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ABSTRACT
Forming commitments about abstract influences that agents can
exert on one another has shown promise in improving the tractability
of multiagent coordination under uncertainty. We now extend this
approach to domains with meta-level reward-model uncertainty.
Intuitively, an agent may actually improve collective performance
by forming a weaker commitment that allows more latitude to adapt
its policy as it refines its reward model. To account for reward
uncertainty as such, we introduce and contrast three new techniques.
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1. INTRODUCTION
Implicit in the problem of optimal multiagent coordination is the

need to balance the local value of one’s actions with the nonlocal
value gained (or lost) from helping (or hindering) others. This prob-
lem is complicated by the presence of transition and observation
uncertainty, where agents cannot be certain of the effects of their
actions on their peers nor be fully aware of the situations their peers
are encountering. Influence abstraction has proven useful in reduc-
ing the computational burden of optimal coordination by restricting
consideration to an abstracted space of possible probabilistic non-
local effects [1, 5]. In a running example shown in Figure 1 (top),
two military field units G1 and G2 (where G1 can use one of two
switches to open a gate for G2) can successfully coordinate by G1

committing to a desirable influence in the form of a time and proba-
bility of opening the gate. By abstracting away local policy details
that are superfluous to other agents, influences can enable agents to
effectively cope with transition and observation uncertainty.
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Figure 1: Example Problem and corresponding TD-POMDP

In this paper, we consider a third complicating factor: dynamic
and uncertain rewards. In the example problem, the rewards G1

receives in different locations depend upon the presence of an en-
croaching enemy; as time progresses, the enemy might render some
locations more harmful, as manifested by nondeterministically de-
creasing rewards (with an intensity reflected in the shading in Figure
1). If the agent were alone, it could leverage the reward dynamics
to reactively select the best actions depending on how its rewards
progress. (For instance, it could navigate away from a switch as it
starts to become more harmful.) Committing to a particular influ-
ence (e.g., raising the gate at a given time), on the other hand, may
constrain the agent’s policy in such a way as to preclude taking these
actions and saving itself from harm. When planning its influences
under reward uncertainty, the agent should account for the latitude
that each influence allows in improving its local value. This in-
sight motivates our investigation into the efficacy of influence-based
planning under reward uncertainty, which we summarize below.

2. INFLUENCE-BASED PLANNING
There are several decision-theoretic formulations for problems

like that portrayed in Figure 1, where agents act largely indepen-
dently but can sometimes achieve preconditions that affect others [1,
4, 5]. Each of these formulations decomposes the conventional joint



decision model [2] into a set ofN local models, one per agent i that
includes a local state feature vector φi; similarly, they decompose
the joint reward function into a summation of local reward func-
tions: R(φ(t), a(t)) =

∑N
i=1 Ri(φi(t), ai(t)). The TD-POMDP

of Witwicki and Durfee (W&D) [5], an instance of which is depicted
in Figure 1 (bottom), further divides a local state φi into nonlocally-
affected features φn

i (that only other agents’ actions immediately
affect) and locally-affected features φl

i, and explicitly distinguishes
those mutually-modeled features φm

i through which i’s interactions
occur. In our example, agentG2 models a single nonlocally-affected
feature g (gate-opened) that depends on G1’s action.

As W&D have derived, an agent j can plan optimally using a local
belief state, bbbi(t) = 〈φi(t), φ

m
i (1..t−1)〉), and thereby account for

the influence of other agents by modeling a probability distribution
over changes to its nonlocal features: Γ→j = Pr(φn

j (1..T )). This
distribution, which refer to as agent j’s incoming influence, in our
example encodes the probability that agent G1 will open the gate
for agent G2 (at each time): Γ→G2 = Pr(g(1..T )). Specifying
Γ→j fully decouples agent j from all other agents, allowing j to
compute and evaluate its local policy without having to consider the
other agents’ policies. Moreover, the optimal joint policy can be
computed by searching a finite space of joint influence points, which
W&D have shown can be significantly smaller than the joint policy
space. In evaluating a given point in the influence space, agent j
should also reason about its outgoing influence Γj→, selecting an
influence-constrained policy π∗|Γj→

j that achieves Γj→.

3. THREE ALGORITHMS FOR HANDLING
REWARD UNCERTAINTY

Given a fixed, known model of the agents’ environment, out-
going influence achievement, incoming influence evaluation, and
influence-based planning are all well defined [5]. We now extend
them to dynamic or unknown environments wherein agents may
be uncertain as to which model is the correct model. In particular,
let there be K possible local reward functions {Rk

i }Kk=1 per agent
(independently distributed). Prior to execution, each agent i has only
a prior distribution over its reward function, but during execution, i’s
observations can inform a posterior distribution over the true reward
function. In the subsections that follow, we introduce and con-
trast three different influence-based planning extensions that afford
different levels of computational efficiency and approximation.

Extended Belief State (EBS).
First, consider that W&D’s approach can be directly applied to a

TD-POMDP wherein each agent’s belief state has been extended to
include a distribution over the true reward function. By branching
for every realizable posterior reward distribution after every action,
the agent can account for the uncertainty precisely as it plans and
evaluates influence points. However, the computation of each such
evaluation will depend heavily on the size of the reward distribution,
over which the extended-belief-state space grows exponentially.

Mean Reward (MR).
A simple approximation to the EBS algorithm is to completely

collapse the uncertainty over each agents’ rewards into a single ex-
pected or mean reward function, i.e., use the reward distribution to in-
duce a mean-reward TD-POMDP where agent i’s local reward func-
tion is R̄i(φi(t), ai(t)) =

∑K
k=1Pr(R

k
i )Rk

i (φi(t), ai(t)). W&D’s
influence-based planning method then implicitly accounts for re-
ward uncertainty at no additional computational cost. Although
generally an approximation, we have proven that the mean-reward
(MR) algorithm is optimal in special cases where agents cannot gain
information (informing a new posterior distributions) about their

true reward functions as they act and observe.

Influence-Constrained Iterative MR (ICIMR).
Finally, we develop a hybrid approach that builds off of the it-

erative mean-reward algorithm (IMR) for single-agent Bayesian-
MDPs [3]. IMR reapplies the mean-reward technique after each
belief update, because changes to the posterior distribution over re-
ward functions can yield a different mean reward function R̄t+1

i =
ERk

i∼bbbi(t+1)[R
k
i ], and hence adopting the policy π̃t+1

i optimal with
respect to the updated mean reward may outperform the current
policy π̃t

i . Effectively, this involves (perhaps pre-)computation and
adoption of a new policy at each time step.

Our ICIMR algorithm’s novel departure from IMR comes from
our multiagent setting and the role of commitments to influences.
An agent who has already committed to probabilistically influencing
others cannot iteratively shift from policy to policy without taking
its committed outgoing influences into account. A stringent con-
straint that we could place on this agent is that its policy at the
current iteration must from its current state satisfy all its outgoing
commitments. Unfortunately, this is untenable, because stochastic
state transitions could have put the agent into a state from which no
policy can achieve the requisite commitments. Instead, we require
that the agent’s adopted policy must have satisfied its commitments,
in expectation, from its initial state. Formally, agent i should adopt
policy π̃t+1

i = π
∗|bbbi(t+1),Γi→
i that achieves outgoing influences

Γi→ and is consistent with its previous action choices π̃t
i(0..t).

With ICIMR, agent i plans and evaluates outgoing influences by
iteratively considering each possible next mean-reward MDP that it
could encounter. This resembles the lookahead performed with the
EBS algorithm, except that whereas EBS considers every possible
action at each successive state, ICIMR only considers the action
dictated by the mean-reward policy in the state (given the posterior
reward distribution). ICIMR branches for transition and reward
uncertainty, but not future action, thereby allowing more efficient
planning. And, although ICIMR is an approximation of EBS, we
have proven that ICIMR yields solutions whose quality is greater
than or equal to those of MR. A preliminary empirical analysis indi-
cates that ICIMR can strike a good compromise between solution
quality and computational overhead, making it a useful technique for
tackling reward uncertainty in an efficient, yet principled, manner.
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