
Adaptive Cognitive Orthotics: Combining Reinforcement Learning
and Constraint-Based Temporal Reasoning

Matthew Rudary mrudary@umich.edu
Satinder Singh baveja@umich.edu
Martha E. Pollack pollackm@umich.edu

Computer Science and Engineering, University of Michigan, Ann Arbor, 48109

Abstract

Reminder systems support people with im-
paired prospective memory and/or executive
function, by providing them with reminders
of their functional daily activities. We inte-
grate temporal constraint reasoning with re-
inforcement learning (RL) to build an adap-
tive reminder system and in a simulated en-
vironment demonstrate that it can personal-
ize to a user and adapt to both short- and
long-term changes. In addition to advanc-
ing the application domain, our integrated
algorithm contributes to research on tempo-
ral constraint reasoning by showing how RL
can select an optimal policy from amongst a
set of temporally consistent ones, and it con-
tributes to the work on RL by showing how
temporal constraint reasoning can be used to
dramatically reduce the space of actions from
which an RL agent needs to learn.

1. Introduction

Reinforcement learning (RL) has been successfully ap-
plied to a number of problems in control and opera-
tions research, but there have been relatively few ap-
plications to the design of human-computer interac-
tion (HCI) systems; notable exceptions include Singh
et al. (2002) and Roy et al. (2000). In this paper, we
describe the use of RL and temporal constraint rea-
soning to induce an effective interface for a cognitive
orthotic system—a system intended to support people
with impaired memory and/or executive function, by
providing suitable reminders of functional daily activi-
ties. The goal of such systems is to increase the auton-

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

omy of cognitively impaired persons, allowing them to
be more self-sufficient. For these systems to be usable
by cognitively impaired people, they must have inter-
faces that are extremely intuitive and straightforward,
and hence the timing and content of the interactions
must be carefully considered. Moreover, because peo-
ple differ from one another in many regards, and be-
cause even an individual user will change over time—
particularly if she has progressive cognitive decline—
the interactions must be personalized to the needs of
the user, and adaptive to both short- and long-term
changes in those needs. For these reasons, simple in-
teraction strategies such as always issuing a direct re-
minder for every activity at its earliest possible exe-
cution time are unlikely to maximize user compliance,
user satisfaction, or the preservation of user autonomy.

We have therefore adopted an approach of learning ef-
fective strategies for interacting with the user of a cog-
nitive orthotic system. Specifically, we use reinforce-
ment learning (RL) to induce an interaction policy, a
function from features of the current state (e.g., the
time of day, the timing of the previous interaction, the
user’s mood, and the actions she is supposed to per-
form) to interface actions, including if and when to is-
sue a reminder to perform a certain activity. From the
perspective of RL, there is at least one rather unusual
and interesting challenge in building adaptive cogni-
tive orthotic systems. In general in RL systems, the
set of actions available in every state is either fixed
or at least quite easy to determine. In contrast, in
our application, determining the set of actions avail-
able in the current state is itself an NP-hard problem.
At any point in time, the system may issue reminders
about any of the activities that the user might perform
at that time and that would allow successful comple-
tion of the current plan. But this set of legitimate
actions depends on the history of the user’s activities
so far as well as on the details of the user’s daily plan,
which in general will contain a number of complex tem-



poral constraints, including disjunctive temporal con-
straints; it is the extraction of the set of currently le-
gitimate actions from the plan that is computationally
hard. Although in principle we could specify that the
fixed set of actions for every state is the collection of all
possible reminders that the system might take at any
time during the day, in practice this approach is highly
inefficient. We therefore integrate two powerful tech-
nologies: constraint-based temporal reasoning, which
employs powerful heuristics and pruning strategies to
efficiently determine what actions are legitimate in the
current state, and RL to learn from experience which
of the legitimate actions is optimal there.

Much of the related work on adaptive user interfaces
uses supervised learning methods to infer a user pref-
erence (or utility) function (e.g., Fiechter & Rogers,
2000; Gervasio et al., 1999; Thompson et al., 2004).
This is feasible in domains in which direct or indirect
feedback from the user is available at every step of
the interaction. In our domain, on the other hand,
no such feedback is available and thus we face a se-
quential decision making problem with delayed reward,
i.e., a RL problem (Sutton & Barto, 1998). There has
been previous work on using RL in scheduling prob-
lems (e.g., Zhang & Dietterich, 1995) but it has fo-
cused on using RL to learn search control rules for
finding complete conflict-free schedules. In contrast,
we use RL to deterime optimal schedules from amongst
conflict-free alternatives found through temporal con-
straint reasoning. Moreover, in our domain a complete
schedule cannot be determined all at once, but must
be constructed in an interleaved fashion with its exe-
cution.

In a series of experiments with a simulated user and
environment, we demonstrate that our approach re-
sults in a personalized and adaptive cognitive orthotic
system. In addition to our contribution to the appli-
cation domain, our integrated learning algorithm also
contributes to research on temporal constraint reason-
ing by showing how RL can be used to select an op-
timal policy from among temporally consistent ones,
and it contributes to the work on RL by showing how
temporal constraint reasoning can be used to reduce
the space of actions from which an RL agent needs to
learn.

2. Cognitive Orthotic Systems

Cognitive-orthotic systems (also called assistive tech-
nology for cognition) are designed to help people with
cognitive impairment better manage their daily activi-
ties; see LoPresti et al. (2004) for an overview of these
systems. We focus here on schedule-management sys-

Table 1. A realistic plan of daily activities for a target user.

Activity Start time Duration Notes

TakeMeds1 6:00–7:00 1–2 min 1
TakeMeds2 9:00–10:00 1–2 min 1
TakeMeds3 12:00–13:00 1–2 min 1
TakeMeds4 14:00–15:00 1–2 min 1
TakeMeds5 17:00–18:00 1–2 min 1
TakeMeds6 20:00–21:00 1–2 min 1

EatBreakfast 6:30–8:00 10–20 min 2
GotoSC 8:30–8:35 1–5 min 4

PrepareLunch
(disjunctive)

6:00–7:00
11:15–12:30

5–10 min

EatLunch 11:30–13:00 10–20 min 3
CookDinner 17:40–19:10 20–30 min
EatDinner 18:00–19:30 15–30 min 5

CleanKitchen
(disjunctive)

6:40–7:40
18:15–21:00

15–20 min 6

Bathe 19:00–21:00 10–15 min 7
Exercise 16:30–20:30 20 min 8

Notes for the last column of Table 1
1. At least 2.5 hrs and no more than 3.5 hrs between
successive TakeMeds actions.
2. At least 30 minutes between the end of TakeMeds1 and
the beginning of EatBreakfast.
3. Start of EatLunch must follow end of PrepareLunch.
4. Go to the senior center. Must follow end of EatBreak-
fast.
5. Start of EatDinner must follow end of CookDinner.
6. If in the morning, start of CleanKitchen must follow end
of EatBreakfast. Otherwise, start of CleanKitchen must
follow end of EatDinner.
7. Start of Bathe must follow end of EatDinner.

8. If before dinner, end of Exercise must precede start of

EatDinner by at least 10 minutes. If after dinner, start

of Exercise must follow end of EatDinner by at least 20

minutes. Must end before start of Bathe.

tems, which provide reminders about multiple activi-
ties, in the context of a daily plan. In particular, we
modify and extend an existing schedule-management
system, Autominder (Pollack et al., 2003), to allow
personalization and short- and long-term adaptation.
Autominder has three major components: a plan man-
ager, which models and maintains status information
about the user’s plan of daily activities, a client mod-
eler, which processes information obtained from sen-
sors to infer whether and when activities have been
performed, and a reminder generation module, which
reasons about discrepancies between what the user is
supposed to do and what she has been observed doing,
and on that basis, determines what reminders to issue.

As illustration, Table 1 shows a typical example of
a plan of daily activities and constraints among them.
Note that in this plan, a user is supposed to eat break-
fast no sooner than 30 minutes after taking the first
medicine of the morning. Autominder will not have



a fixed a priori time for issuing an eat-breakfast re-
minder, but will instead set the time for eating break-
fast based on its determination of when the user actu-
ally takes the first medicine. But should a reminder be
issued for eat-breakfast at all, and if so, when? At min-
imum, if the user is observed to eat breakfast on her
own, before a prompt is issued, Autominder should not
issue a reminder. Beyond this, a simple scheme, such
as always issuing the reminder at the earliest possible
time, may not be optimal for several reasons. First,
such an approach may make the user overly reliant
on the system, with the undesirable effect of decreas-
ing, rather than increasing, her independence. Second,
consider the action of cleaning the kitchen, which, in
the sample plan, may be done in the morning or the
evening. If the user prefers to do it in the evening,
then a morning reminder may only serve to annoy the
user and thus be ignored. Finally, a failure to consider
interactions between reminders may lead to unaccept-
able sequences of reminders, for example, reminding
the user to get up and go take medicine, and then,
just as she’s returned to sit down, reminding her to
get up and go prepare lunch. Other criticisms apply
to other overly simplistic schemes.

In the versions of Autominder that are currently be-
ing used in field tests, the decisions about whether and
when to issue a reminder are made using an iterative
refinement process, which starts with a simple initial
reminder plan that in fact includes a reminder for ev-
ery activity not yet done, at its earliest execution time.
This initial plan is then successively rewritten, using
hand-crafted rules and a local-search mechanism, un-
til it is determined to be of sufficiently high quality
when a hand-crafted evaluation rule is applied. This
process is repeated whenever there is a change in the
execution status of the user plan. This approach to re-
minder generation is limited for several reasons. First,
it is difficult and costly to manually specify the rewrite
rules and evaluation function, and in order to achieve
the goal of personalization, they would have to be re-
designed for each user. Second, even if this were done,
there is no good way to evaluate their quality. Third,
manually specified rules are fixed, and thus not adap-
tive to changes in the user’s needs.

3. System Architecture

To address the limitations just discussed, we employ
RL to infer an optimal interaction policy for each user
of the cognitive orthotic system. Our learning archi-
tecture, depicted in Figure 1, has the same compo-
nents as many standard RL-based learning architec-
tures (e.g., Sutton & Barto, 1998) except for the ad-

ditional dynamic action proposer component that is
novel to this application. The environment, which con-
sists of the user, her physical surroundings, and the
sensors, are simulated in our current experiments and
described in detail in Section 4. The state estimator
and actuators are original Autominder components.
Autominder’s Client Modeler performs state estima-
tion; however, for our initial experiments, we assumed
that the sensors provide perfect information about ac-
tivities performed, and little actual inference is done
by this module. Actuation is similarly quite simple
in our experiments, and involves issuing a specific re-
minder, which is then input to the simulator. The
most interesting component is the action proposer.

Environment

User

Sensors

Sensors

State Estimator

Client Modeler

Agent

Actuators

Reminder Production

Action Proposer

Plan Manager

Payoff

True State

Percepts

Estimated

State
Selected Actions

Actions

Plan

Figure 1. The architecture of the RL system for an
adaptive interface to the Autominder cognitive orthotic.
Generic RL components are in Roman typeface; compo-
nents from Autominder are in bold; and components in
the simulator are italicized.

3.1. Action Proposer: Temporal Constraint
Based Reasoning

At the start of a day, the system is given the user’s
plan, i.e., a record of all activities the user is supposed
to perform, along with constraints on the times and
manner of their performance. The action proposer has
to compute which activities, if any, the user can do
at each time step while still allowing the remaining
activities to be done without violating any constraints.
This is a challenging task and we adapt Autominder’s
Plan Manager to this end.

The plan is modeled as a Disjunctive Temporal
Problem (DTP), a constraint-satisfaction problem <
V,C >, where V is a set of time points and C is a set
of constraints of the form [l1 ≤ x1 − y1 ≤ u1] ∨ [l2 ≤
x2 − y2 ≤ u2] ∨ . . . [ln ≤ xn − yn ≤ un], such that
xi, yi ∈ V and li, ui ∈ R. The time points V repre-
sent the start and end of each modeled activity; ad-
ditionally, there is a distinguished time point used for
encoding absolute (clock-time) constraints.

Autominder’s Plan Manager checks the consistency of



a plan initially, and subsequently updates it in re-
sponse to four types of triggering events: (1) the ad-
dition of a new planned activity; (2) the deletion of or
modification to the constraints on an existing planned
activity; (3) the execution of a planned activity; (4)
the passage of a time boundary in the plan. In each
case, the plan manager formulates a set of disjunc-
tive temporal constraints that represent the triggering
event, and then attempts to solve the DTP defined
by the union of those constraints and the constraints
already in the plan. Although solving a DTP is an
NP-hard problem, heuristic techniques have been de-
veloped that make it feasible to perform DTP solv-
ing for problems of the size handled by Autominder
(Tsamardinos & Pollack, 2003). The approach used
is to convert the original problem to one of select-
ing a single disjunct from each constraint, such that
the result is consistent. By choosing a single disjunct
from each constraint, one obtains a Simple Tempo-
ral Problem (STP) (Dechter et al., 1991), a tempo-
ral constraint-satisfaction problem like a DTP, but
where each constraint is restricted to a single inequal-
ity. Given a DTP D, each STP S constructed in this
fashion is called a component STP of D. A DTP is con-
sistent iff one of its component STPs is; hence, to solve
a DTP, it suffices to search for a consistent compo-
nent STP. Checking the consistency of an STP requires
only polynomial time. The complexity of DTP solving
comes from the fact that there are exponentially many
ways of selecting individual disjuncts, and hence, po-
tentially exponentially many component STPs to be
checked. However, a number of powerful CSP prun-
ing techniques can be brought to bear in searching the
space of component STPs for consistent ones.

The action proposer component in the learning archi-
tecture has the plan as input and can observe the es-
timated state sequence, and uses the plan manager to
perform the following three steps at each time step.
First, it encodes any triggering events that have oc-
curred in this time step with disjunctive temporal con-
straints. Second, it solves the DTP that consists of
the union of those constraints and the previous DTP.1

In the process, it extracts component STPs from the
(possibly augmented) DTP. As we noted earlier, there
may be exponentially many of these, so we limited the
number we extracted to 20, which turned out to be
greater than the number actually in the DTPs in our
experiments. For future work, in which the size of the

1For the experiments we conducted, the attempt to
solve the DTP will fail in only one situation: if the user
fails to execute an activity. In this case, the plan manager
adjusts the constraints of future dependent events so that
they will be evaluated as if the missed event had occurred
at its latest possible time.

plans we work with may be larger, we are exploring
ways of extracting component STPs that vary signifi-
cantly from one another, rather than simply taking the
first 20 identified. Finally, for each component STP,
the action proposer extracts all events that are both
live and enabled: these become the actions that are
proposed to the RL agent. To compute this set, the
plan manager derives the time-window for each event:
this is the set of clock times consistent with executing
each activity. An event is live iff the current time is
within its time window, and it is enabled iff all the
events that must necessarily precede it have already
occurred. These properties are computed in polyno-
mial time using the all-pairs shortest path matrix for
the current STP.

Once the action proposer has proposed the set of ac-
tions available (the do-nothing action is always avail-
able), they become candidates for the learning step;
one will be selected and executed in the simulation
environment.

3.2. Payoff Function

Computing a suitable payoff function is also rather
challenging in our problem. For example, in our sam-
ple plan, the user is supposed to take morning medi-
cation between 6:00 and 7:00, and to take her second
dose of medication 2.5 to 3.5 hours later, within the
9:00-10:00 time frame. But suppose the user doesn’t
take that first dose at all; then how much payoff should
result from taking the second dose? Or suppose the
user takes her first dose late, making it impossible to
satisfy both constraints on the second dose? To ad-
dress such complexities, we collect data for a whole
day before going back and training our agent on that
day’s data. This allows us to compute the payoff at
each time step of the day by looking at the whole day’s
experience. We build a chronologically sorted list con-
taining the start and end times of each activity com-
pleted and the time of each reminder issued, and then
consider the elements of this list in order. Each re-
minder results in a payoff of −0.6; this is because we
prefer not to remind unless necessary. Each activity
time point (beginning or end) whose prerequisites are
satisfied and all of whose related constraints are satis-
fied gets a payoff of 1.0. If one or more prerequisites
were not met, but all the other constraints were sat-
isfied, a payoff of 0.1 is obtained; thus the agent is
rewarded a small amount if the user takes her second
dose of medicine even if she didn’t take the first dose.
Finally if any of the hard time constraints are not sat-
isfied (e.g., lunch was supposed to be eaten between
11:30am and 1pm and was eaten at 2pm), the agent
is punished with a payoff of −1.0. The payoff compo-



nent uses the plan manager to determine whether any
constraints and prerequisites were violated.

3.3. Learning Algorithm

The learning agent interacts with its environment and
uses the observed state-action-payoff sequence to com-
pute a policy that maximizes the expected summed
payoff over a day. We use function approximation-
based Q-learning (Watkins, 1989) for our learning al-
gorithm. The agent has a separate linear neural net-
work for each activity, plus one for the do-nothing ac-
tion. For lack of space we omit those details of the
learning algorithm that are now standard in RL (Sut-
ton & Barto, 1998). Details specific to our application
such as the state input features and the specific train-
ing methodology used are described with the empirical
results.

4. Simulation Environment

We conducted a set of experiments with a simulated
user and environment. As mentioned earlier, our sim-
ulated sensors were trivial, reporting perfect informa-
tion about performed activities, but we endeavored to
build a richer, more realistic model of potential users,
focusing on two key relevant aspects of their behavior:
how they perform when they don’t receive a reminder,
and how they react to reminders.

Recall that the daily plan is expressed as an (evolving)
DTP, which may contain several consistent component
STPs. We begin simulation of each day by randomly
selecting one component STP, which one can view as
the user’s initial plan for that day. As time passes,
this STP may become inconsistent; for instance, a re-
minder may cause the user to perform activities in a
different order. If this occurs, the simulator selects a
new component STP that is consistent with the actual
execution times of activities. This process is equiva-
lent to a person coming up with a rough schedule for
the day, but modifying it as needed. We will use the
phrase current STP to denote the STP that is cur-
rently driving the simulated user’s activities.

Given a current STP with live and enabled action A, if
there is no reminder for A, its simulated performance
depends on three adjustable parameters: forgetfulness
(fA), punctuality (p), and variability (v). Note that
a different forgetfulness setting can be associated with
each action type, whereas punctuality and regularity
are global features of the simulated user. The forget-
fulness factor specifies the probability that the user
will forget the activity. If a particular activity A is
not forgotten, then the simulator selects a time for A

randomly from within its time window. The mean of
the randomly selected time depends on p (smaller p
means that the time selected will be closer to the be-
ginning of the time window), while the variance of the
selected time depends on v.

These three parameters allow us to specify a range of
user behaviors. For instance, high p and low v repre-
sent someone who habitually does things at the last
minute. On the other hand, moderate values for p and
v indicate a user who is erratic in the timing of her
activity execution. These can then be coupled with
particular values of fA, to model, for instance, some-
one who usually forgets a certain type of activity, but
generally does it at the earliest possible time when she
remembers at all.

This so far specifies the user’s behavior in the ab-
sence of reminders. This changes, however, when re-
minders are given. In our experiments, the user re-
sponds immediately to a reminder by performing the
specified activity, except when annoyed by having re-
ceived overly frequent reminders; in that case she does
not respond at all (i.e., she fails to perform the ac-
tivity for which the reminder was issued). A fourth
parameter of the simulator, the annoyance time factor
(a) specifies the minimum period of time that must
pass after one reminder is issued before the user will
respond to a subsequent reminder.

Of course, reliance on a simulated user is highly im-
perfect; to truly validate our results we will need to
replicate them with real users. However, it was neces-
sary first to demonstrate that in principle our approach
is feasible, before trying it with people.

5. Experiments

We performed experiments using two different plans.
First, we performed a suite of experiments using the
simple plan shown in Table 2 to illustrate particular
types of personalization and adaptation exhibited by
our agent. Then we showed that our agent can han-
dle more realistic plans by acting on the more com-
plex plan shown in Table 1. Though we vary the for-
getfulness and annoyance time parameters, in all ex-
periments the punctuality and variability are fixed at
moderate values.

5.1. The simple plan

Our experiments using the plan in Table 2 were aimed
at showing that our approach can produce interaction
policies that are (1) personalized to a user’s particular
behavior patterns, (2) capable of short-term adapta-
tion to sudden day-to-day differences in behavior that



Table 2. The simple plan used in many of the experiments.

Activity Start time Duration

A Go to the Living Room 2–6 1–3
B Watch TV 10–18 4–6
C Go to the Kitchen 28–33 1–5
D Play Bingo 38–43 4–6

1. Activity A is a prerequisite for Activity B.

2. Activity C is a prerequisite for Activity D.

are the result of observable factors, and (3) capable
of long-term adaptation to mostly gradual behavioral
changes over time, particularly those that are not as-
sociated with any observable state features.

Personalization (forgetting) In the first experi-
ment, we model a user who always remembers to per-
form activities A and B, but always forgets activities C
and D. Clearly, the optimal policy here is to remind the
client about activities C and D, but not about A and
B. Though it is a very simple policy, it is not “cookie-
cutter”: it is a policy that could not be established for
all users, but must be determined in response to this
particular user’s proclivities.

For this experiment, we collected data over 10 runs
with different seeds for the random number generator.
For each run, we collected 50 days of experience using
a random policy; in this policy, a reminder decision is
made independently for each activity. If an activity is
not enabled, then no reminder is issued. Otherwise,
with 50% probability, no reminder is issued for an ac-
tivity; the rest of the time, a random time is chosen
uniformly from the time window for that activity, and
a reminder is issued at that time if the activity has not
yet been performed. We then trained the agent using
the first n of these days for several different values of
n. The feature set used to train the nets consists of
four binary features; these indicate, for each activity,
whether or not the activity has been completed. To
evaluate the policy learned in this experiment, it is
sufficient to simulate a single day using the policy.

Figure 2A shows the average return over the 10 runs
vs. the number of days of experience used in training.
The value of the optimal policy is 6.8; this is the value
achieved by all policies learned using at least 10 days
of experience.

Personalization (forgetting and annoyance) In
the second experiment activities A and B are forgot-
ten while C and D are remembered. In addition, we
added the complication of an annoyance period of 9
minutes; that is, any reminder that is given within 9
minutes of the previous reminder is ignored. Conse-
quently, reminders for activity A and B will only be
effective if the former occurs near the beginning of A’s

time window, while the latter occurs near the middle
to end of B’s time window.

The data collection and training methodology for this
experiment is identical to that of the prior experiment.
We added binary features that indicate for each activ-
ity whether a reminder has been issued for that ac-
tivity within the last 5,10,15 minutes to the state fea-
tures. The results from this experiment are shown in
Figure 2B. The system converges to the optimal policy
which has value 6.8 with about 20 days of data.

Personalization (probabilistic forgetting) In the
third personalization experiment, we model a some-
what more realistic user, who always forgets activities
C and D, but only probabilistically forgets A and B:
we set fA and fB to 25%. Here, the optimal policy
is a little more complicated. The agent should still
always remind for activities C and D. But now, the
agent should issue a reminder for activity A and B at
the end of each one’s time window, provided that the
activity hasn’t been executed yet. This gives the user
ample opportunity to perform the activity on her own,
but still maintains a “safety net” reminder if the time
window is about to close without the activity being
performed. In this experiment we provided state in-
put features that corresponded to 1, 2, 3, 4, 5, 7 and
9 minutes remaining for the activity to be done.

The results of Figure 2C are again based on averages
of 10 runs, and show that near-optimal performance
results after about 10 days of data. Inspection of the
policy learned showed that in all cases the agent learns
to always remind early for activities C and D and to
always remind at the very end for activities A and B.

Short-term Adaptation Here the goal was to
demonstrate that the policies learned with our ap-
proach can adapt to short-term variations in the user’s
behavior. In this experiment, the user behaves differ-
ently depending on how well she slept the night before.
If she slept well, her memory is relatively good, but if
she slept poorly (something that could be determined
from pressure sensors in a bed), she becomes forgetful.
We conducted this experiment using extreme values:
fA = 0% for all A following a good night, and fA =
100% for all A following a bad night.

The data collection methodology was the same here as
in the previous experiments. We added a binary sleep
quality feature, which is equally likely to be good or
bad on any given day. The analysis of results is slightly
different: we produce different curves for behavior on
good days and bad days, as shown in Figure 2D. The
optimal policy on good days is never to remind; this
has a value of 8.0 and is learned almost immediately



0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 d
ai

ly
 r

et
ur

n
Personalization (forgetting)

Days of experience
0 10 20 30 40 50

0

1

2

3

4

5

6

7

8
Personalization (forgetting & annoyance)

Days of experience

A
ve

ra
ge

 d
ai

ly
 r

et
ur

n

0 50 100 150
0

1

2

3

4

5

6

7

8
Personalization (probabilistic forgetting)

Days of experience

A
ve

ra
ge

 d
ai

ly
 r

et
ur

n

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

Short−Term Adaptation

Days of experience

A
ve

ra
ge

 d
ai

ly
 r

et
ur

n

Bad Sleep Days 

Good Sleep Days 

Figure 2. The results of the personalization and short-term adaptation experiments. Each figure shows results averaged
over 10 runs along with (95% confidence interval) error bars; the dashed line shows the optimal performance.

(i.e., using only 1 day of data). The optimal policy
on bad days is to remind for each activity; this has a
value of 5.6, and is learned quickly, but not as quickly
as the policy for good days; it requires approximately
10 to 20 days of training experience (however, note
that these include the roughly 5 to 10 good days.)

From an RL perspective, there is little difference be-
tween the short-term adaptation experiment and the
personalization experiments; in both cases the agent
is learning how to map its state input features to good
actions. However, from the point of view of caregivers
the ability to adapt to short-term changes like sleep
patterns is an important capability for a cognitive or-
thotic system.

Long-term Adaptation The goal here was to show
that the agent can adapt to changes in the client’s be-
havior over time, even when those changes don’t cor-
relate with observed state features. To model such
change, we directly manipulate the fA parameter for
all activities A, using the function shown in the lower
panel of Figure 3. This forgetfulness profile might be
seen in a patient who suffers a mild stroke, represented
by the jump in forgetfulness at day 50, and then enters
a period of cognitive decline.

The data collection for this experiment differs from the
previous experiments because of the need here to show
continuing adaptation to a changing user. Instead of
collecting data using the random policy described ear-
lier, we just let the agent act according to an ε-greedy
policy (where it chooses the action that looks best cur-
rently with 90% probability and a random action with
10% probability). Every 10 days, the agent retrains us-
ing the prior 50 days of experience. The data we plot
in the upper panel of Fig. 3 is the reward obtained
each day.

The results shown in Figure 3 are averaged over 10
such runs, and then smoothed by averaging together
the results of 15 consecutive days. The average re-
turn is somewhat below optimal because of the epsilon-

0 50 100 150 200 250
0

0.5

1
Long−Term Cognitive Decline

Days of simulation

F
or

ge
tfu

ln
es

s 
%

0 50 100 150 200 250
5

6

7

8
Long−Term Adaptation: Average over 10 runs

A
ve

ra
ge

 r
et

ur
n

Figure 3. Results for the long-term adaptation experiment.
See text for details.

greedy strategy. However, we see that the agent adapts
to the changing behavior readily. Note the dip at day
50 corresponding to the sudden forgetfulness of the
client. This is followed quickly by a rise as the agent
adapts to this behavior. Finally, the average return
decreases somewhat as the forgetfulness increases, lev-
eling out when the forgetfulness becomes complete.

5.2. The complex plan

This experiment used the more realistic plan presented
in Table 1. We added complexity to the plan by sim-
ulating a user that forgets to take her last 3 doses
of medicine as well as to do her exercise. We collect
data as in the long-term experiment—that is, using an
epsilon-greedy strategy and learning as time goes on—
even though the client model is static. The results are
shown in Figure 4 where we see that the in about 30
days the system performs near-optimally in terms of
the average return to the agent. Inspection of the pol-
icy learned shows that the agent always reminds early
for the forgotten activities and never reminds for the
remembered ones.



0 20 40 60 80 100
21

22

23

24

25

26

27

Days of Simulation

A
ve

ra
ge

 D
ai

ly
 R

et
ur

n

Complex Plan

Figure 4. Results for the experiment with the complex
plan. See text for details.

6. Conclusion

In a series of simple experiments in a simulated envi-
ronment we showed that a combination of RL and tem-
poral constraint reasoning can produce a cognitive or-
thotic system that is personalized and adaptive to both
short- and long-term changes in a user. This project
was a feasibility study along a research trajectory in
which we have deployed a non-adaptive Autominder
system in field studies with real users and will move
to deploying the adaptive Autominder system devel-
oped here. One issue that must be considered in this
latter deployment is the length of time it takes for the
reminder policy to converge to optimal; in some of our
experiments, as much as 30 days of data were required.
We note, however, that, by starting with a random pol-
icy in our experiments, we made the RL problem as
difficult as possible. When we use the adaptive system
with human users, we will instead begin with a more
reasonable default policy, in which, for example, we
identify certain types of activities as likely to be for-
gotten, and issue reminders for those more frequently.
Not only do we hypothesize that convergence will be
more rapid as a result, but it will also lead to the user
having a more consistent experience with the system,
in turn making it reasonable to allow the system to
interact with a human even before convergence.

In addition to deployment with human users, we have
several other plans for continued work. One of the
most interesting involves generalizing the interaction
policy that we learn. Currently we only learn whether
and when to issue reminders for individual activities,
but it would also be useful to learn how much detail
to include in each reminder. Finally, our integrated
learning architecture should extend the use of RL to
a variety of planning problems in which temporal con-
straint reasoning is currently the method of choice.

References

Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal
constraint networks. Artificial Intelligence, 49, 61–
95.

Fiechter, C., & Rogers, S. (2000). Learning subjective
functions with large margins. Proceedings of the 17th
International Conference on Machine Learning (pp.
287–294).

Gervasio, M., Iba, T., & Langley, P. (1999). Learn-
ing user evaluation functions for adaptive schedul-
ing assistance. Proceedings of the 16th International
Conference on Machine Learning (pp. 152–161).

LoPresti, E. F., Mihailidis, A., & Kirsch, N. (2004).
Assistive technology for cognitive rehabilitation:
State of the art. Neuropsychological Rehabilitation,
14, 5–39.

Pollack, M. E., Brown, L., Colbry, D., McCarthy, C.,
Peintner, B., Ramakrishnan, S., & Tsamardinos, I.
(2003). Autominder: An intelligent cognitive or-
thotic system for people with memory impairment.
Robotics and Autonomous Systems, 44, 273–282.

Roy, N., Pineau, J., & Thrun, S. (2000). Spoken di-
alogue management for robots. Proceedings of the
38th Annual Meeting of the Assn. for Computational
Linguistics.

Singh, S., Litman, D., Kearns, M., & Walker, M.
(2002). Optimizing dialogue management with re-
inforcement learning: Experiments with the njfun
system. Journal of Artificial Intelligence Research,
16, 105–133.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. Cambridge, MA: MIT
Press.

Thompson, C., Goker, M., & Langley, P. (2004). A
personalized system for conversational recommen-
dations. Journal of Artificial Intelligence Research,
21, 393–428.

Tsamardinos, I., & Pollack, M. E. (2003). Efficient so-
lution techniques for disjunctive temporal problems.
Artificial Intelligence, 151, 43–90.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge.

Zhang, W., & Dietterich, T. G. (1995). A reinforce-
ment learning approach to job-shop scheduling. Pro-
ceedings of the International Joint Conference on
Artificial Intellience (pp. 1114–1120).


