
Maintaining Predictions Over Time Without a Model

Erik Talvitie

Computer Science and Engineering

University of Michigan

etalviti@umich.edu

Satinder Singh

Computer Science and Engineering

University of Michigan

baveja@umich.edu

Abstract

A common approach to the control problem in par-
tially observable environments is to perform a di-
rect search in policy space, as defined over some
set of features of history. In this paper we con-
sider predictive features, whose values are condi-
tional probabilities of future events, given history.
Since predictive features provide direct information
about the agent’s future, they have a number of ad-
vantages for control. However, unlike more typical
features defined directly over past observations, it
is not clear how to maintain the values of predictive
features over time. A model could be used, since
a model can make any prediction about the future,
but in many cases learning a model is infeasible. In
this paper we demonstrate that in some cases it is
possible to learn to maintain the values of a set of
predictive features even when a learning a model is
infeasible, and that natural predictive features can
be useful for policy-search methods.

1 Introduction

A common approach to the control problem in partially ob-
servable environments is a direct search in policy space with
respect to some set of features of history. In practice, fea-
tures are typically directly computed from the sequence of
past observations. They may be some features of the last
k observations for some finite k or the presence/absence of
some particular subsequence of observations. These histori-
cal features have the advantage of being easy to maintain over
time, as new observations are added to history. Their disad-
vantage, however, is that it can be difficult to know which
historical features are important to create a good policy with-
out a good deal of a priori knowledge about the environment.
In this paper we will focus on predictive features. These fea-
tures take the form of a conditional probability of some future
event, given history and a set of future actions the agent might
take. Predictive features, in contrast with historical features,
have direct consequences for control, as they provide infor-
mation about the effects of possible behaviors the agent might
engage in. As such, it may be easier to select a set of predic-
tive features that are likely to be informative about the opti-
mal action to take (e.g. “Will the agent reach the goal state

when it takes this action?” or “Will taking this action damage
the agent?”). Furthermore, some important knowledge may
be expressed fairly compactly in terms of a prediction that
would be complex to specify purely in terms of past observa-
tions. Literature on PSRs [Littman et al., 2002] shows that an
arbitrary-length history can be fully captured by a finite set of
short-term predictions. On the other hand, unlike historical
features, it is not immediately clear how to compute the value
of a predictive feature given a particular history.

As an example, consider the game of Three Card Monte.
The agent is shown three cards, one of which is the “spe-
cial card.” The dealer then flips over the cards to hide their
faces and proceeds to mix them up by swapping the positions
of two cards at every time step. The agent can observe which
cards the dealer swaps. At the end of the game, the agent must
identify which card is the special card. To perform well in this
game, the agent need only answer one question: “Where is
the special card?” The location of the special card can be ex-
pressed very easily in terms of predictive features: we could
have one feature for each card whose value is the probabil-
ity that if that card were flipped over, it would be the special
card. However, it is not obvious, without extensive knowl-
edge about the dynamics of the system, how to compute the
values of these features for a given history.

One way to maintain predictive features is using a model.
If the agent has a model of the environment it can make any
prediction about the future, at any history. However, in com-
plex environments, a complete model may be unavailable,
and may furthermore be infeasible to learn from experience.

A model has the ability to simulate the system. As such,
it has not only the ability to predict the current location of
the special card, but also its location in the future. In Three
Card Monte, in order to predict the location of the special
card in the future, it is necessary to predict how the dealer
will behave. If the decision-making process the dealer uses
to choose swaps is very complex, learning a model of the
system may be infeasible. Note, however, that a model’s abil-
ities to simulate future events is unnecessary in Three Card
Monte. In order to make decisions, the agent needs only pre-
dict the current location of the special card at any given mo-
ment, with no need to predict what the dealer will do in the
future. As such, one would hope that the complexity of main-
taining the values of the predictive features representing the
correct position of the special card would be independent of

the complexity of predicting what cards the dealer will swap,
and therefore simpler than that of learning a model.

An alternate approach that would avoid the use of a model
would be to treat a predictive feature as simply a function
from histories to probabilities, and perform some kind of re-
gression. Of course, this leads directly back to the original
feature selection problem: which features of history are im-
portant? Furthermore, the predictions of interest may have
complex and long-range dependence on history that could
be difficult to capture with a reasonable set of features. In
Three Card Monte, the location of the card depends on the
entire history since the beginning of the game. It is precisely
these long-range dependencies that model-learning methods
are designed to discover. So, in our approach, we will lever-
age model-learning techniques in order to learn to maintain
the values of predictive features over time, but we will not
learn a complete model of the system. We accomplish this by
modeling a transformation of the system called the prediction
profile system. A model of the prediction profile system can
be used to provide the values of the predictions of interest in
the original system at any given time step, but will make no
other predictions. Essentially we give up a model’s ability
to project what its predictions will be in the future. We will
demonstrate our technique on three example domains, includ-
ing Three Card Monte, which prove too complex for standard
POMDP model-learning methods, but for which it is possi-
ble to maintain the values of predictive features important for
finding a good policy.

2 Background

In this work we focus our attention on discrete dynamical sys-
tems. The agent has a finite set A of actions that it can take
and the environment has a finite set O of observations that it
can produce. At every time step τ , the agent chooses an action
aτ ∈ A and the environment emits an observation oτ ∈ O.
The sequence hτ = a1o1a2o2...aτoτ is the history at time
τ . The history at time zero, h0 = φ, is the null history. We
call a possible future sequence of actions and observations
t = aτ+1oτ+1...aτ+koτ+k a test. If the agent takes the action
sequence in t and observes the observation sequence in t, we
say that test t succeeded. A prediction p(t|h) is the probabil-
ity that test t succeeds after history h. Formally,

p(t|h)
def
= Pr(oτ+1...oτ+k|h, aτ+1...aτ+k). (1)

We let T be the set of all tests and H
def
={t ∈ T |p(t|φ) > 0} be

the set of all histories. We assume that the agent has a finite
set T I ⊂ T of tests of interest that it wishes to accurately pre-
dict at any history. The predictions for the tests of interest are
the agent’s predictive features. The tests of interest could be
elements of T , though in general they could also be abstract
tests that capture more sophisticated predictions.

2.1 Policy Gradient Methods

Policy gradient methods have been very successful in provid-
ing a viable option for model-free control in partially observ-
able domains. Though there are differences between various
algorithms, the common thread is that they assume a paramet-
ric form for either the agent’s policy, or for the value function.

The goal, then, is to alter those parameters in the direction of
the gradient with respect to expected reward. In this paper
we will use Online GPOMDP with Average Reward Baseline
[Weaver and Tao, 2001], or OLGARB (we refer readers to
the original paper for details). We will assume we have a set
of features fi of history, and that the agent’s policy takes the
form:

Pr(a|h; ~w) =
e

P

i
wi,afi(h)

∑
a′ e

P

i
wi,a′fi(h)

(2)

where the parameters ~w are real-numbered weights specific
to the feature and the action being considered.

2.2 Models

In this paper we will make use of two modeling repre-
sentations. Partially observable Markov decision processes
(POMDP) [Monahan, 1982] are a standard modeling method
and we will learn POMDP models as a baseline of com-
parison to our method. POMDPs are typically trained us-
ing Expectation-Maximization (EM), which performs gradi-
ent ascent to find a local maximum of likelihood. As a part
of our method, we will make use of looping predictive suffix
trees (LPST) [Holmes and Isbell, 2006], which are special-
ized to deterministic systems. Though we consider stochastic
systems, one part of our method involves learning a model
of a deterministic system (as described in the next section).
Under some conditions on the training data, LPST training
converges to the optimal model.

3 Prediction Profile System

Let T I be a set of m tests of interest whose predictions are
expected to be useful features for control. We would like a
function g : H → R

m that maps histories to predictions for
the tests of interest. A prediction profile is a vector of predic-
tions for the tests of interest. In this paper, we will focus on
the case where there are finitely many distinct prediction pro-
files. This is a restrictive assumption, though we believe there
are many systems and sets of tests that have this property. For
instance, in Three Card Monte, there are three possible pre-
diction profiles, one for each position of the special card.

Say there are n prediction profiles. Then let L = {1...n}
be a finite set of labels for the prediction profiles. Then we
can define g′, a redefinition of g, such that g′ : H → L is a
mapping from histories to prediction profile labels. The goal
of this paper is to find a compact representation of g′. We will
accomplish this by defining and then modeling a new dynam-
ical system called the prediction profile system (or PP).

Definition. The observations of PP , OPP
def
= L, are pre-

diction profile labels. The actions, APP
def
= A × O are ac-

tion/observation pairs from the original system.

Because the observations from the original system are
folded into the actions of PP , a model of the prediction
profile system conditions on the dynamics of the original
system, but need not make predictions about them. The
dynamics of the prediction profile system are governed by

Figure 1: The prediction profile system for Three Card
Monte. Transitions are labeled with the dealer’s swaps. States
are labeled with the predicted position of the special card.

g′. Specifically, for any action sequence a1a2...ak with
a1, ..., ak ∈ APP , PP emits the observation sequence
g′(a1)g

′(a1a2)...g
′(a1...ak). As an example, we show the

prediction profile system for Three Card Monte in Figure 1.
This shows how the prediction about the current location of
the card can be maintained as the dealer makes swaps, with-
out predicting which swaps the dealer will make.

In general, the prediction profile system is non-Markovian.
As a result, the prediction profile is not a form of predic-
tive state [Littman et al., 2002]. The next prediction profile
depends in general upon the entire history of the prediction
profile system, rather than just the current prediction profile.
Note, however, that even if the original system is stochastic
the prediction profile system is always deterministic, because
every history corresponds to exactly one prediction profile.
The stochastic observations of the original system have been
folded into the actions of the prediction profile system.

If we have a model of the prediction profile system, we
can recover g′ in order to obtain the prediction profile for any
history. A given history is a sequence of action/observation
pairs. This is converted to a sequence of prediction profile
actions in APP . This sequence of actions results determin-
istically in a unique sequence of prediction profile observa-
tions, the last of which is the prediction profile that provides
the predictions of interest given the current history.

So, a model of the prediction profile system provides the
values for a set of predictive features at any history and no
other predictions. It therefore lacks the ability to project what
its predictions will be in the future, and therefore any ability
to simulate the system. As a result, a prediction profile model
cannot be used for model-based control techniques. For these
reasons, we say that a prediction profile model is not a model
of the system. However, as we will see, a prediction profile
model’s ability to provide accurate values for a set of pre-
dictive features at any given time step can be valuable for
model-free control.

3.1 Related Work

The idea of model only some aspects of the observations of
a dynamical system is not new. In some recent examples,
Wolfe [2006] and Rudary [2008] both learn models that split
the observation into two pieces, one of which is modeled
while the other is treated as an action, or an “exogenous in-
put.” A prediction profile model, instead of predicting some

Figure 2: Flow of our algorithm.

piece of the next observation, predicts the values of some pre-
dictions at the next time step, which we believe to be a novel,
and in some ways more general idea.

Temporal Difference Networks (TD-nets) [Tanner and Sut-
ton, 2005] can be used to approximately maintain a set of
predictive features without a model. However, there is as yet
no method for constructing a TD-net that makes accurate (or
near accurate) predictions for a given set of tests of interest.

The prediction profile system is also similar in spirit to fi-
nite state controllers for POMDPs. In some cases, it is pos-
sible to represent the optimal policy for a POMDP as a finite
state machine that takes action/observation pairs as inputs and
that outputs actions. Multiple authors (e.g. [Hansen, 1998])
provide techniques for learning finite state controllers. How-
ever, these algorithms require access to a complete POMDP
model of the world to begin with which, in our setting, is as-
sumed to be impractical at best.

4 Learning a Prediction Profile Model

We now turn our attention to the main problem of the paper:
learning a prediction profile model from experience. We as-
sume we are given data in the form of a set S of trajectories
of interaction with the original system. The learning proce-
dure we will present has three main steps (pictured in Figure
2). First, we estimate both the number of distinct prediction
profiles and their values. Second, we translate the trajectories
in S to a set S′ of trajectories of interaction with the predic-
tion profile system. Finally, we use the translated trajectories
to train a model of PP . We then use the obtained predic-
tion profile model to maintain predictive features for use in a
policy gradient algorithm.

4.1 Estimating the Prediction Profiles

Given S, we would like to determine how many distinct pre-
diction profiles there are, as well as their values. Note that we
can very simply obtain an estimated prediction profile for any
history in the agent’s experience. The estimated prediction
for a test of interest t at a history h is1:

p̂(t|h) =
times t succeeds from h

times acts(t) taken from h
. (3)

Due to sampling error, it is unlikely that any of these esti-
mated profiles will be exactly the same. We can use statisti-
cal tests (chi-square test under the appropriate approximation

1Bowling et al. [2006] note that the estimator in Equation 3 is
biased when the exploration policy depends upon past observations
and provide an unbiased estimator for general exploration policies.
Our experiments use a uniform random policy. Adapting our algo-
rithm to general exploration policies is interesting future work.

conditions and Fisher’s exact test otherwise) to find histories
that have significantly different prediction profiles.

To compare the profiles of two histories, we perform a test
of homogeneity for each test of interest. If the test associated
with any test of interest rejects the null hypothesis that the
test has the same probability of succeeding in both histories,
then the two histories have different prediction profiles.

In order to find the set of distinct prediction profiles, we
maintain an initially empty set of exemplar histories. We
search over all histories in the agent’s experience, compar-
ing each history’s profile to the exemplar histories’ profiles.
If the candidate history’s profile is significantly different from
the profiles of all exemplar histories, we add the candidate as
a new exemplar. In the end, we use the estimated profiles of
the exemplar histories as the set of prediction profiles. In or-
der to obtain the best estimates possible, we order our search
to prioritize histories with lots of data.

The procedure we have outlined has two main sources of
complexity. The first is the sample complexity of estimating
the prediction profiles. It can take a great deal of exploration
to see each history enough times to obtain good statistics, es-
pecially as the number of actions and observations increases.
This issue could be addressed by adding generalization to our
estimation procedure, so that data from one sample trajectory
could improve the estimates of many similar histories. In our
experiments we will use observation aggregation as a sim-
ple form of generalization. The second is the complexity of
searching for prediction profiles, as this involves exhaustively
enumerating the histories in the agent’s experience. It would
be valuable to develop heuristics to identify histories likely to
provide new profiles. In our experiments we limit the search
to short histories, as long histories will tend to have less data,
and will therefore be less likely to provide new profiles.

4.2 Generating Prediction Profile Trajectories

Having generated a finite set of distinct prediction profiles,
we now turn to translating the agent’s experience into se-
quences of action/observation pairs and those prediction pro-
files. These trajectories will be used to train a model of the
prediction profile system.

The process of translating a raw action/observation se-
quence s into a prediction profile trajectory s′ is straight-
forward and, apart from a few practical concerns, follows
directly from the definition of the prediction profile system
given in Section 3. Recall that, for an action/observation
sequence s = a1o1...akok, the corresponding action se-
quence for the prediction profile system is simply acts(s′) =
{a1, o1}...{ak, ok}. The corresponding observation sequence
is obs(s′) = g′(a1o1)g

′(a1o1a2o2)...g
′(a1o1...akok).

Of course we do not have access to g′ to generate obs(s′).
We will approximate it by using statistical tests to compare
the profile of each prefix of s to the exemplar histories’ pro-
files. Since we considered every history in the agent’s expe-
rience in the construction of the set of exemplar histories we
are guaranteed that the profile every prefix of s matches the
profile of at least one exemplar history. We take the profile of
that matching exemplar to be the result of g′.

Unfortunately, there are some circumstances in which we
cannot determine a unique matching exemplar. It is possible

for the test of homogeneity to fail to reject the null hypoth-
esis for two or more exemplar histories. This indicates that
there is not enough data at the prefix to distinguish between
multiple possible matching profiles. This is especially com-
mon when two or more profiles have similar values. In this
case we cannot know which profile belongs at that point in
the sequence. Rather than choose an arbitrary (and possibly
incorrect) profile, we simply cut the trajectory short, ignor-
ing all subsequent action/observation pairs. This is somewhat
data inefficient, though we found it resulted in significantly
better performance than the alternative. The development of
a principled method for choosing a profile in these situations
would likely improve the data efficiency of our algorithm.

4.3 Learning a Prediction Profile Model

We now have a set S′ of trajectories of interaction with PP .
We can use these trajectories to train a model of the prediction
profile system using any model-learning technique.

We will use LPSTs to represent our model of PP . Note
that, because we consider stochastic systems, LPSTs could
not be used to learn a model of the original system. How-
ever, because PP is deterministic, they are well suited to our
purpose. That said, prediction profile LPSTs (PP-LPSTs) can
fail when some history suffixes do not occur in the training
data. This can cause the PP-LPST not to make any prediction
about the next observation. To address this eventuality, in our
implementation we keep track of the empirical stationary dis-
tribution of prediction profiles in the training sequences. To
generate a prediction for a test of interest in the absence of a
prediction from the PP-LPST, we provide the expected pre-
diction with respect to the empirical stationary distribution
over profiles. We then randomly draw a prediction profile
from the empirical stationary distribution and use that profile
as the observation to update the PP-LPST.

5 Experiments

In this section we will apply our methods to three example
problems. For each problem we provide an initial training set
of experience used to learn a prediction profile model. In this
“training phase” the reward the agent obtains is unimportant.
So, in the training trajectories, the agent chooses amongst its
actions with equal probability.

The free parameter of our algorithm is the significance
value of the statistical tests, α. Given the large number of
contingency tests that will be performed on the same data-
set, which can compound the probability of a false negative,
α should be set fairly low. In all our experiments we set
α = 0.00001, though we tried several reasonable values and
achieved similar results. As discussed above, we will also set
the maximum length history we will consider when we search
for prediction profiles. This cutoff allows us to avoid consid-
ering long histories, as there are many long histories to search
over and they are unlikely to provide new prediction profiles.

After we have learned a model of PP , we use its output
as features for the policy gradient algorithm OLGARB dur-
ing the “control phase.” Specifically, for each test of interest
t we split the unit interval up into 10 equally-sized bins b and
provide a binary feature ft,b that is 1 if the prediction of t lies

0 2 4 6 8 10
x 10

4

−0.05

0

0.05

0.1

Training Trajectories

A
vg

. R
ew

ar
d

Three Card Monte

Expert
True

SOM

PP−LPST

POMDP

1 2 3 4 5
x 10

6

0.16

0.18

0.2

0.22

0.24

0.26

Training Trajectories

A
vg

. R
ew

ar
d

Shooting Gallery I

Expert

True

SOM

PP−LPST

POMDP

1 2 3 4 5
x 10

6

−0.01

0

0.01

0.02

0.03

Training Trajectories

A
vg

. R
ew

ar
d

Shooting Gallery II

Expert
True

SOM

PP−LPST

POMDP

Figure 3: Control performance using features maintained by a PP-LPST with different amounts of training data compared to a
POMDP model (POMDP), the true predictions (True), second-order features (SOM), and an expert policy (Expert).

in bin b, and 0 otherwise. We also provide binary features fo,
for each possible observation o. The feature fo = 1 if o is the
most recent observation and 0, otherwise. We set the free pa-
rameters of OLGARB, the learning rate and discount factor,
to 0.01 and 0.95, respectively, run it for 1,000,000 steps and
report the average reward obtained.

We compare the performance of OLGARB using predic-
tive features maintained by a PP-LPST trained using our
method to its performance using the predictions of a POMDP
model trained on the raw data. Because these problems are
too complex to feasibly train a POMDP with the correct num-
ber of underlying states, we trained a 30-state POMDP (stop-
ping EM after a maximum of 50 iterations)2. As baselines, we
also compare to OLGARB using the true predictions as fea-
tures (the best we could hope to do), OLGARB using second-
order Markov features (the two most recent observations, as
well as the action between them) but no predictive features,
and an expert-coded policy.

5.1 Three Card Monte

The first domain is Three Card Monte. The agent is presented
with three cards. Initially, the card in the middle (card 2) is
the “special card.” The agent has four actions available to
it: watch, flip1, flip2, and flip3. If the agent chooses a
flip action, it observes whether the card it flipped over is the
special card. If the agent chooses the watch action, the dealer
can swap the positions of two cards, in which case the agent
observes which two cards were swapped, or the dealer can
ask for a guess. The agent receives no reward for choosing
watch. If the dealer asks for a guess and the agent flips over
the special card, the agent gets reward of 1. If the agent flips
over one of the other two cards, or doesn’t flip a card, it gets
reward of -1. If the dealer has not asked for a guess, then
watch results in 0 reward and any flip action results in -1
reward. The agent has three tests of interest, and they take the
form flipX special, for each card X .

Note that we have a representational choice. We could con-
sider all three tests of interest at once, or we could treat them
separately and learn a PP-LPST for each one. The advantage
to splitting them up is that there are fewer prediction profiles
for each individual PP-LPST (there are 3 prediction profiles
when they are grouped, but only 2 profiles each if they are
separate). On the other hand, if they are grouped together,

2We obtained similar results with 5, 10, 15, 20, and 25 states.

the prediction profile system is Markov (that is, the next pre-
diction profile depends only on the current prediction pro-
file and the next action/observation pair). If we were to split
them up, each individual prediction profile system would be
non-Markov, making learning more difficult. In this case, we
group them together and learn one PP-LPST for all three tests.
We will see an example where learning separate PP-LPSTs is
beneficial in the next experiment.

As discussed previously, the complexity of this system is
directly related to the complexity of the dealer’s decision-
making process. In our experiments, when the agent chooses
“watch” the dealer swaps the pair of cards it has swapped
the least so far with probability 0.5; with probability 0.4 it
chooses uniformly amongst the other pairs of cards; other-
wise it asks for a guess. Since the dealer is keeping a count of
how many times each swap was made, the process governing
its dynamics effectively has infinitely many latent states. The
prediction profile system, on the other hand, has only 3 states,
regardless of the dealer’s complexity (see Figure 1).

For the training phase we used length 10 trajectories of
experience with the Three Card Monte problem. Figure 3a
shows the results of the control phase for various amounts of
training data, averaged over 20 trials. The predictive features
are clearly useful for performance, and the PP-LPST learns to
maintain them correctly. As we expected, the POMDP model
was unable to accurately predict the tests of interest. Second-
order features were also essentially uninformative.

5.2 Shooting Gallery I

In our second experiment, the agent is at a shooting gallery
(see Figure 4a). The agent has 11 actions: lookX , for each of
10 positions X , and shoot. When the agent looks at a position
(marked by the ‘X’ in the figure), it observes whether there is
a target in that position and in the two adjacent positions (un-
shaded region). When the agent shoots, the bullet hits the
current position with probability 0.8 and to either side each
with probability 0.1. Whenever the agent hits a target, it gets
reward of 1. At every time step the gallery resets with proba-
bility 0.2. When the gallery resets, the agent receives a special
observation and each target turns on with probability 0.3. In
order to do well, the agent must remember targets it has seen
so it can go back to shoot them, and so it can prioritize targets
(clusters of targets are best due to the inaccuracy of the gun).
So, the agent has 10 tests of interest: lookX target, for each
position X . In this case, learning one PP-LPST for all 10 tests

of interest would result in over 50,000 prediction profiles. We
will learn a separate PP-LPST for each test of interest, each
having only 3 profiles. Note that this system has 210 latent
states, which is too many to feasibly learn a POMDP. Also,
unlike Three Card Monte, the prediction profiles are non-
deterministic, so more data is required to distinguish profiles.

Figure 4:
(a) Shooting Gallery I
(b) Shooting Gallery II

In the training phase we used
length 4 trajectories, restricting
our search to length 2 histories.
Figure 3b shows the results of
the control phase. In this prob-
lem, OLGARB with the true
predictions does not perform as
well as the hand-coded policy.
This is likely due to the algo-
rithm converging to a local max-
imum. The PP-LPST does not
learn to perfectly maintain the
predictive features, though the
values it provides are more use-
ful for control than those pro-
vided by the POMDP model.

5.3 Shooting Gallery II

For our final experiment, we have another type of shooting
gallery, pictured in Figure 4b. The agent has a gun aimed at a
fixed position on an 8×8 grid (marked by the ‘X’) . A target
moves diagonally, bouncing off of the edges and 2×2 obsta-
cles (an example trajectory is pictured). The agent’s task is to
shoot the target. The agent has two actions: watch and shoot.
When the agent chooses watch, it gets 0 reward. If the agent
chooses shoot and the target is in the crosshairs in the step
after the agent shoots, the agent gets reward of 10, otherwise
it gets a reward of -5. Whenever the agent hits the target, the
shooting range resets: the agent receives a special observa-
tion, each 2× 2 square on the range is made an obstacle with
probability 0.1, and the target is placed in a random position.
There is also a 0.01 probability that the range will reset at
every time step. The difficulty is that the target is “sticky.”
Every time step with probability 0.7 it moves in its current
direction, but with probability 0.3 it sticks in place. Thus,
looking only at recent history, the agent may not be able to
determine the target’s current direction. The agent needs to
know the probability that the target will be in its sights in the
next step, so clearly the test of interest is: watch target.

Due to the number of possible configurations of obstacles
and positions of the target, this system has roughly 4,000,000
observations and even more latent states. This results in a
large number of possible histories, each with only a small
probability of occurring. As discussed, this can lead to a large
sample complexity for obtaining good estimates of prediction
profiles. We address this with a simple form of generaliza-
tion: observation aggregation. We will treat two observations
as the same if the target is in the same position and if the con-
figuration of obstacles in the immediate vicinity of the target
is the same. Even with this aggregation, there are over 6000
action/observation pairs. We assume two histories have the
same prediction profile if they have the same aggregate ob-
servations. This allows us to use one sample trajectory to

improve the estimates for several histories. We performed
the same observation aggregation when training the POMDP
model. We trained our method using length 4 trajectories,
restricting our search for prediction profiles to length 3 his-
tories. Results are shown in Figure 3c. Again, the PP-LPST
learns to maintain the predictive features well, resulting in
good control performance while the POMDP model gives less
useful information than the second order Markov features.

6 Conclusions

We have demonstrated that in some cases, it is possible to
learn to maintain a small set of predictions of interest by
learning a model of how the values of those predictions
change over time. Empirically we were able to learn to main-
tain predictive features useful for policy-gradient techniques,
even when learning a model was infeasible.

Acknowledgements

Erik Talvitie was supported under the NSF GRFP. Satin-
der Singh was supported by NSF grant IIS-0413004. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the NSF.

References
[Bowling et al., 2006] Michael Bowling, Peter McCracken,

Michael James, James Neufeld, and Dana Wilkinson. Learning
predictive state representations using non-blind policies. In
International Conference on Machine Learning 23 (ICML),
pages 129–136, 2006.

[Hansen, 1998] Eric Hansen. Finite-Memory Control of Partially
Observable Systems. PhD thesis, University of Massachussetts,
Amherst, MA, 1998.

[Holmes and Isbell, 2006] Michael Holmes and Charles Isbell.
Looping suffix tree-based inference of partially observable hid-
den state. In International Conference on Machine Learning 23
(ICML), pages 409–416, 2006.

[Littman et al., 2002] Michael Littman, Richard Sutton, and Satin-
der Singh. Predictive representations of state. In Advances in
Neural Information Processing Systems 14 (NIPS), pages 1555–
1561, 2002.

[Monahan, 1982] George E. Monahan. A survey of partially ob-
servable markov decisions processes: Theory, models, and algo-
rithms. Management Science, 28(1):1–16, 1982.

[Rudary, 2008] Matthew Rudary. On Predictive Linear Gaussian
Models. PhD thesis, University of Michigan, 2008.

[Tanner and Sutton, 2005] Brian Tanner and Richard Sutton. Tem-
poral difference networks. In Neural Information Processing Sys-
tems 17 (NIPS), pages 1377–1384, 2005.

[Weaver and Tao, 2001] Lex Weaver and Nigel Tao. The optimal
reward baseline for gradient-based reinforcement learning. In
Uncertainty in Artificial Intelligence 17 (UAI), pages 538–545,
2001.

[Wolfe, 2006] Alicia Peregrin Wolfe. Pomdp homo-
morphisms. Presented at The NIPS-2006 Workshop
on Grounding Perception, Knowledge and Cognition
in Sensory-Motor Experience. Available at http://

www-all.cs.umass.edu/˜pippin/publications/

NIPSRLWorkshop2006PaperPOMDPHMs.pdf, 2006.

