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Abstract

Postoperative atrial fibrillation (PAF) occurs in 10% to
65% of the patients undergoing cardiothoracic surgery.
It is associated with increased post-surgical mortal-
ity and morbidity, and results in longer and more ex-
pensive hospital stays. Accurately stratifying patients
for PAF allows for selective use of prophylactic ther-
apies (e.g., amiodarone). Unfortunately, existing tools
to stratify patients for PAF fail to provide clinically ad-
equate discrimination. Our research addresses this situ-
ation through the development of novel electrocardio-
graphic (ECG) markers to identify patients at risk of
PAF. As a first step, we explore an eigen-decomposition
approach that partitions ECG signals into atrial and ven-
tricular components by exploiting knowledge of the un-
derlying cardiac cycle. We then quantify electrical in-
stability in the myocardium manifesting as probabilis-
tic variations in atrial ECG morphology to assess the
risk of PAF. When evaluated on 385 patients undergo-
ing cardiac surgery, this approach of stratifying patients
for PAF through an analysis of morphologic variability
within decoupled atrial ECG demonstrated substantial
promise and improved net reclassification by over 53%
relative to the use of baseline clinical characteristics.

Introduction
Postoperative atrial fibrillation (PAF) occurs in 10% to 65%
of the patients undergoing cardiothoracic surgery (Zaman et
al. 2000; Ommen, Odell, and Stanton 1997; Maisel, Rawn,
and Stevenson 2001; Asher et al. 1998). In PAF, the upper
chambers (atria) of the heart fibrillate or contract rapidly and
irregularly, preventing successful emptying of blood into the
lower (ventricular) chambers. This causes blood to pool in
the heart and clot, producing strokes and other morbidities
that increase risk of postoperative mortality (Mathew et al.
2004). In addition to adversely affecting patients, PAF also
imposes a substantial burden on the healthcare system by re-
sulting in longer and more expensive hospital stays (Maisel,
Rawn, and Stevenson 2001).

Prophylactic use of beta-adrenergic blockers and amio-
darone has been shown to reduce the incidence of
PAF (Mitchell et al. 2005; Gottlieb et al. 1999; Guarnieri
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1999). However, while considering these treatments and
other options such as anti-coagulation, the benefits of ther-
apy must be balanced against adverse side effects1. This cre-
ates the need for clinical tools that can accurately stratify
patients for PAF and guide fine-grained prophylactic admin-
istration of pharmacological therapy.
Existing Approaches to PAF Prediction. A number of dif-
ferent clinical metrics have been proposed to predict PAF.
Older age has been shown to be consistently associated with
a higher incidence of PAF (Zaman et al. 2000; Mathew et
al. 1996; Hogue Jr, Hyder, and others 2000), most likely
due to increased atrial fibrosis and dilation in older patients.
Large observational studies have also found an association
between other clinical characteristics and PAF, although the
results of these studies have often been conflicting. Hyper-
tension has been found to predict atrial fibrillation after car-
diac surgery (Furberg et al. 1994), possibly due to fibrosis
and dispersion of atrial refractoriness (Almassi et al. 1997;
Aranki et al. 1996). Men also appear to be more likely
than women to develop PAF after coronary artery bypass
graft (CABG) (Zaman et al. 2000; Almassi et al. 1997;
Aranki et al. 1996). It is believed that this effect may be due
to differences in ion-channel expression and hormonal ef-
fects on autonomic tone. Previous atrial fibrillation and pre-
vious congestive heart failure have also shown an associa-
tion with PAF (Mathew et al. 1996). In addition, procedural
information such as aortic cross-clamp time and location of
venuous cannulation have been found in some, but not all,
studies to have predictive value for PAF (Maisel, Rawn, and
Stevenson 2001). Postoperative factors such as respiratory
compromise and prolonged ventilation have also been sug-
gested (Aranki et al. 1996).

There is an extensive literature on electrocardiographic
(ECG) markers to stratify patients for PAF. The majority of
this work foucses on detecting abnormal P-wave duration on
the surface ECG, as a way to identify intra-atrial conduction
defects (Buxton and Josephson 1981). The use of this infor-

1For example, blinded therapy in the Prophylactic Amiodarone
for the Prevention of Arrhythmias that Begin Early After Revascu-
larization, Valve Replacement, or Repair (PAPABEAR) trial was
more likely to be withdrawn in patients treated with amiodarone,
largely because of a 3-fold increase in bradycardia requiring pacing
and QTc interval prolongation greater than 650 milliseconds (Pod-
goreanu and Mathew 2005).



mation, however, is made challenging by the need for expert
hand labeling of P-waves in the ECG. Moreover, features
based on P-wave duration also suffer from inadequate pre-
cision and recall for clinical use. The small patient popula-
tions (64 to 240 patients) also make it difficult to generalize
the findings from these studies to larger populations. Lack
of data regarding specific treatment implications also limits
the routine incorporation into clinical practice.
Predicting PAF from Atrial ECG. Our research focuses
on developing and assessing novel ECG markers that can
be clinically deployed in a fully-automated setting to iden-
tify patients at risk of PAF. To achieve this, we build
off recent advances in predicting ventricular arrhythmias
by quantifying probabilistic variations in the shape of the
ECG signal over time (Syed et al. 2008; 2009a; 2009b;
2011). Investigations within multiple cohorts have shown
that increased variability within the shape of the ECG is as-
sociated with myocardial instability. In this study, we adopt
a similar approach but note that since the ECG is heavily
dominated by ventricular activity, it may be more appro-
priate to decouple ECG signals into atrial and ventricular
components that can be separately assessed for electrical in-
stability. Specifically, we hypothesize that variability in the
atrial ECG may reflect specific instability associated with
PAF rather than other kinds of arrhythmias. To achieve this,
we propose a novel eigen-decomposition algorithm for ECG
time-series that leverages information about the underlying
cardiac cycle to separate ECG signals into atrial and ventric-
ular components. In a clinical trial on a representative co-
hort of patients undergoing cardiac surgery, we demonstrate
how an analysis of morphologic variability in atrial compo-
nents derived using such an approach can significantly im-
prove stratification for PAF relative to existing automated
approaches.

The contributions of this paper are as follow:

• We introduce the idea of stratifying patients for PAF by
using information exclusively available in the atrial ECG;

• We propose a new approach to obtain an atrial ECG sig-
nal from the composite surface ECG through an eigen-
decomposition algorithm informed by cardiac physiol-
ogy;

• We describe how morphologic variability based on atrial
ECG can be used as a novel marker of PAF;

• We rigorously evaluate the utility of this marker of PAF in
a real-world cohort of patients undergoing cardiothoracic
surgery; and

• We compare the relative merits of our eigen-
decomposition algorithm leveraging cardiac physiology
for source separation with an independent components
analysis (ICA)-based approach.

Background
Electrocardiogram (ECG)
The ECG is a continuous recording of the electrical activ-
ity of the heart muscle or myocardium. At rest, each car-
diac muscle cell maintains a voltage difference across its

cell membrane. During depolarization (i.e., the ‘firing’ of the
heart muscle), this voltage increases. Consequently, when
depolarization is propagating through a cell, there exists a
potential difference on the membrane between the part of
the cell that has been depolarized and the part of the cell at
resting potential. After the cell is completely depolarized, its
membrane is uniformly charged again, but at a more positive
voltage than initially. The reverse situation takes place dur-
ing repolarization, which returns the cell to baseline. These
changes in potential, summed over many cells, can be mea-
sured by electrodes placed on the surface of the body, lead-
ing to the ECG time-series.

The ECG is a quasi-periodic signal (i.e., corresponding to
the quasi-periodic nature of cardiac activity). As shown in
Figure 1(a) three major segments can be identified in a nor-
mal ECG. The P-wave is associated with depolarization of
cardiac cells in the upper two chambers of the heart (i.e., the
atria). The QRS complex (comprising the Q, R and S waves)
is associated with depolarization of cardiac cells in the lower
two chambers of the heart (i.e., the ventricles). The T-wave
is associated with repolarization of the cardiac cells in the
ventricles. The QRS complex is larger than the P-wave be-
cause the ventricles are much larger than the atria. The QRS
complex also coincides with the repolarization of the atria,
which is therefore usually not seen on the ECG. The T-wave
has a larger width and smaller amplitude than the QRS com-
plex because repolarization takes longer than depolariza-
tion (Lilly 2010). Figure 1 shows the relationship between
the ECG signal (P, QRS, T-waves) and atrial/ventricular po-
larization. We emphasize that the P-wave corresponds to al-
most exclusively atrial activity, the T-wave corresponds to
almost exclusively ventricular activity, while the QRS com-
plex reflects both atrial and ventricular activity (see Fig-
ures 1(b) and (c) for detail); we will use these facts crucially
in developing our approach to extracting the atrial ECG.

Morphological Variability (MV)
Recent work on stratifying patients for ventricular arrhyth-
mias has shown that increased variation in the shape of the
ECG waveform is a useful marker of myocardial instabil-
ity (Syed et al. 2008; 2009a; 2009b; 2011). In this study, we
build upon these results and focus on how a similar approach
can be applied to atrial components of the ECG signal as a
way of stratifying patients for PAF. We defer the question of
how to derive a separation of the ECG into atrial and ven-
tricular signals to the subsequent section. In what follows
here, we briefly review the major principles associated with
measuring MV.

For every pair of consecutively occurring beats in an ECG
time-series, MV starts by quantifying how the shapes of the
beats differ using a variant of dynamic time warping (DTW).
This allows the original ECG signal to be transformed into a
sequence of instantaneous morphology differences between
consecutive pairs of beats. The spectral characteristics of
this sequence are then studied, with energy between 0.30 and
0.55 Hz (as estimated using a Lomb-Scargle periodogram
approach) being used as a marker of myocardial instabil-
ity. In the remainder of this paper, we adopt an identical ap-
proach to measuring MV. A more detailed exposition of the



(a) ECG

(b) Atrial activity (c) Ventricular activity

Figure 1: Atrial and ventricular components of the
ECG (Grier 2008)

process of measuring MV can be found in (Syed et al. 2011).

ECG Decomposition
Consistent with the hypothesis proposed earlier, the focus
of our work is to study morphological variability in atrial
activation as a means of stratifying patients for PAF. Since
observing atrial activity over the entire cardiac cycle is made
difficult by the presence of ventricular activity, our approach
requires first extracting the atrial components of the ECG
waveform from the surface ECG. Traditional filtering-based
methods are insufficient for this task since the ventricular
activity is both higher amplitude, and occupies the same fre-
quency ranges as atrial activity. Instead, we plan to formu-
late the separation of atrial and ventricular activity as a blind
source separation problem, where the aim is to extract the
atrial component of the ECG waveform from ventricular ac-
tivity and noise.

The surface ECG measures electrical activity at different
parts of the body and as shown by (Naı̈t-Ali 2009) follows
a linear instantaneous model, i.e., each recording of an ECG
lead is a weighted linear combination of the atrial and ven-
tricular components. Thus, the source separation problem
that we are trying to solve can be viewed as an instance of
the cocktail party problem. More formally, given n unknown
signal sources s1(t), s2(t), · · · , sn(t) andm observed signal
mixtures x1(t), x2(t), · · · , xm(t) the goal is to estimate W
where s(t) = W ∗ x(t) and W is the unknown m-by-n un-
mixing matrix with entries wij representing the contribution
of observation xi(t) back onto source sj(t); note that the
unmixing matrix is not a function of time. For our task of
separating out the atrial component and the ventricular com-
ponent, we need to learn the unmixing matrix that recovers
the desired atrial and ventricular sources when applied to the
ECG recordings (observations) across leads.

Independent Component Analysis (ICA): Most of the
existing work on atrial component extraction has focused
on the surface ECG extracted during atrial fibrillation
episodes. The literature suggests that during atrial fibrilla-
tion episodes, atrial activity consists of small and continuous
wavelets (a sawtooth form (Castells et al. 2003)) with a cy-
cle of around 160ms. This has been modeled as a random
variable with a distribution described by its histogram, i.e.,
a subgaussian signal. Based on this model, the atrial signal
is said to have negative kurtosis (being subgaussian), while
the ventricular signal has positive kurtosis (as it is assumed
to be supergaussian). When such assumptions hold, i.e., dur-
ing atrial fibrillation episodes, independent component anal-
ysis (ICA), which is capable of extracting independent non-
Gaussian sources, has been shown to successfully extract
atrial activity.

We note, however, that the goal of our work is to predict
rather than detect atrial fibrillation. Therefore the assump-
tions upon which the ICA method are based do not apply
to our research (since we intend to separate atrial and ven-
tricular activity during normal sinus rhythm). Nevertheless,
for completeness we consider the use of ICA for atrial com-
ponent extraction on ECG in our experiments. Specifically,
we make use of RobustICA, a variant of ICA based on using
kurtosis as a contrast function. The component with the most
positive kurtosis is considered to be the ventricular compo-
nent, while the one with the most negative kurtosis is con-
sidered to be the atrial component.
Silence-energy-minimization (SEM): Our work differs
from the standard cocktail party problem in that we have ad-
ditional a priori knowledge of the time frames where only
one of the speakers is speaking. In other words, based on
cardiac physiology we know that for each heartbeat: the
P-wave is associated exclusively with atrial depolarization
while the T-wave relates only to ventricular repolarization.
Thus there are periods within the ECG when only atrial (P-
wave) or ventricular (T-wave) speaker’s activity is present.

Let sA(t) and sV (t) denote the unknown A-beat (atrial)
and V-beat (ventricular) source signals at time t. With m
leads, let x(t) be the m-dimensional (vector) observed sig-
nal at time t. Assuming we can segment out the P- and T-
waves in the observed signal we construct two new observed
signals, xA(t) and xV(t) as follows: during P-wave activity
set xA(t) = x(t) and set xV(t) = 0, during T-wave activity
set xV(t) = x(t) and set xA(t) = 0, and everywhere else
set xV(t) = xA(t) = 0. Collecting these new observed sig-
nals over k time steps into two m× k matrices XA and XV

and collecting the unknown source signals into two 1 × k
vectors sA and sV, we get the following two linear relation-
ships: sA = wT

AXA and sV = wT
VXV , where wT

A and wT
V

are the 1 ×m unmixing vectors for the atrial and ventricu-
lar sources respectively. We solve for wA and wV using the
following optimization function.

max
wA

||wA
TXA||2 − c||wA

TXV ||2 s.t. ||wA||2 = 1

max
wV

||wV
TXV ||2 − c||wV

TXA||2 s.t. ||wV||2 = 1

Here, we only derive the solution for the first optimiza-
tion problem (wA) without loss of generality. Adding the



Lagrangian term, the problem becomes:

max
wA

||wA
TXA||2 − c||wA

TXV ||2 − λ(||wA||2 − 1).

Taking the derivative of the above with respect to wA and
setting it to zero, we get

XA
TXAwA − c ·XV

TXV wA − λwA = 0

(XA
TXA − c ·XV

TXV )wA = λwA.

Therefore, the resultant optimization problem is an eigen-
problem. The solution can then be found by solving for the
eigenvector of the following matrix XA

TXA− c ·XV
TXV ,

where c is a regularization term that controls the degree to
which the unwanted ventricular part is attenuated. The de-
rived unmixing vectors can be applied to all time frames, not
just those corresponding to T- and P- waves, in the training
and testingm-lead ECG signal to extract atrial and ventricu-
lar signals (at time t as wT

Ax(t) and wT
Vx(t) respectively).

We note that Weisman et al. proposed a method similar
to ours to extract atrial electrical activity (Weissman, Katz,
and Zigel 2009). However, their method makes an unreal-
istic assumption that the entire ECG signal can be cleanly
segmented into segments of only pure atrial activity only
and pure non-atrial activity. Moreover, their method tries
to maximize the ratio of energy between atrial part vs non-
atrial part, which requires an iterative algorithm when trying
to solve the optimization function. Our approach, in con-
trast, has a closed form solution that is more applicable to
real-time systems intended for continuous pre-operative and
post-operative monitoring with prompt delivery of appropri-
ate prophylaxis.
Extracting P and T-waves. The approach as described re-
lies heavily on being able to identify the location of the P-
and T-waves in the ECG. Many algorithms have been pro-
posed in the literature to segment cardiac ECG beats into
their corresponding P/Q/R/S/T-waves. However, these algo-
rithms are generally unreliable at extracting the P/T-waves
in real-world signals due to the relatively small magnitude
of the P-wave and subtle changes marking the end of the T-
wave. In addition, the real-world data employed in this paper
are especially noisy, due to collection in an operating room
(OR) setting, rendering these segmentation algorithms un-
suitable for our purposes. As a result of this, we devised a
heuristic based on physiology to establish the location of the
P- and T-waves. Specifically, we attempted to relate the oc-
currence of these waves to the R-peak, which is the most
prominent part of the beat (and therefore the easiest to de-
tect). Our proposed heuristic is as follows: we make the gen-
eral assumption that there is no ventricular activity (hence
atrial only part) during 60− 180ms before an R-peak, while
there is no atrial activity 80− 480ms after an R-peak (hence
ventricular only part).

Experiments and Results
We evaluated our proposed methodology for PAF prediction
on both synthetic and real-world data. We first study the abil-
ity of the two atrial extraction approaches described above,
ICA and SEM, to reliably recover atrial and ventricular com-
ponents on synthetically created ECG data. Next we study

the utility of atrial and ventricular separation in predicting
PAF within a representative real-world clinical cohort. De-
tails of the experiments and results are presented below.

Synthetic Data
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(a) Overlayed synthetic ECG data
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(b) Original vs. recovered atrial
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(c) Original vs. recovered ventricular

Figure 2: Comparison of atrial and ventricular components
extracted using ICA and SEM on synthetic data (C = 10 for
SEM).

We created synthetic ECG beats by combining textbook
templates of atrial activity (defined as the P -wave and TA-
wave) with ventricular activity (defined as the remaining
waves). Specifically, we simulated multi-channel ECG data
by using the linear instantaneous model proposed in (Naı̈t-
Ali 2009) to combine the atrial and ventricular components
with randomly selected weights and additive white Gaussian
noise. ICA and SEM were applied to this generated multi-
channel ECG to obtain candidate atrial and ventricular com-
ponents. These components were compared with the ground
truth atrial and ventricular activity to assess the ability of
ICA and SEM to reliably recover the original signals (using
correlation as a performance criteria).

Figure 2 presents the results of this experiment. The syn-
thetic multi-channel ECG data created using the approach
above is illustrated in Figure 2(a). When separated into atrial
and ventricular components (Figures 2(b) and (c)), the use of
SEM for separation provided consistent improvements in the



recovery of both atrial and ventricular activity relative to the
use of ICA. In particular, the use of prior knowledge about
the relative absence of atrial and ventricular activity in SEM
yielded a correlation coefficient of greater than 0.97. This
was in contrast to the use of ICA, which failed to achieve any
reasonable recovery of the atrial component and achieved
marginal success dealing with ventricular activity (correla-
tion coefficient of 0.81). Visually, the use of ICA also led to
substantially more ripple in the extracted components than
the use of SEM.
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(a) Overlayed data from multiple ECG
leads
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(b) Atrial components extracted by ICA
and SEM
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Figure 3: Comparison of atrial and ventricular components
extracted using ICA and SEM on actual ECG data (C =
10 for SEM). Shaded bands correspond to portions of the
cardiac cycle corresponding to ventricular (green) and atrial
(yellow) activity.

Real-World Data
Although we did not rigorously compare the ability of ICA
and SEM to separate ECG into atrial and ventricular com-
ponents on real patient data (owing largely to the absence of
known ground truth in real data versus synthetic data), we
note than in many cases the use of SEM provided qualita-
tively better results. For example, as shown in Figure 3, the
use of SEM on 4-lead ECG data (Figure 3(a)) resulted in
atrial components with substantially increased energy in the
P-wave and PR-interval as opposed to ventricular compo-
nents with substantially increased energy in the ST-segment
and T-wave. This was in contrast to ICA, where the absence

of prior knowledge led to a comparatively poorer separation
of the signal (Figures 3(b) and (c)).

We supplemented our analysis investigating the abilities
of ICA and SEM to separate ECG into atrial and ventric-
ular components with an evaluation of the clinical utility
of such a separation on a real-world representative cohort
of patients undergoing cardiac surgery. Data from 385 pa-
tients undergoing CABG, aortic, or other valvular surgeries
at the University of Michigan Hospital were collected in
2013. The size of this cohort was considerably larger than
previous studies investigating the use of ECG-based metrics
to predict PAF largely because a focus on exploring a fully-
automated approach to predict PAF (as opposed to one re-
quiring substantial expert input) allowed us to evaluate our
approach more rigorously in a larger cohort. For each pa-
tient, at least two sets of ECG waveforms were available; one
recorded during surgery in the operating room (OR) and the
other recorded during the intensive care unit (ICU) stay after
surgery. All ECG waveforms were recorded at 240Hz, with
4-leads of recordings available (Lead 1, 2, 3, and a generic
V-lead that we refer to as Lead 4). Expert review of the ECG
data in the ICU following surgery was used to annotate the
endpoint of PAF (90 events).

The goal of our investigation was to study the ability of
markers based on MV, deriving from atrial and ventricular
components of the ECG waveform in the OR, to predict
PAF. We note that since recordings collected once surgery
has started are typically too noisy for meaningful analysis,
only the first 30 minutes of data in the OR preceding the
operation were used. Moreover, since a key question while
determining clinical utility is the extent to which any novel
markers add information beyond existing variables, we also
compared the use of MV measured from atrial and ventric-
ular components of the ECG to baseline non-ECG clinical
features available in the patient electronic health record (de-
mographics, history and physical exam findings, laboratory
reports, and type of surgery) and also based on the unsepa-
rated ECG signal (MV measured on each of Leads 1-4).

The models we evaluated include logistic regression mod-
els trained using stepwise backward elimination applied to:
(Model 1) non-ECG features;
(Model 2) non-ECG features and features based on the com-
plete ECG signal;
(Model 3) non-ECG features and features based on both the
complete ECG signal and components derived using ICA;
(Model 4) non-ECG features and features based on both the
complete ECG signal and components derived using SEM;
(Model 5) non-ECG features and features based on both the
complete ECG signal and components derived using both
ICA and SEM.
In all of these experiments, the stepwise backward elimina-
tion process removed one feature during each iteration based
on cross-validated AUC results for each step. The reported
AUCs are averaged across 50 trials that randomly divided
data into 50% training and 50% test sets.

The evaluation metrics considered were: the discrimina-
tion (as assessed by the area under the ROC curve [AUC]
and integrated discrimination improvement [IDI]) and re-
classification between models (as assessed by the net re-



Method AUC
Model 1 0.66
Model 2 0.69
Model 3 0.70
Model 4 0.70
Model 5 0.70

Table 1: AUC values for logistic regression models trained
using stepwise backward elimination on different groups of
features. See text for details of the different feature sets used
for training the models above.

Comparison IDI (P-value) NRI (P-value)
Model 4 vs. Model 1 0.048 (<0.001) 53.4% (<0.001)
Model 4 vs. Model 2 0.017 (0.026) 25.6% (0.017)
Model 4 vs. Model 3 0.004 (0.275) 16.1% (0.091)

Table 2: IDI and NRI values comparing a logistic regression
model trained using stepwise backward elimination on non-
ECG features and features based on both the complete ECG
signal and components derived through SEM (Model 4) to
logistic regression models trained using stepwise backward
elimination on different baseline feature sets (Models 1 to
3). See text for details of the different feature sets used for
the models above. Note: IDI and NRI values are not pre-
sented for Model 4 vs. Model 5 since stepwise backward
elimination resulted in the same features being retained in
these models.

classification improvement [NRI]). NRI represents the pro-
portion of patients appropriately assigned a higher or lower
risk categorization under a new model relative to an old one,
while IDI represents the difference of mean predicted prob-
abilities of patients experiencing events and those remaining
event free (Pencina, D’Agostino, and Vasan 2008).

Tables 1 and 2 present the results of these experiments.
The results in Table 1 show that the inclusion of MV with-
out source separation (Model 2) substantially improved per-
formance relative to the use of baseline clinical features by
themselves (Model 1). This performance was further im-
proved with the addition of MV based on atrial and ventric-
ular components derived through both ICA (Model 3) and
SEM (Model 4). The improvement was marginally larger
when SEM was used for separation than when ICA was
used. Specifically, we note that when MV markers based
on both ICA- and SEM-separated ECG components were
included together (Model 5), the backward stepwise elimi-
nation process retained MV based on atrial activity derived
using SEM in preference to MV based on all ICA derived
components.

The IDI and NRI metrics in Table 2 using SEM (Model
4) were also positive relative to the use of the baseline clin-
ical features by themselves (Model 1), the additional use of
MV without source separation (Model 2), and the further in-
clusion of MV using ICA (Model 3). The smallest of these
improvements corresponded to a positive net reclassification
of over 16% with statistical significance at the 10% level.

Conclusion
We focused on the question of developing novel markers that
can be used to stratify patients undergoing cardiac surgery
for PAF. Given the substantial burden that PAF imposes
post-operatively, the ability to identify patients most likely
to experience PAF can substantially improve mortality and
morbidity, and also reduce healthcare costs, by creating the
opportunity to deliver prophylaxis in a timely and person-
alized manner. The challenge to realizing this, however, is
that there are currently no established metrics for PAF risk
stratification. To address this need, we explored the devel-
opment of ECG-based markers in our work that can be de-
ployed in an inexpensive, non-invasive, and fully-automated
manner to evaluate patients undergoing cardiac surgery. We
focused, in particular, on extending advances in stratifying
patients for ventricular arrhythmias (that quantify excessive
variability in the ECG waveform) to similarly evaluating the
health of the electrical activity of the atria. Central to this
is the ability to distinguish lower amplitude atrial activity
from higher amplitude ventricular activity. To decompose
the ECG into separate components corresponding to both
atrial and ventricular activity, we proposed a novel eigen-
decomposition approach based on silence energy minimiza-
tion, which partitions ECG time-series into atrial and ven-
tricular components by exploiting knowledge of the underly-
ing cardiac cycle. Using this, we measured atrial instability
by studying probabilistic variations in atrial ECG morphol-
ogy as a means of determining risk for PAF.

We evaluated our work on both synthetic and real-world
data. Although our cohort size is not large in absolute terms;
it is larger than previously conducted studies for predicting
PAF (our ongoing data collection will ultimately yield over a
1000 patients allowing more comprehensive evaluation and
sharing with the clinical community in future work).

Our results on synthetic data showed that the use of ad-
ditional knowledge based on physiology to distinguish be-
tween atrial and ventricular activity during the ECG decou-
pling process substantially improved performance relative to
physiology-agnostic approaches such as ICA. When further
evaluated on data from a well-characterized cohort of pa-
tients undergoing cardiac surgery, we further observed that
the use of physiology to guide ECG separation into atrial
and ventricular components achieved better results than the
use of a purely statistical approach such as ICA. Moreover,
the development of markers based on an analysis of atrial
ECG significantly improved models based on baseline clini-
cal features and an assessment of variability within the entire
(unseparated) ECG. In particular, our results show that rela-
tive to the combination of baseline clinical features and ECG
features without separation, our proposed approach can im-
prove classification by over 25% with statistically significant
improvements in discrimination.

Knowing which patients will or will not develop atrial fib-
rillation post-operatively provides the opportunity to deliver
prophylaxis (e.g., amiodarone) in a selective manner. Also,
morphologic variability of atrial ECG improves our under-
standing of the pathophysiology of PAF and may lead to
better therapies. These results thus have the potential to im-
prove the care of tens of thousands of patients each year.
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