
Mixtures of Predictive Linear Gaussian Models for
Nonlinear Stochastic Dynamical Systems

David Wingate and Satinder Singh
Computer Science and Engineering Department
University of Michigan, Ann Arbor, MI 48109

{wingated,baveja}@umich.edu

Abstract

The Predictive Linear Gaussian model (or PLG) im-
proves upon traditional linear dynamical system mod-
els by using a predictive representation of state, which
makes consistent parameter estimation possible without
any loss of modeling power and while using fewer pa-
rameters. This work extends the PLG to model non-
linear dynamical systems through the use of a kernel-
ized, nonlinear mixture technique. The resulting gener-
ative model has been named the “MPLG,” for “Mix-
ture of PLGs.” We also develop a novel technique
to perform inference in the model, which consists of
a hybrid of sigma-point approximations and analytical
statistics. We show that the technique leads to fast and
accurate approximations, and that it is general enough
to be applied in other contexts. We empirically explore
the MPLG and demonstrate its viability on several real-
world and synthetic tasks.

Introduction
Model building is an important part of AI. Many agent-
environment interactions can be modeled as dynamical sys-
tems, including such things as the dynamics of a biped walk-
ing or the trajectory of a ball bouncing. Traditional dynam-
ical systems are modeled using the concept of state, which
represents a sufficient statistic for history. Recently, how-
ever, a predictive perspective has been successfully taken. In
a predictive model, the usual notion of state is represented by
a set of (possibly action-conditional) predictions about the
future. This is permissible because the most general defini-
tion of “state” is any sufficient statistic for history—in the
predictive case, a finite set of predictions about the future
summarize an infinite past.

These predictive representations have enjoyed consider-
able success. In the case of discrete observations, for exam-
ple, PSRs (Littman, Sutton, & Singh 2001) have been shown
to be just as flexible, expressive and compact as POMDPs.
In the case of continuous observations and linear dynam-
ics, the Predictive Linear Gaussian model (or PLG) is just
as flexible, expressive and more compact than the celebrated
Kalman filter, and strictly more powerful than ARMA (au-
toregressive) models (Rudary, Singh, & Wingate 2005).

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

However, the PLG is limited to linear dynamical systems.
The primary contribution of this work is to extend the PLG
to nonlinear, stochastic dynamical systems with a mixture
approach. We contribute a fully generative model, which we
have named the “Mixture of PLGs” (or MPLG). We com-
pare this model to another nonlinear extension of the PLG,
called the “Kernel PLG,” and discuss why the MPLG is ex-
pected to generalize better and why it is expected to have
superior representational power. We additionally compare
to two nonlinear autoregressive models, and show that n
predictions about the future are a very different thing than
n memories about the past; these n predictions effectively
give our model the infinite memory associated with state-
space models.

Another contribution is a new inference technique we call
“hybrid particle-analytical inference.” Because our model
is defined in terms of random variables, certain statistics of
these variables must be computed to update state. Because
the needed functions are nonlinear, exact analytical infer-
ence is generally impossible. This motivates some sort of
approximation technique, so we have chosen sigma-point
approximations (SPAs; also called “unscented transforma-
tions”), which have been introduced in the context of non-
linear Kalman filtering (Julier & Uhlmann 1996). This work
broadens the utility and efficiency of SPAs by contributing
(and leveraging) the insight that they are effectively built
around the smoothing property of conditional expectations.
Standard SPAs sample from all of the random variables in
a model simultaneously, but sampling only a subset of vari-
ables can lead to significant computational advantage: part
of our model is approximated with sigma-points, but given
those sigma-points, exact analytical inference is possible on
the rest of the model. This hybrid technique is a general
method, and could be applied in other contexts.

After introducing the model and our hybrid technique,
we show how the model’s mixture perspective leads to nat-
ural parameter estimators, which are kernel-weighted ver-
sions of the original PLG estimators. We end by empirically
comparing the proposed model to two nonlinear alternatives,
and conclude that our proposed model exhibits an advantage
over all of them, and in particular, over n-th order autore-
gressive models. This implies, as we will argue throughout
the paper, that predictions about the future can constitute
state, and give our model an effectively infinite memory.

Background: Predictive Gaussian Systems
Here, we briefly review the important concepts and defini-
tions associated with linear dynamical systems and Predic-
tive Gaussian Systems. Since the PLG, MPLG and Kernel
PLG (another PLG-based model defined in [Wingate and
Singh, 2006], which is reviewed later) all represent and up-
date state in the same way, we discuss them collectively first.

Linear Dynamical Systems
A discrete time, linear dynamical system (LDS) is defined
by a state update equation xt+1 = Axt + η, where xt ∈ R

n

is the state at time t, A ∈ R
n×n is a transition matrix

and η ∼ N (0, Q) is mean-zero Gaussian noise (where
Q ∈ R

n×n is a covariance matrix). Often, we are not able
to observe the state directly. Many LDSs define a com-
panion observation process, in which observations are lin-
ear functions of the true state: yt = Hxt + N (0, R), where
H ∈ R

m×n and R ∈ R
m×m. There are generally no restric-

tions on H; in particular, it may collapse an n-dimensional
state into a lower-dimensional (or even scalar) observation.

Predictive Gaussian Systems
We call either the PLG, the MPLG, or the Kernel PLG
(KPLG) a Predictive Gaussian System. In Predictive Gaus-
sian systems, we never refer to an unobservable or latent
state xt. Instead, we capture state as statistics about a ran-
dom variable Zt, which is defined as a vector of random
variables predicting future observations. We associate each
future observation at time t + i with a random variable Yt+i

(all observations are scalars), and collect the next n of them
into the vector Zt = [Yt+1 · · ·Yt+n]T , as illustrated in Fig-
ure 1. These n variables are jointly Gaussian, with mean µt

and covariance Σt. It is these two statistics that are used as
the state of the system.

The system dynamics are defined by a special equation:

Yt+n+1 = f(Zt, ηt+n+1) (1)

where ηt+n+1 ∈ R is a special noise term. The importance
of modeling Yt+n+1 as a function of Zt will be explained
in the next section. In the PLG, Yt+n+1 is a linear function
of Zt, which allows it to model linear dynamical systems.
In the MPLG and the KPLG, however, Yt+n+1 is a nonlin-
ear function of Zt, which allows them to model nonlinear
dynamics.

The noise term is mean-zero with a fixed variance:
ηt+n+1 ∼ N (0, σ2

η), but is allowed to covary with the
next n observations in a way that is independent of history:
Cov[Zt, ηt+n+1] = Cη . The representational power of Pre-
dictive Gaussian Systems comes from this noise term: the
fact that it covaries with future observations gives it the infi-
nite memory of the LDS—an observation can have an effect
far in the future through the chain of influence created by the
correlation in the noise terms. Later, we will see that the dif-
ferences in this noise term are one of the primary differences
between the MPLG and the KPLG.

Updating State: Extend and Condition
We will now discuss the general strategy of Predictive Gaus-
sian Systems for updating state and modeling dynamical

Figure 1: Timeline illustrating the random variables we use.

systems, as well as why Yt+n+1 is modeled as a function
of Zt. Here, we restrict ourselves to scalar observations, but
emphasize that this does not restrict the dimensionality of
the underlying state space.

Modeling the system dynamics requires determining how
to update the state of the system. The problem can be stated
thus: given a state at time t, how can we incorporate an ob-
servation Yt+1 = yt+1 to compute our state at time t + 1?
The strategy is to extend and condition, as follows.

We begin with state extension. We assume that we have
the state at time t, represented by µt and Σt. These statis-
tics describe Zt ∼ N (µt,Σt), which is an n−dimensional
Gaussian describing the next n observations. We will ex-
tend this variable to include the variable Yt+n+1 (ensur-
ing that it is still jointly Gaussian), creating a temporary
(n + 1)-dimensional Gaussian. In order to extend Zt to in-
clude the variable Yt+n+1, we must compute three terms,
which are Et = E[Yt+n+1], Ct = Cov[Yt+n+1, Zt] and
Vt = Var[Yt+n+1]:

(
Zt

Yt+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

CT
t Vt

)]
.

We will then condition on the observation yt+1, which will
result in another n−dimensional Gaussian RV describing
[Yt+2 · · ·Yt+n+1]

T = Zt+1 (conditioning is done with stan-
dard techniques on multivariate Gaussians, for which it is
well-known that the resulting RV is Gaussian). This re-
sults in E[Yt+2 · · ·Yt+n+1] = E[Zt+1] = µt+1, along with
Cov[Zt+1] = Σt+1, which are precisely the statistics repre-
senting our new state. Figure 1 illustrates Zt and Zt+1.

Rolling together the construction of the temporary Gaus-
sian and the conditioning yields the complete state update:

µt+1 = µ−
t+1 + Kt(yt+1 − eT

1 µt) (2)

Σt+1 = (I − Kte
T
1)Σ−

t+1 (3)

where Σ−
t+1 = I−ΣtI

−T +I−Ct+CT
t I−T +eneT

nVt, Kt =

Σ−
t+1e1(e

T
1 Σte1)

−1, µ−
t+1 = I−µt + enEt,

I− =

(
0 In−1

0

)
,

and ei is the i-th column of the identity matrix. Note that
Eqs. (2) and (3) have the same form as the Kalman filter.

Computing Et, Ct and Vt in closed form for an arbitrary
function f() is impossible, which motivates the use of an
approximation. The section on sigma-point approximations
therefore presents a method which can be used for any f().

Linear Dynamics: The PLG
In the PLG, Yt+n+1 is defined to be a linear function of Zt:

Yt+n+1 = 〈g, Zt〉 + b + ηt+n+1. (4)

where 〈·〉 denotes inner product and g ∈ R
n is the lin-

ear trend, and where we have augmented the original PLG
with a scalar bias term b. Rudary et al. (2005) showed
how the state of this system can be recursively updated in
closed form, and that it is equivalent in modeling power to
the Kalman filter.

The MPLG: A Mixture of PLGs
We now present the MPLG, or Mixture of PLGs model.
Consider the following scenario. Suppose that at time t, we
have J PLGs, each with different parameters, and each spec-
ifying a different distribution over Yt+n+1. We wish to com-
bine them together to form a composite estimate of Yt+n+1;
the natural way to do this would be with a weighted sum:

Yt+n+1 =

J∑

j=1

w(Zt)j

(
〈gj , Zt〉 + bj + ηj

t+n+1

)
, (5)

where the w(Zt)j’s are the mixing weights. It is important to
note that these weights should be a nonlinear function of Zt,
because if they were linear they could simply be absorbed
into the gj’s, resulting in a linear model. They should also
sum to one, to maintain a well-defined mixture semantic.
Here, Var[ηj

t+n+1] = σ2j
η and Cov[ηj

t+n+1, Zt] = Cj
η .

A Distribution Over PLGs
Eq. (5) is the general form of the MPLG. We will now make
specific choices about the function w(). We start by creat-
ing a new random variable Yt that describes a distribution
over possible Yt+n+1’s; each Yt+n+1 is itself a Gaussian
random variable describing distributions over actual obser-
vations yt+n+1. We then specify a joint distribution over Yt

and Zt, and use conditional expectation and a density over
possible models to arrive at the final mixture of PLGs.

Suppose we use a Parzen kernel estimator to represent the
joint density of Yt and Zt; suppose further that we use Gaus-
sian kernels. Such an estimator would take the form:

p(Yt, Zt) =
1

J

J∑

j=1

1

cj

K(Yt, ξYt
;φj)

1

cj

K(Zt, ξj ;φj) (6)

where 1/cj is a standard Gaussian normalizer and
K(x, y;φ) is a Gaussian function with covariance matrix φ.
The ξj ∈ R

n are points that could come from a number of
sources: they may come from training data, be derived an-
alytically, or be randomly generated. The ξYt

variables will
disappear in the following derivation.

We can use this estimator to derive the MPLG as shown
below (derivation adapted from Bishop, 1995; pg. 178). In
the fourth line, we will use the Parzen estimator of the joint
probabilities (several terms cancel); note that this resembles
the well-known Nadaraya-Watson estimator. In the fifth line,
we replace each Y j

t+n+1 with a PLG that generates it, and in
the final line, we summarize the kernel renormalization into

a vector of weights w(Zt). As required, these weights are a
nonlinear function of Zt and sum to one:

Yt+n+1 = E[Yt|Zt]

=

∫
Ytp(Yt|Zt)dYt

=

∫
Ytp(Yt, Zt)dYt∫
p(Yt, Zt)dYt

=

∑J
j=1 K(ξj , Zt;φj)Y

j
t+n+1∑J

j=1 K(ξj , Zt;φj)

=
J∑

j=1

K(ξj , Zt;φj)∑J

k=1 K(ξk, Zt;φk)

(
〈gj , Zt〉 + bj + ηj

t+n+1

)

=
J∑

j=1

w(Zt)j

(
〈gj , Zt〉 + bj + ηj

t+n+1

)

This leads us to the final MPLG model:

Yt+n+1 =
J∑

j=1

K(ξj , Zt;φj)∑J

k=1 K(ξk, Zt;φk)

(
〈gj , Zt〉 + bj + ηj

t+n+1

)
.

(7)
We can think of this as J PLGs, each centered at some ξj ,

and with the kernels acting as a distance metric between Zt

and ξj . How might such a model behave? Figure 2 builds
some intuition: near the Gaussian centers, the individual
PLGs are nonlinearly mixed. Further away from the centers,
a single PLG becomes responsible for the space, resulting
in a linear function. This contrasts sharply with a mixture
of un-renormalized Gaussians: as we go further away from
their centers, the function defining Yt+n+1 would go to zero.

Comparison to Related Models
We now compare the MPLG to two other models. The first
is the Kernel PLG, which is derived by rewriting the PLG in
dual form. The second is a kernel autoregressive model.

The Kernel PLG, or KPLG, defines the state extension as

Yt+n+1 =
∑J

j=1αjK(ξj , Zt) + ηt+n+1, (8)

where K() is our kernel. This is the most obvious way
to kernelize the original PLG algorithm, because the lin-
ear trend g has been rewritten in the dual form (that is, as
a weighted combination of data points ξj).

There are two reasons the KPLG is insufficient to replace
the PLG. First, the MPLG is expected to generalize the dy-
namics better outside of the training region, especially when
using Gaussian kernels. Figure 2 illustrates this: far away
from the ξj’s, the MPLG generalizes linearly, but the KPLG
model in Eq. (8) will return something close to zero.

Second, the term ηt+n+1 in the KPLG has the same prop-
erties as in the PLG, and in particular Cov[ηt+n+1, Zt] = C.
Recall that the representational power of the PLG comes
from this property of the noise term. The value of C does not
depend on Zt; while this might be fine in a linear system, it
is easy to construct nonlinear examples where C should vary
with Zt, but rewriting in the dual form has failed to capture

0

0.5

1

1.5

0

0.5

1

1.5

A B C

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

(A) (B) (C) (D)

ξ ξ ξ

Figure 2: Mixing linear models with renormalized Gaussians. The Gaussians (A) are renormalized (B); each Gaussian is
associated with a linear function (C), and then mixed together to generate a final function (D). Note its linear generalization.

this. In contrast, the MPLG uses J noise terms, each with
different properties; since these are combined with weights
that are a function of Zt, there is effectively a composite
noise term which indirectly depends on Zt.

The kernel autoregressive (KAR) model states that the
next observation is a nonlinear function of the past n ob-
servations zt−n: E[Yt+1] =

∑J

j=1 αjK(ξj , zt−n). It has a
similar form to the KPLG: the same kernels, basis function
centers, and coefficients are used, and it can be trained simi-
larly. However, KAR assumes that n past observations con-
stitute state, while the KPLG (and MPLG) can summarize a
potentially infinite amount of history into their predictions.

Hybrid Particle-Analytical Inference
We have been discussing how to model Yt+n+1 as a function
of Zt, but this is only part of the total state update mecha-
nism. Recall that the state update (Eqs. 2 and 3) requires
three terms: Et = E[Yt+n+1], Ct = Cov[Yt+n+1, Zt] and
Vt = Var[Yt+n+1]. As noted, computing Et, Ct and Vt in
closed form is usually impossible. This section therefore
discusses sigma-point approximations (or SPAs). After, we
discuss another contribution of this paper, which is our gen-
eral hybrid particle-analytical inference method.

Sigma Point Approximations
Sigma-point approximations (or “unscented transforma-
tions”), are a general method of propagating random vari-
ables through a nonlinear function (Julier & Uhlmann 1996).
The method is a conceptually simple deterministic sam-
pling approach. Suppose we are given a random variable
Y = f(P) that is a nonlinear function of a multivariate
Gaussian random variable P . Instead of recording P ’s dis-
tribution in terms of a mean and covariance, we represent
the same information with a small, carefully chosen num-
ber of sigma points. These points are selected so that they
have the same mean and covariance as P (in fact, they are
the minimal such set), but the advantage is that they can be
propagated directly through the function f(). We then com-
pute the posterior statistics of the points to approximate Y .

There are many advantages to SPAs: they are simple and
flexible, and are also provably accurate to at least a second
order approximation of the dynamics for any distribution on
P and any nonlinearity, and are accurate to third order for
a Gaussian distribution on P and any nonlinearity. Fourth
order terms can sometimes be corrected as well.

There are important differences between SPAs and parti-
cle filters. Particle filters typically allow a multi-modal dis-
tribution over states, while SPAs require a Gaussian; it is the
Gaussian assumption which gives the SPA its strong theoret-
ical guarantees with a small number of points. Also, particle

filters sample randomly, but SPAs sample deterministically.

A Hybrid Approach to Inference
Given a k-dimensional multivariate Gaussian, a SPA instan-
tiates 2k sigma-points, each of which is propagated through
the function f(). A naive use of sigma-point approximations
in the context of the MPLG would be to construct 2(n + J)
points, based on the joint Gaussian:

P =

0

B

B

B

B

B

B

B

B

B

B

@

Zt

η1
t+n+1

...
ηJ

t+n+1

1

C

C

C

C

C

C

C

C

C

C

A

∼ N

2

6

6

6

6

6

6

6

6

6

6

6

4

0

B

B

B

B

B

B

B

B

B

B

@

µt

0
...
0

1

C

C

C

C

C

C

C

C

C

C

A

,

0

B

B

B

B

B

B

B

B

B

B

B

@

Σt C1
η · · · CJ

η

C1T
η σ21

η · · · 0
...

...
. . .

...
CJT

η 0 · · · σ2J
η

1

C

C

C

C

C

C

C

C

C

C

C

A

3

7

7

7

7

7

7

7

7

7

7

7

5

This is particularly inefficient if J is large (say, hundreds or
thousands), because it results in 2(n + J) distinct values for
Zt, and thus in O(J2) kernel evaluations.

There is a much better way, however, which is based on
the following crucial observation: that although there are
n + J random variables, the nonlinearities on the model are
only a function of n of those variables – in particular, the n
variables in the vector Zt. Our contribution is to combine
this insight with the smoothing properties of conditional ex-
pectations (also called the conditional expectation identity),
which in the case of the MPLG states that

Et = EZ

[
E[Yt+n+1|Zt = zi]

]

Ct = EZ

[
E[Yt+n+1Z

T
t |Zt = zi]

]
− E[Yt+n+1]E[ZT

t]

Vt = EZ

[
E[Yt+n+1Y

T
t+n+1|Zt = zi]

]
−E[Yt+n+1]E[Y T

t+n+1].

Our strategy is to combine these facts by partially instan-
tiating sigma-points – in particular, we only instantiate 2n
sigma-points describing Zt. Given those sigma-points, the
interior expectations are analytically tractable, and we com-
pute the exterior expectations over those sigma-points.

To compute the interior expectations, let wi ∈ R
J,1

be the weights of the i-th sigma-point z(i) and G ∈
R

J,n be a matrix whose j-th row is gjT . Define vec-
tors Q and B with Qj=ηj

t+n+1 and Bj=bj , let L ∈

R
J,n be a matrix whose j-th row is CjT

η , and let
M ∈ R

J,J be a diagonal matrix where Mj,j=σ2j
η .

Let Hi=E[wT
i (Gz(i) + B)|Zt=z(i)]=wT

i (Gz(i) + B) and
Fi=E[Q|Zt=z(i)]=LΣ−1

t (z(i) − µt). Then:

E
(i)
t = E[Yt+n+1|Zt = z(i)] = Hi + Fi (9)

C
(i)
t = E[Yt+n+1Z

T
t |Zt = z(i)] = (Hi + Fi)z

iT (10)

V
(i)
t = E[Y 2

t+n+1|Zt = z(i)] = HiH
T
i + HiF

T
i +

FiH
T
i + wT

i (D − diag(diag(LΣ−1
t LT)) + FiF

T
i)wi (11)

• Construct a set of 2n sigma points describing Zt:

z
(2i−1)
t = µt + (

√
nΣt)i z

(2i)
t = µt − (

√
nΣt)i

• Compute a weight vector for each sigma point:

w(z
(i)
t)j = K(ξj , z

(i)
t ;φj)/(

∑J

k=1 K(ξk, z
(i)
t ;φk))

• For each z
(i)
t , compute E

(i)
t (Eq. 9), C

(i)
t (Eq. 10)

and V
(i)
t (Eq. 11).

• Compute empirical posterior statistics:

Et = 1
N

∑N

i=1 E
(i)
t Ct = 1

N

∑N

i=1 C
(i)
t − Etµt

Vt = 1
N

∑N
i=1 V

(i)
t − E2

t

Figure 3: Hybrid particle-analytical MPLG inference.

We compute Eqs. (9)-(11) for each sigma-point, and then
use expectations over them to compute the final terms.

The general method is summarized as follows: First,
instantiate sigma-points for the minimum number of vari-
ables needed to make the model tractable. Second, analyt-
ically compute terms based on the model given the sigma-
points. Third, compute posterior statistics using expectation
smoothing over the sigma-points.

The final algorithm is shown in Figure 3.

Model Estimation
The MPLG requires several parameters: the dimension n of
the system, the basis function centers ξj and weights αj , the
noise statistics C and σ2

η , and the covariance matrix φj .
We are interested in learning the parameters from training

data. This data will be given as a set of trajectories from
the system, with each trajectory consisting of at least n + 1
sequential observations. We will slice these trajectories into
all possible training pairs (zi, yi+n+1) where zi ∈ R

n is
a vector of n successive observations (representing a noisy
sample of some Zt), and yi+n+1 ∈ R is the (n+1)-th obser-
vation (a sample of the corresponding Yt+n+1, or the state
extension). We then collect all the pairs into the set S.

Model Order Selection. We must first estimate the order
of the model, which includes the system dimension n and
the number of basis functions J . For our experiments, we
use cross-validation to select parameters from a set of likely
candidates. There is nothing unusual about our model or
estimation needs, so many other techniques are also suitable.

Finding Basis Function Parameters. Next, we must de-
termine the basis function centers ξj and covariance matri-
ces φj . We used the dictionary-based selection method of
Engel et al. (2004). Specifically, we set φj = σ2

φI and then
constructed a set of zi’s whose features are almost linearly
independent (“almost” is defined by a threshold parameter).

Estimating Individual PLG Parameters. We can now
determine the mixing weights for each PLG at any point,
so we estimate the parameters of each PLG individually,
using weighted versions of the regressions and sample

statistics needed. To start, we collect each yi+n+1 into
a vector Y ∈ R

|S|, and collect each zT
i into a matrix

Z ∈ R
|S|,n. We then compute the weights for each

training point using our renormalized kernels: w(zi)j =

K(ξj , zi;φj)/(
∑J

j=1 K(ξj , zi;φj)). We also define a nor-
malizing constant as the sum of all of the weights for each
PLG: Nj =

∑|S|
i=1 w(zi)j . For each PLG, collect the

weights w(zi)j into a diagonal weight matrix Wj ∈ R
|S|,|S|.

Now, we can estimate the linear trend for each PLG j us-
ing weighted least-squares: ĝj = (ZT WjZ)−1ZT WjY. To
estimate the noise statistics, we first compute the noise term
for each training point from the perspective of each PLG,
which is ηij = (yi+n+1 − 〈ĝj , zi〉). Then, the estimated

variance of ηj
t+n+1 is σ̂2j

η = 1
Nj−1

∑|S|
i=1w(zi)j(ηij)

2. To
estimate Cj

η , we run the algorithm on the training data with
Cj

η = 0 and record our estimate of µt at each t, called µi.
We then compute Cov[Zt, ηt+n+1] = E[(Zt−µt)(ηt+n+1)],

which is simply Ĉj
η = 1

Nj−1

∑|S|
i=1w(zi)j(zi −µi)ηij . Note

that while estimating both σ2j
η and Cj

η we have used the fact
that E[ηj

t+n+1] = 0 for all t.

Estimating KPLG and KAR Parameters. Parameters for
the KPLG and KAR algorithms were estimated similarly to
those of the MPLG. The ξj’s were selected with a dictionary,
and the α’s were computed using regularized least-squares
kernel regression, with λ the regularization coefficient.

Experiments and Results
We tested the PLG, MPLG, KPLG and KAR algorithms
on one LDS (the “Rotation” problem) and four nonlin-
ear dynamical systems (the “Biped,” “Peanut,” “NB3,” and
“Spring” problems), where the underlying generative model
was known. Since the models are limited to scalar observa-
tions, we also tested on three well-known timeseries bench-
marks (Santa Fe Laser, Mackey-Glass, and K.U. Leuven). A
sigma-point approximation was used for the KPLG.

Parameters were selected by 10-fold cross-validation. Al-
gorithms were judged on the mean-squared error (MSE) of
their predictions, meaning we are not attempting to estimate
latent state (but we are allowed to use state). All data sets
were normalized to be in [0, 1]. All algorithms used the
Gaussian kernel. For the initial state, we set Σ0=1e−5I
and µ0 to be the first n values of the test sequence. Al-
gorithms were tested on n=2, · · · , 6, σ2

φ=0.1, 0.4, 0.8, 1.2,
λ=0.00001, 0.001, 0.01, and ν=0.0001, 0.001, 0.01 (ν is the
dictionary threshold). All problems except Laser were
trained on 2000 sequential observations and tested on a
200 observation continuation; Laser had 1000 training and
100 testing observations. Descriptions: Rotation, Peanut,
Biped, NB3 are 2D dynamical systems. Rotation is linear;
the others are nonlinear. Observations and dynamics were
noisy. Spring is a 2D system with a mass oscillating between
nonlinearly damped springs. Only the position of the mass
was observed. Deterministic with noise-free observations.
Mackey-Glass is a deterministic but chaotic timeseries gen-

log MSE

D
en

si
ty

Rotation

0.0100.001 log MSE

D
en

si
ty

Biped

0.0100.001 log MSE

D
en

si
ty

NB3

0.0200.005

log MSE

D
en

si
ty

Peanut

0.0100.002

MPLG

KPLG

KAR

log MSE

D
en

si
ty

Spring

0.0010

log MSE

D
en

si
ty

Mackey
Glass

0.0500.001 log MSE

D
en

si
ty

Laser

0.0500.001 log MSE
D

en
si

ty

Leuven

0.0010

Figure 4: Qualitative comparison of the nonlinear algo-
rithms. Shown is the density of all MSEs generated.

erated from a delay differential equation. Parameters were
a=0.2, b=0.1, and τ=30. Laser is data from the Santa Fe
timeseries competition. Leuven is competition data from the
International Workshop on Advanced Black-Box Techniques
for Nonlinear Modeling, K.U. Leuven Belgium, 1998.
Results
Figures 4 and 5 summarize our results, which are very en-
couraging. Figure 4 shows the results qualitatively. Each pa-
rameter setting for each algorithm generated a MSE; the fig-
ure plots their log distribution. This examines the expected
performance for any given parameter setting; a sharply
peaked distribution on the left side is desired (implying low
expected MSE). Outliers are lumped on the right-hand side.

From Figure 4, three results are evident. First, the
MPLG’s density curve is often stacked on the left-hand side,
as desired. The curve is also peaked, indicating that its per-
formance is insensitive to the exact choice of parameter. It
also shows fewer outliers than the KPLG, suggesting that the
MPLG is more stable than the KPLG.

Figure 5 shows our results quantitatively. Here, we have
used 10-fold cross-validation to select parameters; all algo-
rithms with an MSE within 5% of the lowest are reported
as “Best.” The MPLG is among the best performing algo-
rithms on four out of eight problems, and in particular, it
performed well on the nonlinear dynamical systems, where
there really is an opportunity to leverage infinite memory via
state. In contrast, KAR has performed well on the timeseries
problems; in particular, it wins on the Mackey-Glass series,
which really is an autoregressive model. The exception is
Spring, but this is expected: it is deterministic and noise-
less, so n past observations and n predictions are equivalent;
the uncertainty the MPLG/KPLG models is unhelpful. PLG
won on the linear problem, which is also unsurprising.

Together, the quantitative and qualitative results suggest
several conclusions. First, that not only are the very best
MSEs often obtained with the MPLG, but for any given
parameter setting, the MPLG is likely to outperform other
models. Second, that the nonlinear models are outperform-
ing their linear counterparts. Third, that the MPLG is su-
perior to the alternative nonlinear version of the PLG, the

Problem Best Problem Best
Rotation PLG Spring KAR
Biped MPLG M.G. KAR
Peanut MPLG Leuven MPLG/PLG
NB3 MPLG/PLG/KAR Laser KAR

Figure 5: Best performing algorithms on the test problems.

KPLG. Fourth, that the MPLG is indeed capturing state, and
is therefore superior to autoregressive models in situations
where state can be leveraged. Not reflected in these results
is the fact that the best parameters were rarely selected for
KPLG because of outliers in the cross-validation runs, but
this is part of the point: MPLG is more stable than KPLG.

Conclusions and Future Research
We have investigated the idea of predictive representations
of state to model continuous observation, nonlinear, stochas-
tic dynamical systems, and have proposed a specific mixture
model derived from the PLG. Based on our experiments,
the most general conclusion is that both the idea and the
model are viable. The MPLG has experimentally demon-
strated good, stable performance on almost all of the prob-
lems tested here. We have also contributed a general hybrid
particle-analytical inference method, which is fast, accurate
and easy to use, and which makes our model tractable. It im-
proves the utility of sigma-point approximations in general,
and could find application in other contexts.

There is still work to be done, but the MPLG learns rea-
sonable models directly from data, and is competitive with
other methods. In particular, the MPLG appears to best both
the KPLG and simple kernel autoregression. Superiority
over KAR suggests that the MPLG is indeed leveraging the
advantages of state, meaning the MPLG is another example
of a successful predictive representation of state.

Acknowledgments
This work is supported by the National Science Foundation
under Grant Number IIS-0413004 and by an NSF Graduate
Research Fellowship to David Wingate.

References
Bishop, C. M. 1995. Neural Networks for Pattern Recognition.
Oxford University Press.
Engel, Y.; Mannor, S.; and Meir, R. 2004. The kernel recursive
least squares algorithm. IEEE Transactions on Signal Processing
52(8):2275–2285.
Julier, S., and Uhlmann, J. K. 1996. A general method for
approximating nonlinear transformations of probability distribu-
tions. Technical report, University of Oxford.
Littman, M. L.; Sutton, R. S.; and Singh, S. 2001. Predictive
representations of state. In NIPS 14, 1555–1561.
Rudary, M. R.; Singh, S.; and Wingate, D. 2005. Predictive
linear-Gaussian models of stochastic dynamical systems. In 21st
Conference on Uncertainty in Artificial Intelligence, 501–508.
Wingate, D., and Singh, S. 2006. Kernel predictive linear Gaus-
sian models for nonlinear stochastic dynamical systems. In Inter-
national Conference on Machine Learning.

