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Abstract

Predictive state representations (PSRs) are a
recently proposed way of modeling controlled
dynamical systems. PSR-based models use
predictions of observable outcomes of tests
that could be done on the system as their
state representation, and have model param-
eters that define how the predictive state
representation changes over time as actions
are taken and observations noted. Learn-
ing PSR-based models requires solving two
subproblems: 1) discovery of the tests whose
predictions constitute state, and 2) learning
the model parameters that define the dy-
namics. So far, there have been no results
available on the discovery subproblem while
for the learning subproblem an approximate-
gradient algorithm has been proposed (Singh
et al., 2003) with mixed results (it works on
some domains and not on others). In this
paper, we provide the first discovery algo-
rithm and a new learning algorithm for lin-
ear PSRs for the special class of controlled
dynamical systems that have a reset opera-
tion. We provide experimental verification of
our algorithms. Finally, we also distinguish
our work from prior work by Jaeger (2000)
on observable operator models (OOMs).

1. Introduction

Predictive state representations (PSRs; Littman, Sut-
ton, & Singh, 2001) are a recently proposed way (in-
spired by the work of Jaeger (2000) and Rivest &
Schapire (1994)) of building models of controlled dy-
namical systems. PSRs capture the state of a system
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as a vector of predictions or outcome probabilities for
tests (or experiments) that one can do on the system.
A test is a sequence of action-observation pairs and its
prediction is the probability of the test’s observation-
sequence happening if the test’s action-sequence were
to be executed on the system. PSR-based models have
parameters that define how the predictive state rep-
resentation changes over time as actions are executed
and observations noted. A novel1 aspect of PSR-based
models is that their state is expressed entirely in terms
of observable quantities. In contrast, partially observ-
able Markov decision process or POMDP-based mod-
els express state in terms of probability distributions
over unobservable and hypothetical underlying-states
of the system (see, e.g., Lovejoy, 1991; Littman, 1996).
Despite this key difference, PSR-models are as flexi-
ble and powerful as POMDP models; indeed, Littman
et al. showed that any dynamical system that can be
modeled as a POMDP can also be modeled as a PSR
of size no larger than that of the POMDP model. On
the other hand, because of this key difference, there is
a pressing and yet unmet need to develop algorithms
for learning PSR-models from streams of experience
because existing POMDP-based model-learning meth-
ods scale quite poorly (Littman et al., 2001; Shatkay
& Kaelbling, 1997).

Learning a PSR-based model from data has two im-
portant subproblems: 1) discovery of the tests whose
predictions constitute state, and 2) learning the model
parameters that define how the predictive state repre-
sentation is updated over time as actions are executed
and observations noted. So far, there have been no
results for the discovery problem, while for the learn-
ing problem an approximate gradient-based algorithm
has been proposed by Singh et al. (2003) with mixed

1The state in history-window based or nth-order
Markov models is also expressed in terms of observable
quantities but these models are less flexible than PSR mod-
els (Littman et al., 2001) and won’t be considered further
in this paper.



results (it works on some domains and not on others).
In this paper, we present the first linear-PSR discov-
ery algorithm and a new learning algorithm, both for
the restricted class of dynamical systems that have a
reset. We present evaluations of our algorithms on the
same domains (with an added reset) that the previous
gradient algorithm got mixed results on.

1.1. Related Work

PSR-based models are closely related to
Jaeger’s (2000; 2003) Observable Operator Models
or OOMs. These were developed initially for uncon-
trolled dynamical systems but were then extended
to input-output OOMs, or IO-OOMs, to handle
controlled dynamical systems. Jaeger developed two
different versions, interpretable and non-interpretable,
of both OOMs and IO-OOMs; of these, only the
interpretable versions are of practical interest because
discovery and learning algorithms can be developed
only for them. In recent work (Singh et al., 2004), we
have shown that the class of dynamical systems that
can be modeled by interpretable IO-OOMs is a small
subset of systems that can be modeled as POMDPs
which in turn is a strict subset of systems that can
be modeled as PSRs, i.e., that PSRs are significantly
more general than interpretable IO-OOMs.

2. Preliminaries

We consider finite, discrete-time, and controlled dy-
namical systems, henceforth simply dynamical sys-
tems, that accept actions from a discrete set A, and
produce observations from a discrete set O. Let-
ting ai ∈ A and oi ∈ O denote the action and ob-
servation at time i, the probability of some history
h = {a1o1a2o2 . . . anon} is the conditional probabil-
ity of the observation sequence o1o2 . . . on being ob-
tained if the action sequence a1a2 . . . an were executed
from time 1 onward, i.e., P (h) = prob(o1 = o1, o2 =
o2, . . . , on = on|a1 = a1, a2 = a2, . . . , an = an). A dy-
namical system is characterized by a probability dis-
tribution over all possible histories, P : {AO}∗ →
[0, 1]. A test , like a history, is also a sequence of
action-observation pairs, but unlike a history, a test
is not constrained to start at time 1. The condi-
tional probability of a test t = a1o1a2o2 . . . amom at
some history h (w.l.o.g., of length n), is P (t|h) =
P (ht)/P (h) = prob(on+1 = o1, on+2 = o2, . . . , on+m =
om|h, an+1 = a1, an+2 = a2, . . . , an+m = am), i.e., it
is the probability of obtaining the test’s observation-
sequence if the test’s action-sequence were executed
from history h onward. For ease of exposition, hence-
forth, we will abbreviate expressions like the right-

hand side of the definition of P (t|h) above as simply
prob(o1o2 . . . om|ha1a2 . . . am).

A set of tests Q = {q1q2 . . . q|Q|} consti-
tutes a PSR if its prediction-vector , P (Q|h) =
[P (q1|h)P (q2|h) . . . P (q|Q||h)] is a sufficient statistic
for all histories, i.e., for any test t, P (t|h) =
ft(P (Q|h)) for some function ft — i.e., P (Q|h) cap-
tures all the information in h relevant to predicting
the future. We will distinguish such a set of tests that
constitutes a PSR by calling it a core set of tests and
reserving the label Q for it. In general, the functions
ft can be linear or non-linear. In this paper we will
only consider linear PSRs in which

∀t P (t|h) = PT (Q|h)mt, for a weight vector mt (1)

(by default vectors are assumed to be column vectors
and so the transpose operator, ·T , is used to obtain
row vectors). On taking action a from some history h
and observing o, one can update the prediction-vector
for Q as follows: for each qi ∈ Q

P (qi|hao) =
P (aoqi|h)
P (ao|h)

=
PT (Q|h)maoqi

PT (Q|h)mao
(2)

where we used the fact that aoqi is just another test.
Therefore, a linear-PSR model is specified by core-set
Q and the model-parameters which are the weight vec-
tors maot (all of size |Q| × 1) for all a ∈ A, all o ∈ O
and for all t ∈ Q ∪ {φ} (where the null string φ was
added because of the parameters mao in the denomi-
nator of the right-hand side of Equation 2). Learning
a PSR model from data involves two subproblems: the
discovery of a core-set Q, and learning the model-
parameters.

In building a POMDP representation of a dy-
namical system one starts by hypothesizing a set
S = {1, 2, . . . , |S|} of unobservable states. For
any history h, the counterpart to the predic-
tion vector P (Q|h) is the belief-state b(S|h) =
[prob(1|h) prob(2|h) . . . prob(|S||h)] that represents
the probability of the system being in each underly-
ing state of S at history h. The model-parameters
are a set of transition-probability matrices T a (for all
a ∈ A) such that T a

ij is the probability of a transition
to state j ∈ S upon taking action a in state i ∈ S, and
a set of diagonal observation probability matrices Oa,o

for all a ∈ A and o ∈ O such that Oa,o
ii is the probabil-

ity of receiving observation o upon taking action a and
transitioning to state i. On taking action a in history
h and observing o, the belief-state can be updated as
follows:

bT (S|hao) =
bT (S|h)T aOa,o

bT (S|h)T aOa,o1|S|



Figure 1. Graphical representation of state-test prediction
matrix and history-test prediction matrix.

where 1n is a n×1 vector of all 1’s. Learning a POMDP
model from data also involves discovery and learning
subproblems, where the discovery problem is to figure
out how many states to use, while the learning problem
is to estimate the model-parameters.

We can relate PSR-models to POMDP-models using
a conceptual state-test prediction matrix U (see Fig-
ure 1) whose rows correspond to the states in S and
whose columns correspond to all possible tests ar-
ranged in order of increasing size, and within a size
in some lexicographic order (we let T denote the set
of all possible tests in this ordering). The entry Uij

is the prediction for the test tj (the one associated
with column j), given that the state of the system
is i. Then, by construction, for any h and any tj ,
P (tj |h) = bT (S|h)U(tj), where U(tj) is the jth col-
umn of U , and for any set of tests C, the vector
PT (C|h) = bT (S|h)U(C) where U(C) is the sub-
matrix corresponding to the tests in C. Thus, the
matrix U allows us to translate belief-states into pre-
diction vectors.

We can also motivate and derive PSR core-tests Q
from the U matrix as follows. Let M be the set of
tests corresponding to any maximal-set of linearly-
independent columns of U . Then for any test t,
U(t) = U(M)wt, for some vector of weights wt (by
construction of M the column in U for any test must
be linearly dependent on the columns of sub-matrix
U(M)). Therefore for all t, p(t|h) = bT (S|h)U(t) =
bT (S|h)U(M)wt = PT (M |h)wt which is exactly the
requirement for M to constitute a linear-PSR (see
Equation 1). Note that the number of linearly in-
dependent columns is the rank of the matrix U and
is therefore upper-bounded by the number of rows
|S|. Thus, through this conceptual matrix U we have
proven that for any POMDP, there exists a linear-
PSR with ≤ |S| core-tests and that any maximal-set
of linearly-independent columns of U correspond to
core-tests Q. Note that the core-tests are not unique.
Littman et al. also prove by a constructive argument
that there exists a core-set Q in which no test is longer
than |S|. These results together suggest the power and
flexibility of PSRs as a representation.

3. Discovery and Learning using
History-Test Prediction Matrix

In this section we derive a discovery and learning al-
gorithm for dynamical systems with reset and provide
some partial analysis supporting our algorithms.

First, note that if we could somehow estimate the ma-
trix U from data, then we could discover core-tests
Q by finding a maximal-set of linearly-independent
columns of the estimated U . But, we cannot directly
estimate U because its rows correspond to a set S that
is unobservable. A key insight in this paper is to re-
place the state-test prediction matrix U used in the
original PSR paper (Littman et al., 2001) by a new
history-test prediction matrix Z that as we will show
can be estimated from data in certain classes of dy-
namical systems (e.g., those with reset), and that has
many of the same desirable properties that U has. The
history-prediction matrix Z (see Figure 1) has columns
corresponding to the tests in T just as for U , but has
rows corresponding to all possible histories H instead
of the hypothetical S as in U . Note that H = T ∪ φ
where φ is the null history. The entry Zij = p(tj |hi),
is the prediction of the test tj given history hi. Note
that Z, unlike U , is expressed entirely in terms of ob-
servable quantities and thus, as we will show next, can
be directly used to derive discovery and learning algo-
rithms.

But first, some notation. For any set of tests C, let
Z(C) (U(C)) denote the submatrix of Z (U) contain-
ing the columns corresponding to the tests in C. Also,
let QT denote the tests corresponding to a maximal-
set of linearly independent columns of Z and let QH
be the histories corresponding to a maximal-set of lin-
early independent rows of Z. Again, note that both
QT and QH are not unique.

Lemma 1 For any dynamical system and its cor-
responding history-test prediction matrix Z, the
tests corresponding to any maximal-set of linearly-
independent columns of Z constitute a linear-PSR.
Furthermore, if the dynamical system is a POMDP
with state-test prediction matrix U , the size of the
linear-PSR derived from Z will be no more than the
size of the linear-PSR derived from U .

Proof For any test t, Z(t) = Z(QT )wt for some
wt (because every column of Z is linearly dependent
on the columns of Z(QT )). P (t|h) is the element cor-
responding to row h in vector Z(t), while PT (QT |h)
is the row of Z(QT ) corresponding to h. Therefore,
∀t P (t|h) = PT (QT |h)wt, which in turn implies that
the set QT constitutes a linear-PSR (see Equation 1).



For the second part of the lemma, let bT (S|H) be a
(∞ × |S|) matrix whose ith row corresponds to the
belief-state for history hi. Then Z = bT (S|H)U . By a
standard result from linear algebra the rank of a prod-
uct of matrices is less than or equal to the smaller of
the ranks of the two matrices being multiplied. There-
fore the rank of Z is upper bounded by the rank of U .
The proof then follows from the fact that the size of
the linear PSR is equal to the rank. �

Lemma 1 shows that QT constitutes a linear-PSR, and
hence we will refer to QT as core-tests. By analogy we
will refer to QH as core histories.

Lemma 2 For a dynamical system that is a
POMDP, the set of belief-state vectors corresponding
to the set QH of core-histories are linearly indepen-
dent.

Proof Let H ⊆ H be an arbitrary finite set of histo-
ries, and let b(S|H) be the associated |S| × |H| belief-
state matrix (each column is a belief-state). If b(S|h),
the belief-state for some history h, is linearly depen-
dent on the set of belief-states associated with the his-
tories in H, i.e., if bT (S|h) = wT bT (S|H), then Z(h) =
PT (T |h) = bT (S|h)U(T ) = wT bT (S|H)U(T ) =
wT P (T |H) = wTZ(H). In other words if the belief-
state for some history h is linearly dependent on the
belief-states of some set of histories H, then the row
corresponding to h in Z will be linearly dependent on
the rows corresponding to histories H in Z. Contra-
positively, this implies that if we find a set of rows of Z
that are linearly independent of each other then their
associated belief-states are linearly independent. �

Lemma 2 is interesting because it shows that core-
histories are a kind of basis set for the space of histories
H, in that the belief-state vectors corresponding to
core-histories span the full space of feasible belief-state
vectors.

Lemma 3 The set of tests and histories correspond-
ing to a set of linearly independent columns and rows
of any submatrix of Z are subsets of core-tests and
core-histories respectively.

Proof A set of columns (rows) that are linearly in-
dependent in any submatrix of Z are also linearly in-
dependent in the full matrix Z. The proof follows from
Lemmas 1 and 2 �

Lemma 3 frees us from having to deal with the infinite
matrix Z and instead allows us to consider finite, and
hopefully small, submatrices of Z in building discovery
and learning algorithms.

3.1. Analytical Discovery and Learning (ADL)
Algorithm

We present our algorithm for discovery and learning
in 2 stages. In the first stage, we will develop an al-
gorithm for discovery alone as well as an algorithm
for both discovery and learning under the assumption
that the algorithm has the ability to somehow compute
prediction P (t|h) exactly for any test t and history h.
In the second stage, we will remove that assumption
by allowing the algorithm to instead experiment with
the dynamical system itself and empirically estimate
P (t|h) — the second-stage algorithms will be the first-
stage algorithms with the estimated test-predictions
replacing the true test-predictions but with additional
machinery to deal with potential problems introduced
by inaccurate test-predictions.

Under the assumption that we can compute P (t|h) ex-
actly, the analytical discovery algorithm (AD) works
iteratively as follows. At the first iteration the algo-
rithm computes a submatrix of Z, denoted Z1, con-
taining all histories up to length one and all tests up
to length one. Then it calculates the rank of this sub-
matrix, ν1, the set of core-tests found so far, QT1 (these
are any ν1 linearly independent tests in Z1), and the
set of core-histories found so far, QH1 (these are any ν1

linearly independent histories in Z1). At the next it-
eration, it computes the submatrix of Z with columns
corresponding to the union of the tests in QT1 and all
one-step extensions to all tests in QT1 , and with rows
corresponding to the union of the histories in QH1 and
all one-step extensions to all histories in QH1 . The
rank ν2, core-tests QT2 , and core-histories QH2 are
then calculated. This process is repeated until the
rank remains the same for two consecutive iterations
(this is AD’s stopping condition). If the algorithm
stops after iteration i, then it returns QTi and QHi

as the discovered core-tests and core-histories respec-
tively.

For any controlled dynamical system with a history-
prediction matrix Z of rank n, the AD algorithm can-
not execute for more than n + 1 iterations; for to con-
tinue iterating the rank must increase by least one at
every iteration. Lemma 3 shows that the core-tests
and core-histories returned by the AD algorithm are
all correct , i.e., there exist core-tests and core-histories
of the dynamical system that are supersets of the dis-
covered core-tests and histories. Or in other words,
the discovered core tests and histories correspond to
linearly independent columns and rows of the full Z
matrix. However, note that this does not show that
the AD algorithm cannot stop prematurely (i.e., before
discovering all n core tests). Thus it is possible that



the algorithm may stop without having discovered all
the core-tests and core-histories. We empirically in-
vestigated this possibility and report the results in the
section on empirical results. Subsequent to our ex-
perimental work we were able to answer this question
theoretically as well (and we present a very brief sketch
of our theoretical result in the appendix).

We also define an analytical discovery and learning
(ADL) algorithm. Recall that the learning problem is
to compute the various m vectors (∀a ∈ A, o ∈ O, t ∈
QT ), in the following prediction equations:

P (ao|QH) = P (QT |QH)mao and

P (aot|QH) = P (QT |QH)maot

where QT and QH are the unknown set of complete
core tests and histories. Note that these are the same
equations as in the update Equation 2 except that
we have separated the numerator and the denomina-
tor and clustered the equations into a matrix form.
The vectors P (ao|QH) and P (aot|QH) are composed
of elements corresponding to P (ao|h) and P (aot|h)
for all h ∈ QH. The matrix P (QT |QH) is the sub-
matrix of Z with columns corresponding to the tests
in QT and rows corresponding to QH. By the def-
initions of QT and QH, P (QT |QH) is a square and
invertible matrix. Under our assumption that the al-
gorithm can compute P (t|h) for any t and h, it could
compute P (QT |QH), P (ao|QH) and P (aot|QH) and
then calculate mao = P−1(QT |QH)P (ao|QH), and
maot = P−1(QT |QH)P (aot|QH).

Of course, QT and QH are unknown. And so ADL
first runs the analytical discovery algorithm to obtain
correct but potentially incomplete core tests and histo-
ries Q′

T and Q′
H (where the prime symbol on Q denotes

this possibility of incompleteness). The algorithm then
computes P (Q′

T |Q′
H), P (ao|Q′

H) and P (aot|Q′
H) and

finally calculates m′
ao = P−1(Q′

T |Q′
H)P (ao|Q′

H), and
m′

aot = P−1(Q′
T |Q′

H)P (ao|Q′
H). Again, P (Q′

T |Q′
H) is

invertible because Q′
T and Q′

H are correct if incom-
plete. Finally, if analytical discovery returns a com-
plete set of core tests and histories then it is clear that
ADL will compute an exact PSR-based model of the
dynamical system, else it will only be an approximate
model.

3.2. Discovery and Learning (DL) algorithm

Of course, the analytical discovery and learning algo-
rithm will rarely be feasible because in general there
will be no way of computing P (t|h) exactly. So now
we turn to the more realistic case where the algorithm
has access to the controlled dynamical system which it
wishes to model and can somehow use that system to

estimate P (t|h) rather than compute it exactly. In this
paper we consider dynamical systems with reset, i.e.,
systems in which the algorithm can choose to reset the
system to the null history (corresponding to the first
row of the Z matrix). Note that while this is a strong
assumption, it is not as restrictive as it may seem,
e.g., a reset can always be done in any simulated sys-
tem, and it can also be achieved (inefficiently) in any
episodic system in which the system automatically re-
sets after each episode.

The key advantage of dynamical systems with reset is
that we can repeat history and thereby repeatedly gen-
erate an iid sample from P (t|h) for any (feasibly-sized)
t and h, by the following algorithm. First, we gener-
ate the history by repeatedly reseting the system and
executing h’s action sequence, until h’s observation se-
quence occurs. Then, we execute t’s action sequence
and return success if t’s observation sequence occurs,
otherwise return failure. However, this sampling pro-
cedure is obviously grossly inefficient. We use the fol-
lowing sampling algorithm instead. If, for whatever
reason, the algorithm takes action sequence a1a2 . . . ak

after a reset and observes sequence o1o2 . . . ok, it can
update the estimated prediction for all the contigu-
ous history-test pairs contained in this sequence. For
example, consider the sequence a1o1a2o2. Within this
sequence, we can gather data for history φ and success-
ful test a1o1; history φ and successful test a1o1a2o2;
and history a1o1 and successful test a2o2. In addition,
there are many unsuccessful tests: e.g., for history a1o1

all tests with a2o : (o 6= o2) are unsuccessful, and so
on. Note that while this sampling algorithm produces
a lot of data from each sequence the empirical predic-
tions for the constituent history-test pairs are corre-
lated. On the other hand the samples obtained for any
history-test pair from different sequences are uncorre-
lated and thus any bad effect of correlation among the
errors in the estimated predictions decreases rapidly
with increasing number of data sequences.

The discovery and learning (DL) algorithm we present
in this section is nearly identical to the ADL algorithm
of the previous section. DL takes an input parameter,
n, which is a lower-bound on the number of samples
we will generate for any prediction estimate we use in
DL. Just like in ADL, the DL(n) algorithm will first do
discovery and then learning. Discovery in ADL pro-
ceeds in iterations computing the rank, a set of core
tests, and a set of core histories for a submatrix of
Z at each iteration. Discovery in DL(n) proceeds in
iterations in exactly the same manner using the sam-
pling algorithm defined above to generate at least n
samples for each estimated-P (t|h) that we would have
computed exactly in ADL. In DL(n) rank, core tests



and core histories are computed from the estimated
submatrix of Z instead of the exact submatrix of Z
as in ADL. The main difficulty in DL(n) is that be-
cause of the errors in the estimated predictions, rows
and columns that were linearly dependent in ADL may
become linearly independent in DL(n) and conversely
rows and columns that were linearly independent in
ADL may become linearly dependent in DL(n). This
will introduce errors in computing rank, core tests and
core histories in DL(n). Note that mistakes in one di-
rection are acceptable, i.e., if the estimated predictions
in DL(n) make two rows appear dependent while they
would be independent in ADL, this may just make
DL(n) run for more iterations than ADL but it would
not introduce incorrect core tests or histories. A mis-
take in the other direction is more problematic, i.e., if
the estimated predictions in DL make two rows inde-
pendent when they are truly dependent, then DL(n)
can overestimate rank and find incorrect core tests and
histories. Our solution is to be conservative in com-
puting rank of the estimated submatrix of Z.

Golub and VanLoan, (1996, Section 5.5.8) consider
the question of estimating rank of an unknown matrix,
A, given a noisy estimate of that matrix, Â, which is
exactly the case for DL. Their method involves deter-
mining a singular value cutoff σcutoff, then comput-
ing the singular values of Â and defining the estimated
rank as the number of singular values above the cutoff.
They define σcutoff = ε‖Â‖∞, where ε is the average
error in the matrix entries. To find an estimate for ε
in DL(n) we use Chebyshev’s inequality (with a large
certainty parameter) to compute a bound on the error
in each estimated prediction based on n, the number of
samples that went into the estimate (here we assume
iid samples, i.e., we ignore the correlations introduced
in the sampling algorithm). We use this bound to cal-
culate the average error and from that the singular
value cutoff which then gets used in calculating the
estimated rank. Note that the smaller the n the larger
the singular value cutoff will be and the more conser-
vative our estimate of rank will be.

In each iteration (say kth) of DL(n) we first compute
an estimated rank, ν̂k, and then select core histories
and core tests by selecting the rows and columns that
are most likely to be linearly independent. Given Ẑk

at iteration k, we incrementally remove histories and
tests until exactly ν̂k rows and columns remain. At
each removal step, the history (test) to be removed is
determined by removing each candidate history (test)
and computing how well-conditioned the resulting ma-
trix is. The history (test) whose removal yields the
most well-conditioned matrix is then removed. The
goal of this process is to find the (ν̂k × ν̂k) submatrix

of Ẑk that is most well-conditioned2. Having the most
well-conditioned full-rank submatrix serves two pur-
poses. First, the rows and columns of this submatrix
are most likely to turn out to be linearly independent
with more sampling. Second, this submatrix is most
suitable for solving linear equations via inversion, as
needed in the learning algorithm presented next.

The discovery part of DL(n) terminates when the
estimated rank remains the same for two itera-
tions, and returns a set of core tests and histories
that may be incorrect and so we label them Q̂T
and Q̂H. The learning part proceeds just as in
ADL: n samples each are used to compute estimates
P̂ (Q̂T |Q̂H), P̂ (ao|Q̂H) and P̂ (aot|Q̂H) and then cal-
culate m̂ao = P̂−1(Q̂T |Q̂H)P̂ (ao|Q̂H), and m̂aot =
P̂−1(Q̂T |Q̂H)P̂ (aot|Q̂H).

4. Empirical Results

As mentioned earlier, the only previous learning al-
gorithm for PSRs was a myopic gradient-based algo-
rithm (Singh et al., 2003) and it obtained mixed results
on a set of dynamical systems taken from Cassandra’s
web-page (Cassandra, 1999) on POMDPs, indicating
that these systems collectively offer a range of diffi-
culty. Hence we chose to test our algorithms on these
same simulated systems (listed in the first column of
Table 1) — note, however, that we added a reset action
to each system that when executed takes the system
back to an initial configuration. Thus, the error rates
for reset learning and myopic learning cannot be com-
pared directly, but the rates for myopic learning are
given for reference.

4.1. On Analytical Discovery

Given the uncertainty as to whether the analytical dis-
covery algorithm’s stopping condition can lead to pre-
mature termination (with correct but incomplete core
tests and histories), we tested it out on the systems
in the first column of Table 1. We could implement
analytical discovery because we could compute p(t|h)
for any test t and history h given the POMDP mod-
els of the systems. As the column labeled analytical
discovery states, for each system a full set of correct
core tests and histories were found. Jaeger’s (2003)
algorithms for discovery of interpretable OOMs and
IO-OOMs use the same stopping condition and his ex-

2When removing histories, we bias this computation by
the probability of the history, because we wish to avoid
rare histories that would not be sampled often. Also, when
considering matrices that are approximately equally well-
conditioned, we chose the matrix that makes best use of
existing samples.



Table 1. Summary table of empirical results. See text for details.

System Core Num. Num. Reset Myopic Analytical ADL
Tests Act. Obs. Learning Learning Discovery Num Tests Error

Tiger 2 3 2 3.5E-7 4.3E-6 Yes 2 5.0E-5
Paint 2 4 2 2.7E-7 1E-5 Yes 2 9.4E-6

Float-reset 5 2 2 3.7E-8 1E-4 Yes 3 4.4E-4
Cheese Maze 11 4 7 3.8E-6 3.7E-4 Yes 11 5.3E-6

Network 7 4 2 3.2E-6 8.3E-4 Yes 3 2.8E-4
Bridge Repair 5 12 5 5.1E-6 3.4E-3 Yes 5 5.6E-4

Shuttle 7 3 5 2.2E-5 2.7E-2 Yes 7 5.5E-5
4x3 Maze 10 4 6 6.4E-5 6.6E-2 Yes 10 8.8E-4

perimental work also supports a positive conjecture for
the stopping condition.

However, subsequent to this experiment we were able
to prove that the discovery algorithm’s stopping con-
dition is in fact not guaranteed to always converge to
a full set of core tests and histories. Despite our neg-
ative result using a carefully constructed counterex-
ample (sketched briefly in the appendix), the stopping
condition seems to work as desired in practice.

4.2. On Reset Learning

In this section, we tested the learning part of DL as-
suming perfect discovery (via analytical discovery as
in the previous section). The goal here was to see if
we could get significantly lower error than obtained
by Singh et al. using their myopic learning algorithm
(which also assumed knowledge of the full set of core
tests). We ran the learning part of DL(n) for increas-
ing values of n and measured error for the result-
ing model parameters. The error function we used
was the one used by Singh et al,̇ the average one-
step prediction error per time step on a long test run
with uniformly random actions. The error for a run
is 1

L

∑L
t=1

∑
o∈O[P (o|ht) − P̂ (o|ht)]2, where P (o|ht)

is the true probability of observation o in history ht

and P̂ (o|ht) is the corresponding estimated probability
that uses our estimated model parameters to maintain
the prediction vectors (as in Equation 2), and to com-
pute the one-step predictions (as in the denominator of
Equation 2). For this experiment, we used L = 10, 000.
Column 5 in Table 1 (labeled Reset Learning) shows
that for each system we were able to get significantly
lower error than myopic learning (shown in column 6).

4.3. Discovery and Learning

We also measured the performance of our algorithm for
simultaneous discovery and learning, DL(n = 1, 000),
in two ways: by the number of core tests found, and by

testing the learned model parameters using the same
error function (L = 100, 000) as in the previous sec-
tion. The last two columns show the number of core
tests found and the error of the approximate PSR-
model learned by DL(1000). In all cases the error was
low and in all systems except Network and Float-reset
all the core tests were correctly found. In Network,
only 3 out of 7 core tests were found and in Float-reset
only 3 out of 5 core tests were found, but regardless
the error in the model was low in both cases.

We also explored the dependence of the performance
of DL(n) on the number of samples n. We ran DL(n)
for various values of n and computed the number of
core tests found as a function of n and the test-error
as a function of n. Figure 2 show the results for all
the problems in Table 1; in all cases error dropped sig-
nificantly with a few hundred samples per history-test
pair. In all cases except Network and Float-reset, the
core tests were discovered with a few hundred sam-
ples. As above, in Network and Float-reset the error
becomes small without the discovery of all the core
tests. These final results show that DL can discover
and learn in these small systems fairly rapidly.

5. Conclusion

Replacing the state-test prediction matrix U used in
the original PSR paper with the history-prediction ma-
trix Z opens up new possibilities for learning and dis-
covery algorithms. In this paper we focused on the
class of controlled dynamical systems with reset and
presented a discovery algorithm (a first for PSRs on
a general class of systems) as well as a new learning
algorithm. Our empirical results on the learning sub-
problem show that our algorithm was able to find good
model parameters on the dynamical systems where the
previous myopic algorithm had difficulty. Our empir-
ical results on our discovery and learning algorithm
(DL(n)), showed that discovery and learning can be
fairly rapid. As future work we intend to continue em-
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Figure 2. Learning curves for simultaneous discovery and learning in DL(n). The horizontal axis in each plot is the number
of samples n. At each iteration of the algorithm the number of samples was doubled (we started with an initial sample
size of n = 50). In each plot, the fraction of core tests found is plotted as bars against the right vertical axis, and the test
error is plotted as a dashed line against the left vertical axis. See text for additional details.

pirical investigation of our algorithms on larger sys-
tems as well as to develop new algorithms that do not
require a reset.

6. Appendix

Figure 3. A state-based representation of the counterexam-
ple to the stopping condition in the analytical discover al-
gorithm. There is a single action (hence it is also an HMM),
and the labels on the arcs are observations.

The deterministic uncontrolled system in Figure 3 al-
ways produces observation 0 except in the transition
from state 4 to state 0. The null history, φ, starts the
system in state 0. Consider Z1 (Z2) the submatrix of
Z for this system that contains all rows for histories up
to length 1 (2) and all columns for tests up to length 1
(2). Each column of both Z1 and Z2 will either be all
0’s or all 1’s. Therefore the rank of both Z1 and Z2

is 1 and so analytical discovery will stop after itera-
tion 2 and only find one core test and one core history.
In this example, there are 5 core histories and tests.
(Jaeger’s 2003 OOM discovery algorithm is subject to
a similar difficulty with this problem.) A detailed ver-
sion of this proof is available in Singh et al. (2004).
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