interactions to scalar fitness values, and
may take any form (including functions that are similar in
form to discounted sums of extrinsic rewards).

Definition More specifically we define the notion of opti-
mal reward as follows. For a given RL agent A, there is a
space, Ry, of reward functions that map an agent’s state to
a scalar primary reward that drives reinforcement learning.
The composition of the state can depend on the agent archi-
tecture and its learning algorithm. There is a distribution over
Markov decision process (MDP; Sutton and Barto (1998))!
environments in some set £ in which we want our agents
to perform well (in expectation). A specific reward function
r4 € R4 and a sampled environment E € ‘E produces A, the
history of agent A adapting to environment E using the re-
ward function r4. A given fitness function F' produces a scalar
evaluation F (k) for all such histories . An optimal reward
function r} € Ry4 is the reward function that maximizes the
expected fitness over the distribution of environments.

The formulation is very general because the constraints on
A, Ry, F, and E are minimal. A is constrained only to be an
agent that uses a reward function r4 € Ry to drive its search
for behavior policies. F is constrained only to be a function
that maps (finite or infinite) histories of agent-environment
interactions to scalar fitness values. And Z is constrained
only to be a set of MDPs, though the Markov assumption can
be easily relaxed. (We leave this to future work.)

Regularies within and across enviroments The above
formulation essentially defines a search problem—the search
for r;. This search is for a primary reward function and is

! An MDP is a mathematical specification of agent-environment
interaction in which the environment can be in one of a number of
states, at each time step the agent executes an action from a set of
available actions, which stochastically changes the state of the envi-
ronment to a next state, and a scalar reward is delivered to the agent.

2602

to be contrasted with the search problem faced by an agent
during its lifetime, that of learning a good value function,
and hence a good secondary reward function, specific to its
environment. Thus, our concrete hypothesis is (1) the) de-
rived from search will capture physical regularities across en-
vironments in ‘£ as well as complex interactions between £
and specific structural properties of the agent A (note that the
agent A is part of its environment and is constant across all
environments in E), and (2) the value functions learned by
an agent during its lifetime will capture regularities present
within its specific environment that are not necessarily shared
across environments.

Two Sets of Computational Experiments

We now describe a set of computational experiments in which
we directly specity A, F, and ‘E, and derive r; via search.
These experiments are designed to serve three purposes.
First, they will provide concrete and transparent illustrations
of the basic framework above. Second, they will demonstrate
the emergence of interesting reward function properties that
are not direct reflections of the fitness function—including
features that might be intuitively recognizable as candidates
for plausible intrinsic and extrinsic rewards in natural agents.
Third, they will demonstrate the emergence of interesting re-
ward functions that capture regularities across environments,
and similarly demonstrate that value function learning by the
agent captures regularities within single environments.

Basic form of each experiment

Both experiments use a simulated physical space shown by
the 6 x 6 gridworld in Figure 3 (the arrows in that figure are
explained below). It consists of four subspaces (of size 3 x 3).
There are four movement actions, North, South, East and
West, that if successful move the agent probabilistically in
the direction implied, and if they fail leave the agent in place.
The thick black lines in the figure represent barriers that the
agent cannot cross, so that the agent has to navigate through
gaps in the barriers to move to adjacent subspaces. The agent
lives continually for its lifetime, i.e., the interaction is not di-
vided into trials or episodes. Each experiment will introduce
objects into the gridworld such as food, water, or boxes. The
state includes the agent’s location in the grid as well as other
features relevant to each experiment. These features and other
experiment-specific aspects (e.g., the fitness functions used)
are described in the appropriate sections below.

Our agents use the e-greedy Q-learning (Watkins, 1989)
algorithm to learn during their lifetimes. This algorithm has
three types of parameters: 1) Qp, the initial Q-function (we
use small values chosen uniformly randomly from the range
[—0.001,0.001]) that maps state-action pairs to their expected
discounted sum of future rewards, 2) o, the learning rate, and
3) €, the exploration parameter (at each time step the agent
executes a random action with probability € and the greedy
action with respect to the current Q-function with probability
(1 —g)). Attime step ¢, the current state is denoted s;, the cur-
rent Q-function is denoted Q;, the agent executes an action a;,

and the Q-learning update is as follows:

Orv1(s,ar) = (1 —) Qs (s7,a;) + Ofry 4+ ymaxy, (O (s:41,b)],
where r; is the reward specified by reward function r4 for
the state s;, and 7y is a discount factor that makes immedi-
ate reward more valuable than later reward (we use y = 0.99
throughout). It is well known that the form of Q-learning
used above will converge asymptotically to the optimal Q-
function and hence the optimal policy (Watkins, 1989). Thus,
our agent uses its experience to continually adapt its action
selection policy to improve the discounted sum of rewards, as
specified by ry4, that it will obtain over its future (remaining
in its lifetime). Note that the reward function is distinct from
the fitness function F.

The psuedo-code below describes how we use simula-
tion to estimate the mean cumulative fitness for a reward
function r4 given a particular setting of learning parameters
(o, €).

set (o, €)

fori=1toN do

Sample an environment E; from .
In A, intialize Q-function
Generate a history #; over lifetime T for A and E;
Compute fitness F(h;)
end for
return average of {F(hy),...,F(hy)}

In the experiments we report below, we estimate the mean
cumulative fitness of r4 as the maximum estimate obtained
(using the pseudo-code above) over a coarse discretization of
the space of feasible (a.,€) pairs.

Finding good reward functions for a given fitness function
thus amounts to a large search problem.?

Hungry-Thirsty Domain: Emergent Extrinsic
Reward for Water

In this experiment, each sampled environment has two
randomly-chosen special locations (from among the 4 cor-
ners and held fixed throughout the lifetime of the agent): one
where there is always food available, and one where there
is always water available. In addition to the movement ac-
tions, the agent has two special actions available: eat, which
has no effect unless the agent is at the food location, where
it causes the agent to consume food, and drink, which has
no effect unless the the agent is at the water location, where it
causes the agent to consume water. When the agent eats food,
it becomes not-hungry for one time step, after which it be-
come hungry again. When the agent drinks water, it becomes
not-thirsty for a random period of time (when not-thirsty, it
becomes thirsty with probability 0.1 at each successive time
step). Each time step the agent is not-hungry, its fitness is in-
cremented by one. There is no fitness directly associated with

%In our experiments we conducted exhaustive searches over a
discretized parameter space because our focus is on demonstrating
the generality of our framework and on the nature of the reward func-
tions found. However, there is structure to the space of reward func-
tions (as we illustrate through our experiments) that we will exploit
in future work to gain computational efficiency.

2603

Mean Fitness Growth of 3,240 Rewards

8000
|

— Best reward
— — Best fitness-based reward
+ Best simple fitness based reward
Other rewards

— Bestreward

6000

Mean Cumulative Fitness
4000
L

2000
I

10000 20000 30000 40000 50000 60000 70000
I

Mean Cumulative Time Steps Not Thirsty

0
L

= = Bestfitness-based reward
+ Best simple fitness based reward
Other rewards

Mean Growth in Time Steps Not Thirsty

Max Fitness as a Function of Thirst Penalty

best possible with
thirst penalty \

. 1.

best possible W|th0ut/

thirst penalty .

8000

. - v .

4000 6000
I

Maximum Cumulative Fitness
2000
L

.

P
p—
..........
ey

.
ol me m»s a -

0 20000 40000 60000 0 20000
Time Step in an Agent Lifetime

Time Step in an Agent Lifetime

40000 60000 -0.4 -02 00 02 04
Thirst Penalty While Hungry (hnt — ht)

Figure 2: Results from Hungry-Thirsty Domain. See text for an explanation.

water at all. However being thirsty has a special effect: when
the agent is thirsty, its eat action fails. Thus, the agent cannot
just “hang out” at the food location and keep eating because at
some point it will become thirsty and eating will fail. What is
constant across environments is that there is food and there is
water, that not-thirsty switches to thirsty with probability 0.1
on each step, and that being thirsty makes the agent incapable
of eating. What varies across environments is the location of
food and water. The state for use in Q-learning was four di-
mensional: the x and y coordinates of the agent’s location and
the binary thirst and hunger status features. We used only the
hunger and thirst status features to define the space of reward
functions. More specifically, the four combinations of hunger
and thirst mapped to values chosen from a discretization of
the range [—1.0, 1.0]; there were 3,240 different such reward
functions considered; we provide some examples below.
Figure 2 presents some of our results. In this experiment as
well as in the next, we distinguish between three increasingly-
general classes of reward functions: 1) simple fitness-based
reward functions that can assign positive reward to events
that increment fitness (in this case being not-hungry) and zero
to everything else, 2) fitness-based reward functions that can
choose two arbitrary reward values, one for events that in-
crement fitness (in this case being not-hungry) and another
for all other events, and 3) other reward functions that are
unconstrained (except by their range). The first interesting
result (seen in the left panel) is that many reward functions
outperform the fitness-based reward functions throughout the
lifetime (of 75,000 time steps) in terms of mean cumulative
fitness.> The best simple fitness-based reward function does
very poorly.* The best reward function in our search space as-
signs a reward of —0.05 to the agent being hungry and thirsty,
a larger but still negative reward of —0.01 to the agent being

3Here and in all subsequent comparisons of expected fitness val-
ues between reward types, the comparisons are highly statistically
significant at the p < 1072 level, using paired ¢ tests appropriate to
the structure of our computational experiments.

4Presumably because it cannot take advantage of the added ex-
ploration provided by an optimistic initialization of Q-functions be-
cause it cannot realize negative rewards.

hungry and not-thirsty, and positive rewards of 1.0 to being
not-hungry and thirsty, and 0.5 to being not-hungry and not-
thirsty. It is apparent that this reward function differentiates
based on the thirst status of the agent.

i P
! t
! t
| ik
y t
W Tt

Hungry & Thirsty Hungry & Not Thirsty

Figure 3: Policy for a single agent in Hungry-Thirsty Domain. See
text for an explanation.

We illustrate this in the rightmost panel of Figure 2, which
shows how fitness is sensitive to the magnitude of the penalty
that the reward functions provide for being thirsty. We com-
pute this penalty as the difference between the reward for
(hungry, not-thirsty) and (hungry, thirsty). (We ignore the
cases where the agent is not-hungry because they occur so
infrequently). Each point in the graph plots the maximum
mean cumulative fitness obtained over all reward functions
with the same penalty. The vertical dotted axis separates pos-
itive penalties from negative penalties, and the horizontal dot-
ted axis is the performance of the best fitness-based reward
function, which by definition has a penalty of exactly zero.
Noteworthy is that all the reward functions that outperform
the best fitness-based reward function have a positive thirst
penalty. Indeed, the performance is quite sensitive to the thirst
penalty and peaks at a value of 0.04, i.e., not just any penalty
for thirst will work well—only a relatively narrow and peaked
region of thirst penalty outperforms the best reward functions
that are insensitive to thirst. Another view of this result is seen
in the middle panel of Figure 2 that plots the mean growth in
the number of time steps the agent is not-thirsty as a function
of time for the different reward functions. The best reward
function is somewhere in the middle of the range of curves;

2604

clearly other reward functions can keep the agent not-thirsty
far more often but do not achieve high cumulative fitness be-
cause they make being not-thirsty so rewarding that they pre-
vent the agent from eating often enough.

Turning next to what happens within each lifetime or en-
vironment, the Q-learning performed by the agent produces
a policy specific to the location of the food and water. This
policy takes the agent back and forth between food and water,
even though water does not directly contribute to cumulative
fitness. This can be seen by inspecting Figure 3, which shows
the policy learned by one of our agents (split into two panels:
the right panel showing the actions when the agent is hungry
and thirsty, and the left panel showing the policy when it is
hungry and not-thirsty).’

Boxes Domain: Emergent Intrinsic Reward for
Exploration and Manipulation

In this experiment, each sampled environment has two boxes
placed in randomly chosen special locations (from among the
4 corners and held fixed throughout the lifetime of the agent).
In addition to the usual movement actions, the agent has two
special actions: open, which opens a box if it is closed and
the agent is at the location of the box and has no effect oth-
erwise (when a closed box is opened it transitions first to a
half-open state for one time step and then to an open state),
and eat, which has no effect unless the agent is at a box loca-
tion, the box at that location is half-open, and there happens to
be food (prey) in that box, in which case the agent consumes
that food. A closed box always has food. The food always
escapes when the box is open. Thus to consume food, the
agent has to find a closed box, open it, and eat immediately in
the next time step when the box is half-open. When the agent
consumes food it feels not-hungry for one time step and its
fitness is incremented by one. An open box closes with prob-
ability 0.1 at every time step. The state used for Q-learning
was 6 dimensional: the x and y coordinates of the agent’s lo-
cation, the agent’s hunger-status, the open/half-open/closed
status of both boxes, as well the presence/absence of food in
the square where the agent is located. We considered reward
functions that map each possible combination of the status of
the two boxes and hunger-status to values chosen from a dis-
cretization of the range [—1.0, 1.0] (we searched over 54,000
rewards in this space).

Unchanging across environments is the presence of two
boxes and the rules governing food. Changing across
environments—but held fixed within a single environment—
are the locations of the boxes.

In a different design from the first experiment, we ran this
experiment under two conditions. In the first, called the con-
stant condition, the food appears in closed boxes throughout

SWe only show the policy in the two subspaces containing the
food and water because after learning the agent basically moves up
and down the corridor connecting food with water and only departs it
due to random exploration. Thus the agent gets very little experience
in the other subspaces, and its policy there is mostly random. The
policy off this corridor in the two right subspaces is mostly correct
(the exceptions are the three locations marked with stars).

each agent’s lifetime of 10,000 steps. In the second, called
the step condition, each agent’s lifetime is 20,000 steps, and
food appears only in the second half of the agent’s lifetime.
Thus in the step condition, it is impossible to increase fitness
above zero until after the 10,000" time step. The step condi-
tion simulates (in extreme form) a developmental process in
which the agent is allowed to play in its environment for a pe-
riod of time in the absence of any fitness-inducing events. (In
this case, the fitness-inducing events are positive, but in gen-
eral there could also be negative ones that risk physical harm.)
Thus, a reward function that confers advantage through expo-
sure to this first phase must reward events that have only a
very distal relationship to fitness. Through the agent’s learn-
ing processes, these rewards give rise to the agent’s intrinsic
motivation. Notice that this should happen in both the step
and constant conditions; we simply expect it to be more strik-
ing in the step condition.

The left and middle panels of Figure 4 shows the mean
cumulative fitness as a function of time under the two con-
ditions. As expected, in the step condition, fitness remains
zero under any reward function for the first 10,000 steps. The
best reward function for the step condition is as follows: be-
ing not-hungry has a positive reward of 0.5 when both boxes
are open and 0.3 when one box is open, being hungry with
one box half-open has a small negative reward of —0.01, and
otherwise being hungry has a reward of —0.05. (Note that
the agent will spend most of its time in this last situation.)
Clearly, the best reward function in our reward space rewards
opening boxes (by making their half-open state rewarding rel-
ative to other states when the agent is hungry). This makes the
agent learn to open boxes during the first half of the step con-
dition so that when food appears in the second half, the agent
is immediately ready to exploit that situation. This is reflected
in the nearly constant slope from step 10,000 onwards of the
mean cumulative fitness curve of the best reward function. In
contrast, the curve for the best fitness-based reward function
has an increasing slope because the agent has to learn from
step 10,000 onwards that opening boxes leads to food. The
policy learned under the best reward function makes the agent
run back and forth between the two boxes, eating from both
boxes, because this leads to higher fitness than staying at, and
taking food from, only one box. This can be seen indirectly
in the rightmost panel where the mean number of times both
boxes are open is plotted as a function of time. It is clear that
an agent learning with the overall best reward function keeps
both boxes open far more often than one learning from the
best fitness-based reward.

Discussion and Conclusions

We have outlined a general computational framework for re-
ward that complements existing RL theory by placing it in an
evolutionary context. This context clarifies and makes com-
putationally precise the role of evolved reward functions: they
convert distal pressures on fitness into proximal pressures on
immediate behavior. We presented several computational ex-

2605

Mean Fitness Growth (CONSTANT)

600
|
600
|

—— Best reward

— — Bestfitness-based reward
+ Best simple fitness based reward
Other rewards

—— Best reward
— — Best fitness-based reward

« Best simple fitness based reward
Other rewards

500
I
500
I

300
I
300
I

200
I

Mean Cumulative Fitness
200
L

Mean Cumulative Fitness

Mean Fitness Growth (STEP)

Mean Growth in Both Boxes Open (STEP)

6000

—— Best reward

— — Bestfitness-based reward

+ « + Best simple fitness based reward
Other rewards

2000 3000 4000 5000
I I I I

Mean Cumulative Both Boxes Open

1000
I

r T T T T 1 r T
0 2000 4000 6000 8000 10000 0 5000

Time Step in an Agent Lifetime

Time Step in an Agent Lifetime

T T 1 r T T T
10000 15000 20000 0 5000 10000 15000 20000

Time Step in an Agent Lifetime

Figure 4: Results from Boxes Domain. See text for an explanation.

periments that serve to draw out and provide empirical sup-
port for two key properties of the framework.

First, multiple aspects of the domain may emerge to in-
fluence a single reward function. The combination of these
multiple aspects is implicit in the form of the optimal reward
function. Its precise properties are determined by the global
goal of producing high fitness, but the relationship between
the optimal reward function and fitness may be quite indi-
rect. In the Hungry-Thirsty domain, two aspects of reward
emerged, one related to food and hunger (directly related to
fitness), and one related to thirst and water (not directly re-
lated to fitness). Both aspects were combined in a single
function that represented a delicate balance between the two
(Figure 2). In the Boxes domain, the optimal reward func-
tion related food and hunger (directly related to fitness), and
curiosity and manipulation of boxes (not directly related to
fitness). The latter aspect of the optimal reward produced dis-
tinct play and exploratory behavior that would be thought of
as intrinsically-motivated in the psychological sense. This
was especially evident in the second condition of the Boxes
experiment: during the first half of the agent’s lifetime, no
fitness-producing activities are possible, but intrinsically re-
warding activities are pursued that have fitness payoff later.

The second key property of the framework is that two kinds
of adaptation are at work: the local adaptation of the RL agent
within a given environment, and the global adaptation of the
reward function to both a population of environments and the
structure of the agent itself. The two kinds of adaptation are
apparent in both experiments. In the Hungry-Thirsty domain,
each agent benefits from the regularity across environments
that drinking water ultimately helps it to achieve fitness—a
regularity captured in the optimal (primary) reward function.
Each agent also learns the specific locations of water and food
sources in a given environment and good navigation patterns
between them—regularities captured in the value functions
learned by RL (Figure 3). Similarly, in the Boxes domain,
each agent benefits from the regularity across environments
that food is to be found in boxes, but also learns how to navi-
gate to the specific locations of boxes in a given environment.

Acknowledgements Satinder Singh and Andrew
Barto were supported by AFOSR grant FA9550-08-
1-0418. Richard Lewis was supported by ONR grant
NO000140310087. Any opinions, findings, conclusions or
recommendations expressed here are those of the authors and
do not necessarily reflect the views of the sponsors.

References

Ackley, D. H., & Littman, M. (1991). Interactions between learning
and evolution. Artificial Life Il, SFI Studies in the Sciences of
Complexity.

Barto, A. G., Singh, S., & Chentanez, N. (2004). Intrinsically moti-
vated learning of hierarchical collections of skills. In Proceedings
of the international conference on developmental learning.

Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-
determination in human behavior. N.Y.: Plenum Press.

McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A compu-
tational substrate for incentive salience. Trends in Neurosciences,
26, 423-428.

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under
reward transformations: Theory and application to reward shap-
ing. In Proceedings of the sixteenth international conference on
machine learning. Morgan Kaufmann.

Oudeyer, P.-Y., & Kaplan, F. (2007). What is intrinsic motivation?
A typology of computational approaches. Frontiers in Neuro-
robotics.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic moti-
vations: Classic definitions and new directions. Contemporary
Educational Psychology, 25, 54-67.

Savage, T. (2000). Artificial motives: A review of motivation in
artificial creatures. Connection Science, 12,211-277.

Schmidhuber, J. (1991). A possibility for implementing curios-
ity and boredom in model-building neural controllers. In From
animals to animats: Proceedings of the first international con-
ference on simulation of adaptive behavior (p. 222-227). Cam-
bridge, MA: MIT Press.

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically mo-
tivated reinforcement learning. In Advances in neural informa-
tion processing systems 17: Proceedings of the 2004 conference.
Cambridge MA: MIT Press.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.

Uchibe, E., & Doya, K. (2008). Finding intrinsic rewards by em-
bodied evolution and constrained reinforcement learning. Neural
Networks, 21(10), 1447-1455.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. Un-
published doctoral dissertation, Cambridge University, England.

Wolfe, A. P, Tran, T., & Barto, A. G. (2008). Evolving reward and
initial value functions (Tech. Rep.). Amherst, MA: University of
Massachusetts, Department of Computer Science.

2606

