Modeling Multiple-mode Systems with Predictive State Reprsentations
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Abstract— Predictive state representations (PSRs) are a class movement conditioned upon that mode of behavior. The
of models that represent the state of a dynamical system as a set MMPSR makes predictions in this way using two component
of predictions about future events. This work introduces a class models which form a simple, two-level hierarchy (Figure 1).

of structured PSR models called multi-mode PSRs (MMPSRs), . . . . .
which were inspired by the problem of modeling traffic. i~ V/hen modeling highway traffic, the high-level model will

general, MMPSRs can model uncontrolled dynamical systems Predict the mode of behavior, and the low-level model will
that switch between several modes of operation. An important make predictions about the car’s future positions condé

aspect of the model is that the modes must be recognizable ypon the mode of behavior. The remainder of this section
from a window of past and future observations. Allowing modes formalizes the MMPSR model in general terms, making it

to depend upon future observations means the MMPSR can . . . .
model systems where the mode cannot be determined from applicable to dynamical systems other than highway traffic.

only the past observations. Requiring modes to be defined .
in terms of observations makes the MMPSR different from A. Observations and Modes
hierarchical latent-variable based models. This difference is The MMPSR can model uncontrolled, discrete-time dy-
significant for leaming the MMPSR, because there is no need namical systems, where the agent receives some observation
for costly estimation of the modes in the training data: their 0. at h ti tet — 1.2 The ob fi b
true values are known from the mode definitions. Furthermore, ¢ at each time step = 1, s €o se_rva lons can _(:j'
the MMPSR exploits the modes’ recognizability by adjusting its ~ vector-valued and can be discrete or continuous. In aditio
state values to reflect the true modes of the past as they become to the observations that the agent receives from the dyredmic
revealed. Our empirical evaluation of the MMPSR shows that system, the MMPSR requires that there exists a discrete set
the accuracy of a learned MMPSR model compares favorably ¢ mogesthe system could be in, and that there is some
with other learned models in predicting both simulated and . . . .
mode associated with each time step. The system can be in

real-world highway traffic. . .
Index Terms— highway traffic, predictive state representa- the same mode for several time steps, so a single mode can

tions, dynamical systems be associated with multiple contiguous time steps. 7he
mode since the beginning of time will be denotedigy and
I. MuLTI-MODE PSRs (MMPSRs) ¥ (7) will denote the mode for the time step (Figure 2).

Predictive state representations (PSRs) [3] are a class ofWhat distinguishes MMPSR models from hierarchical
models that represent the state of a dynamical system lasent-variable models (e.g., hierarchical HMMs [2]) i®th
a set of predictions about future events. PSRs are capalféet that the modes are not latent. Instead, they are de-
of representing partially observable, stochastic dynainicfined in terms of past and possibfyture observations.
systems, including any system that can be modeled by a fini§pecifically, the modes used by an MMPSR must sat-
partially observable Markov decision process (POMDP) [5]isfy the following recognizability requirement There is
There is evidence that predictive state is useful for génerasome finitek such that, for any sequence of observations
ization [4] and helps to learn more accurate models than the;,...,0;,0.41,...O.1; (for any 7 > 0), the modes
state representation of a POMDP [7]. This work introduce#(1),...,4¥(7—1),4(7) are known at time-+k (or before).
a class of structured hierarchical PSR models called multid/e say that a mode(7) is known at timer’ (wherer’ can
mode PSRs (MMPSRs) for modeling uncontrolled dynamicdle greater tharr) if the definitions of the modes and the
systems that switch between several modes of operatiambservation®),, ..., O,  from the beginning of time through
Unlike latent-variable models like hierarchical HMMs [2], time 7/ unambiguously determine the value ©fr).
the MMPSR requires that the modes be a function of past To reiterate, the recognizability requirement differates
and future observations. This requirement yields advasagthe MMPSR from hierarchical latent-variable models. If one
both when learning and using an MMPSR, as explainedere to incorporate the fact that modes were recognizable
throughout this section. into a hierarchical latent-variable model, one would ireeff

The MMPSR is inspired by the problem of predictingget an MMPSR. The recognizability of the modes plays a
cars’ movements on a highway. One way to predict the carsrucial role in learning an MMPSR, because the modes for
movements would be to determine what mode of behavidhe batch of training data are known. If the modes were
the car was in — e.g., a left lane change, right lane changeot recognizable, one would have to use the expectation-
or going straight — and make predictions about the car®maximization algorithm to estimate the latent modes, as is
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Fig. 1. The component models in an MMPSR.

Fig. 2. How the mode variables relate to the observations.olservation at time- is O, the
i*" mode seen since the beginning of timeyis and(7) is the mode at time-.

““““““ o ’._’777 MMPSR. Given any system, one can define a recognizable
; el " set of modes by simply ensuring that the modes partition
'! time r + k the possible history/length-future pairs (for some finité).

TS TS TS oTos Then for any history and length-future, exactly one mode
definition is satisfied.

Fig. 3. A situation in the traffic system where the mode for thst few Furthermore, the modes that are defined for use by the
time steps of history is unknown. After moving from the position the  MMPSR do not need to match the modes that the system
left of the figure at timer to the position towards the right at time+ &, it
is unclear if the car is beginning a left lane change or is yusaving in its a(?tua”_y used to generate the data (althOUQh a.CIOse.r _matCh
lane. These two possibilities will assign different modegtte time steps Might improve the accuracy of the MMPSR). This flexibility
7 throughT + £ (i.e., “left lane change” vs. “going straight”). permits mode definitions that are approximations of com-

o ) ) licated concepts like lane changes. Section II-A includes
typical in hierarchical latent-variable models. The MMPSngperiments where the mode definitions approximate the

also exploits the recognizability of the modes when mai”process used to generate the data.

taining its state, as described in Section I-B. In addition to the recognizability requirement, the
Because the modes can be defined in terms of @adt \MPSR makes the following independence assumptions that

future observations, the MMPSR is not limited to usingcharacterize the relationship between modes and observa-

history-based modes. A model using history-based modggns: (1) The observatio®. ., is conditionally independent

would only apply to systems where the current magle)  of the history of modes given the mode at time+ 1 and

was always known at time. In contrast, the MMPSR can the history of observations, . . ., O,. (2) The future modes

model systems where the agent will not generally know thg, ., ' are conditionally independent of the observations

modey () until several time steps after The traffic system through the end of;, given the history of modes., . .. , ;.

is an example system where there are natural modes (egen if the independence properties do not strictly hold, th

a “left lane change” mode) that can be defined in terms qfiMPSR forms a viable approximate model, as demonstrated

pastand futureobservations, but not past observations alongy the empirical results (Section II).

During the first few time steps of a left lane change, the mode These independence properties lead to the forms of the

at those times is not known from the past observations of thﬁgh and low-level models within the MMPSR. The low-

car (Figure 3): the car could be in the “going straight” modgeye| model makes predictions for the next observationmjive

but weaving in its lane, or it could be starting the “left lanehe history of observations and the mode at the next time

change” mode. Even though the “left lane change” mode willtep (Figure 4.b). The low-level model will also predict the

not immediately be known, it can be recognized when thSrobabiIity of a mode ending at time, given ¢(7) and

car crosses the lane boundary. Thus, the “left lane changge history of observations through time The high-level

mode can be defined as “The car crossed a lane boundarydel makes predictions for future modes given the history

from right to left within the most recent time stepsor it of modes (Figure 4.a). Because of the second independence

will do sowithin the nextk time steps.” assumption, the high-level model can be learned and used
Defining the modes in terms of future observations proindependently from the low-level model; it models the se-

vides a common characteristic with other PSR models, wheggience of modes);, 1», ... while abstracting away details

the state is defined in terms of future observations. Thef the observations.

PSR literature shows that a handful of features of the short-

term future can be very powerful, capturing informationB- Updating the MMPSR State

from arbitrarily far back in history [5]. This motivates the The state of the MMPSR must be updated every time

MMPSR's use of modes that are defined in terms of pastep to reflect the new history. Suppose for a moment that

and future observations. for all 7, ¢(7) was known at timer. Then the high-level
The recognizability requirement is a constraint on thenodel would update its state whenever a mode ends, using

definitions of the modeand not on the dynamical systemthat mode’s value as its “observation.” The low-level model

itself. That is, requiring the modes to be recognizable doesould update its state after every time stepconditioned

not limit the dynamical systems one can model with armupon the most recent observatiéoh and the modey(r).



@) High-level Predictions (b) Low-level Predictions

Fig. 4. Predictions made by the component models. The sutsddpthe modes differ from the observations because each madkast for several
time steps (sa << 7). (a) The high-level model predicts; ;1 given the history of modes (shaded). (b) The low-level modetits O, 1 given the
history of observations and current mode (shaded).

Even though«(7) will not always be known at timer, O.;; givenOq,...,0,. Since not all ofiy(1),...,¢¥(7+1)
this process defines the states of the high and low-levelill be known at timer, the MMPSR makes predictions
models under the assumption that some hypothetical valuaboutO.; given O, ...,O, by marginalizing the modes
¥(1),...,4(r) are the modes of history. Each sequencéhat are not known. This marginalization can be done rela-
of hypothetical values has some posterior probability givetively efficiently by using the distribution over modes that
the observations through time The number of sequencesthe MMPSR maintains.
¥(1),...,4(r) with non-zero posterior probability will re-  To make predictions about observations several time steps
main bounded, even as — oo. Specifically, only one in the future, it can be more efficient to make those pre-
sequence of hypothetical values for the known modes wilictions directly rather than calculating them from selera
have non-zero posterior probabilitfi.e., the modes’ true next-observation predictions (cf. [5]). For example, inr ou
values), and only a finite (and typically small) window ofempirical results, we include in the MMPSR several regres-
past modes will be unknown, because of the recognizabilitsion models to predict features of the future given the state
requirement. of the low-level model and the most recent mode. As with
The MMPSR state at timer consists of the poste- the next-observation predictions, the overall predicti@m
rior distribution over the modes of history and the highthe MMPSR marginalizes the unknown modes of history.
and low-level model states corresponding to each sequence i
¥(1),...,%(r) with non-zero posterior probability. At the D- Léarmning an MMPSR
next time stepr + 1, the MMPSR updates its state as Learning an MMPSR consists of learning the high and
follows. The MMPSR computes the high and low-levelow-level component models from a single sequence of
models’ states for a giverp(1),...,¢(7),¥(r + 1) from observations (i.e., the training data). The high-level etod
the high and low-level models’ states at timeusing the is a linear PSR, so it is learned by applying the suffix-
respective model updates. The MMPSR updates the posterfostory algorithm [7] to the sequence of modes of the trajnin
distribution over modes of history using Bayes’ Rule (seelata. The recognizability of the modes ensures that the
online appendix for detailht t p: / / users. i pf w. edu/  learning algorithm can correctly and automatically deteen
wol feb/itsc2010appendi x. pdf). the mode for each time step of the training data (except a
Because the learned component models of an MMPSIRw time steps at the beginning and/or end of the data).
will not be perfectly accurate, the Bayesian posterior ti@da Learning the low-level model also requires the correct
might not assign zero probability to hypothetical mode galu modes of the training data, since the low-level model makes
even if they contradict the recognized value for those modepredictions and updates its state conditioned upon the-<orr
Thus, in addition to the Bayesian posterior update, afteheasponding mode. One way to implement this conditional form
time step the MMPSR explicitly assigns zero probabilityis to have separate parameters of the low-level model for
to values of the history modes that contradict the knoweach mode. For example, the low-level model could consist
values, renormalizing the distribution after those changeof several parameterized functions from features of hystor
In addition, one can use pruning techniques (e.g. keep onliye., the state of the low-level model) to predictions abou
the k most likely sequences of history modes) to reduce thiae next observation, with a separate function for each mode
number of history mode sequences that are maintained in tfibe function for each respective mode can then be learned
posterior distribution. by applying an appropriate regression method to the time
) o ) steps of training data that have that mode. This form allows
C. Making Predictions with an MMPSR the low-level model to make specialized predictions forreac
The MMPSR can make predictions about the next obsemode. It is the form used in the following experiments.
vation O, 4, given the history of observationd,,...,O,.
Predictions of this form can be combined to make any pre-
diction about the system, including predictions furthemrth  We learned MMPSR models for three systems: a simple
one step in the future. For a given assignment to the modesndom walk system, and both simulated and real-world
¥(1),...,9(r+1), the low-level model can directly predict highway traffic. The low-level model includes parametetize

Il. EXPERIMENTS
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Fig. 7. Prediction error of the MMPSR and comparison modelsgiVe a qualitative sense

of the error, “Mean Dist.” is the average distance travetsgthe random walk. “True Mode”
is the error when the MMPSR can artificially peer into the fatto recognize the current
mode. “Local Reg.” uses locally-weighted linear regressiwar the entire data set.

Fig. 6. Predicting the current generative mode in the
random walk system with an MMPSR.

functions for each mode that map features from a finite— which we call thegenerative modes- cannot be defined
window of history to predictions of interest. Each functionin terms of observations. Nevertheless, one can still define
was learned using locally-weighted linear regression [1ket ofrecognizable modem terms of observations. For the

a flexible non-linear function approximation method. Theandom walk system, the recognizable mode for time step
high-level linear PSR was learned using the suffix-history is defined as the mode (-1, 0, or 1) that is closest to the
algorithm [7]. Because the modes are defined in terms @fverage observation over five time steps, from 2 through
observations, the modes of the training data are knowm+2. (Note that this mode definition includes both historical
which is critical in ensuring efficient training of the model and future observations.)

If the modes were not known, then an iterative estimation _ )

procedure would be needed to estimate the modes (e_%.Whne thgre will not be perfect correspor_ldence between
expectation-maximization), often requiring severaldtens the recognizable modes and the generative modes, there
to converge. At each iteration, the estimated modes would €nough correlation that an MMPSR learned using the
change, so the low-level model would have to be re-learneffcognizable modes models the system well. Figure 6 shows
In contrast, the low-level model of the MMPSR is onlyth® average likelihood that the MMPSR assigns (from its
learned one time, using the true values of the modes becadglribution over modes of history) to eadecognizable

the modes are recognizable. For purposes of comparison/T#de whenever its relategenerativemode was the (latent)
would be possible to adapt hierarchical HMMs to exploieyStem mode at that time step. The high and low noise results
these modes, but as discussed above this would effectivélgreéspond to using Gaussian noise with standard devaation
yield an MMPSR. The comparison would then become 9-5 and 0._25, respectively. Though the higher noise Iead_s to
comparison between the suffix-history leaming algorithnf€SS certainty about the mode, the MMPSR attributes high
and the EM learing algorithm, a comparison which ha@robability to the generative modes for both noise levels.

already been done [7] with results showing the suffix-histor In addition to tracking the modes well, the MMPSR

algorithm FO be generally superior. Therefore, we do n°|ts also able to predict the future observations well. The
evaluate hierarchical HMMs here.

average error for predicting several time steps in the &uisir
shown in Figure 7 for the high and low-noise systems. The
A."Random Walk MMPSR consistently achieves lower error than using loeally
The empirical evaluation of the MMPSR begins with aweighted linear regression on the entire data set, whicls doe
simple random walk system, where the (scalar) observatiawt explicitly leverage the existence of modes. For another
at each time step is the change in (one-dimensional) positigomparison, we ran an additional set of experiments where
from the last time step. That change is given by the modee artificially allowed the MMPSR to peer into the future
— which can take on values -1, 0, and 1 — plus mearand determine the value of the current mode (even though
zero Gaussian noise. The mode is determined by a Markedlve current mode is not generally recognizable from the
chain, shown in Figure 5. The low-level model state consistsbservations through the current time). The real MMPSR
of the average observations over the lastime steps for (which does not peer into the future) does almost as well as
k € {2,5,10}, along with a constant 1.0. the artificial MMPSR that can peer into the future, espegiall
Because of the noise, the modes used to generate the datéhe low-noise system (Figure 7).



2 sec. L1 Error (feet) Percent Error Mode LLC | RLC | Slow | Fast

MMPSR 4.856+ 0.722 1.615+ 0.219 Predicted prob. of true mode 0.50 | 0.29 | 0.79 | 0.62

Last Velocity 7.952+ 0.130 3.397+ 0.063 Fraction of data set 0.03| 0.01 | 0.41 | 0.55
Local Regressior| 184.165+ 16.022] 94.298+ 7.105 Fig. 9. Predicting the current mode for simulated traffic. “L'lahd “RLC”

5 sec. L1 Error (feet) Percent Error are left and right lane changes.
MMPSR 9.1724+ 1.950 1.151+ 0.278 ) . -
Last Velocity 19197 L 0527 3176 L 0.058 ) | Pre‘dlct?d P‘I’Oba‘blht)‘/ of "I'rue‘or S‘lmll‘ar M‘ode‘ |
Local Regression 420.237+ 62.923 | 86.694+ 11.396 ] I True Mode [ True or Similar

Fig. 8.  Error in predicting distance traveled for simulatedffic. The 0.8 B
MMPSR achieves the lowest error for predicting both 2 and &sds in
the future. The confidence intervals are two standard dewist computed
across 15 data sets.

Probability

B. Traffic

We also learned MMPSRs to model simulated and rea\§ :
world highway traffic. The MMPSR predicts the movements=
of a car given the history of that car and some neighborin
cars. The observation at each time step consists of the
velocity, y velocity, and headway for the car being modeled
where headway is the time to collision with the car in front.
We use “X” to refer to the lateral or side-to-side direction,
while “y” refers to the longitudinal or forward direction.He
features of history that composed the state of the low-levélg- 10. Predicting the current mode for 1-80 traffic: likedibd assigned
model were as follows: average y velocity over three différe Itgbtgg’t[ufc(grnzgil_%r)a?;og?tsa% trr;gehlgeli?:‘ih'\grggihsfjﬁ:?\}“ﬁ?,e
windows (the most recent 0.5 seconds, the 0.5 seconds bef@igcate the mode of a car that falls in tié" velocity bin (4 is fastest)
that, and the most recent 5 seconds); average x velocity ovand ;" headway bin (3 is the longest distance to the car in front).
the most recent 0.5 seconds, and the 0.5 seconds before that;
the x position; the distance to the closest car in front, aad iIMMPSR achieves less than 2% error (relative to distance
average y velocity over the last 1.0 seconds; and a constdraveled), for both 2 and 5 seconds in the future.
term. We used left and right lane changes as two of the Not only does the MMPSR predict the movement of the
modes of behavior for both simulated and real traffic; thegars accurately, it also assigns reasonably high liketihoo
were defined as any 4.0-second window where the car centerthe true value of the current mode (Figure 9). The low
crossed a lane boundary at the midpoint of the window. likelihoods for the “lane change” modes are primarily due

1) Simulated Traffic: The simulated traffic consists of to the low prior probability of those modes (Figure 9).
three lanes of traffic, with cars entering the field of view 2) Interstate 80 Traffic:We also learned an MMPSR to
stochastically. (A video is available atttp://ww.  model real highway traffic on interstate 80 (I-80) near San
yout ube. conif wat ch?v=8eHx_EzJ(Os0.) Each car has Francisco. We used the data collected by the Next Generation
a default velocity that it will maintain unless there is a gar SIMulation (NGSIM) project, which used cameras to capture
the way. In that case, if there is room in an adjacent lane, thigffic movement along approximately 500 meters of six-
car will change lanes; otherwise, it will slow down. Gaussialane freeway [6]. (A video is available &ttt p: / / ww.
noise is added to the observations of the cars’ positions yout ube. conl wat ch?v=Jj xNu2kbt DI .)
emulate the inherent noise in physical sensors. As with the simulated traffic, we experimented with sev-

In addition to left and right lane change modes, weeral sets of mode definitions. The results presented here
experimented with several possible sets of modes for these modes determined by the y velocity and the headway
traffic data, including modes defined in terms of y velocityto the car in front, which were discretized into four and
headway, and a combination of y velocity and headway. Théree bins, respectively. Along with the two lane change
results presented here use left and right lane change modeedes, this gives fourteen total modes for the system.yPartl
and two different “stay-in-lane” modes for cars at differenbecause of the fine distinctions between the modes (cf. the
speeds (i.e., fast and slow). simulated traffic with only two velocity bins), the MMPSR

We compare the accuracy of the learned MMPSR with twbas more difficulty determining the true mode than with the
other prediction methods: a baseline method that prediets t previous domains (Figure 10). However, the likelihood that
the car will maintain its last observed velocity, and logall the MMPSR assigns to either the true mode or a similar mode
weighted linear regression trained upon the entire data séie., those that differ by one notch in velocity or headway,
We evaluated the models’ predictions about how far each chut not both) is significantly higher (Figure 10).
would travel in the y direction over the future 2 and 5 sec- Even though the MMPSR does not always track the true
onds. The MMPSR performed significantly better than botimode, its predicted modes are close enough to enable good
comparison methods at both the 2 and 5-second horizopsedictions about the cars’ movements. These predictions
(Figure 8). Even in the presence of noisy observations, theere evaluated in the same way as for the simulated traffic,

LLC RLC V1,1 V2,1 V3,1 V4,1 V1,2 V2,2 V3,2 V4,2 V1,3 V2,3 V3,3 V4,3
Mode



2 sec. L1 Error Percent Error ; ;
MVIPSR 185 0950 T 6552 £ 0278 Icotmpclarable. Thet percent ;—T\rror is so hlgh"btla:cautie thet_true
Oracle MMPSR | 36151 0.123 | 6.048 L 0258 ateral movement is sometimes very small. For those time
Last Velocity 4538F 0.161 | 6.601F 0.249 points, a small absolute error results in an enormous percen
Local Regression 49.648+ 2.416 | 99.258=+ 0.129 error, which skews the average percent error. However, in
absolute terms, the average error of the MMPSR is quite
5 sec. L1 Error Percent Error I | than 1.5 feet for fi ds in the fut
MMPSR 138271 0501 | 9.092 & 0.424 small: less than 1.5 feet for five seconds in the future.
Oracle MMPSR | 9196+ 0263 | 6.265+F 0.316 Neither the last-velocity model nor local regression per-

Last Velocity

17.216+ 0.687

11.187+ 0.511

Local Regression

110.548+ 5.943

89.432-+ 0.547

formed well on both lateral and forward predictions. This is

in contrast to the MMPSR, which is comparable to (or better
than) the better of the comparison methods for both lateral
and forward predictions.

Fig. 11. Error in predicting distance traveled for I-80 fiaf The “Oracle

MMPSR” error provides a sense of the best error that could dheéesed.

Among the remaining models, the MMPSR achieves the lowest éoror
predicting both 2 and 5 seconds in the future. The confidemtesvials are

two standard deviations, computed across 15 data sets.

IIl. SUMMARY

We have introduced the MMPSR, a hierarchical model
motivated by the problem of modeling vehicles’ movements.

MZM%G;R . 6'-7%?83220 95%??;‘; fggé In general, MMPSRs can model uncontrolled systems that
Cocal Regression 0.666 % 0.027 | 102.652% 3.272 switch between modes o_f behavior. Insplrgd by.PSRs, the
Last Velocity | 0.008 % 0.039 | 105.316L 1.918 modes_ are not latent variables buj[ are defined in terms of
both historical and future observations. Because the modes
S Sec. L1 Error Percent Error are defined in terms of observations, learning the MMPSR
MMPSR | 1.348+ 0.214 | 101.307+ 4.148 model is more efficient than if the modes were latent
Local Regression 1.301+ 0.087 | 99.366+ 0.352 . .
Last Velocity | 2.403 % 0.103 | 135.781L 4.937 variables. Furthermore, when using the MMPSR model to

make predictions, the MMPSR can adjust its state to reflect
the true values of the modes because those true values are
eventually recognized from the observations. Even though
the modes are defined in terms of observations, they are not
restricted to be features of history, which would limit the
expressiveness of the model. Rather, the mode definitions
can includefuture observations, allowing modes such as a

predicting the last velocity. We also evaluated an MMPS ight lane chang_e. We introduced a learning algorithm for
that uses an “oracle” feature that peers into the futures Thi"e MMP_SR' u_smg_|t to learn MMPSR mO‘?e'S of thre_e
feature is included in the low-level state, even though It wi s;r/]stems, 'nCIUd'EQ sm(;lljlated and rial-world highway tcagfld
never be available online. Nevertheless, the oracle MME’SRT e MMPSR achieved lower error than comparison methods

error provides a sense of the best error that could be amiev@nAalll( threle dsystems;, 'TTICMd'rI‘? theBhV'\?leé traffic or;] 1-80.
Specifically, the oracle feature ise desired predictiofi.e., cknowledgementsThe authors’ ) research was

the distance the car will travel) minus the future value aﬁ‘thsu'o'oon_eOI by NSF grant ”S_'0413004‘ Any opinions, findings,
gap between it and the car it is foIIowiﬁg. conclusions or recommendations expressed here are those of the

As with the simulated traffic. the MMPSR pencormedauthors and do not necessarily reflect the views of the sponsors.
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Fig. 12.  Error in predicting lateral movement of 1-80 traffichd last-
velocity comparison model has the highest error, while the MIRPand
local regression models are comparable. The confidence afgeim the
tables are two standard deviations, computed across 15etatalte percent
error is so high because the true lateral movement is sometimedf sma
even small absolute errors can translate to large perceortserr

including a comparison with locally-weighted regressiowl a

1This evaluation only considers the time points where thera @r in
front of the modeled car; otherwise, the oracle feature isdedined. In the
1-80 data set, there is almost always a car in front, so the magority of
the data is evaluated.



