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Abstract— Predictive state representations (PSRs) are a class
of models that represent the state of a dynamical system as a set
of predictions about future events. This work introduces a class
of structured PSR models called multi-mode PSRs (MMPSRs),
which were inspired by the problem of modeling traffic. In
general, MMPSRs can model uncontrolled dynamical systems
that switch between several modes of operation. An important
aspect of the model is that the modes must be recognizable
from a window of past and future observations. Allowing modes
to depend upon future observations means the MMPSR can
model systems where the mode cannot be determined from
only the past observations. Requiring modes to be defined
in terms of observations makes the MMPSR different from
hierarchical latent-variable based models. This difference is
significant for learning the MMPSR, because there is no need
for costly estimation of the modes in the training data: their
true values are known from the mode definitions. Furthermore,
the MMPSR exploits the modes’ recognizability by adjusting its
state values to reflect the true modes of the past as they become
revealed. Our empirical evaluation of the MMPSR shows that
the accuracy of a learned MMPSR model compares favorably
with other learned models in predicting both simulated and
real-world highway traffic.

Index Terms— highway traffic, predictive state representa-
tions, dynamical systems

I. M ULTI -MODE PSRS (MMPSRS)

Predictive state representations (PSRs) [3] are a class of
models that represent the state of a dynamical system as
a set of predictions about future events. PSRs are capable
of representing partially observable, stochastic dynamical
systems, including any system that can be modeled by a finite
partially observable Markov decision process (POMDP) [5].
There is evidence that predictive state is useful for general-
ization [4] and helps to learn more accurate models than the
state representation of a POMDP [7]. This work introduces
a class of structured hierarchical PSR models called multi-
mode PSRs (MMPSRs) for modeling uncontrolled dynamical
systems that switch between several modes of operation.
Unlike latent-variable models like hierarchical HMMs [2],
the MMPSR requires that the modes be a function of past
and future observations. This requirement yields advantages
both when learning and using an MMPSR, as explained
throughout this section.

The MMPSR is inspired by the problem of predicting
cars’ movements on a highway. One way to predict the car’s
movements would be to determine what mode of behavior
the car was in — e.g., a left lane change, right lane change,
or going straight — and make predictions about the car’s

movement conditioned upon that mode of behavior. The
MMPSR makes predictions in this way using two component
models which form a simple, two-level hierarchy (Figure 1).
When modeling highway traffic, the high-level model will
predict the mode of behavior, and the low-level model will
make predictions about the car’s future positions conditioned
upon the mode of behavior. The remainder of this section
formalizes the MMPSR model in general terms, making it
applicable to dynamical systems other than highway traffic.

A. Observations and Modes

The MMPSR can model uncontrolled, discrete-time dy-
namical systems, where the agent receives some observation
Oi at each time stepi = 1, 2, . . .. The observations can be
vector-valued and can be discrete or continuous. In addition
to the observations that the agent receives from the dynamical
system, the MMPSR requires that there exists a discrete set
of modesthe system could be in, and that there is some
mode associated with each time step. The system can be in
the same mode for several time steps, so a single mode can
be associated with multiple contiguous time steps. Theith

mode since the beginning of time will be denoted byψi, and
ψ(τ) will denote the mode for theτ time step (Figure 2).

What distinguishes MMPSR models from hierarchical
latent-variable models (e.g., hierarchical HMMs [2]) is the
fact that the modes are not latent. Instead, they are de-
fined in terms of past and possiblyfuture observations.
Specifically, the modes used by an MMPSR must sat-
isfy the following recognizability requirement: There is
some finitek such that, for any sequence of observations
O1, . . . , Oτ , Oτ+1, . . . Oτ+k (for any τ ≥ 0), the modes
ψ(1), . . . , ψ(τ−1), ψ(τ) are known at timeτ+k (or before).
We say that a modeψ(τ) is known at timeτ ′ (whereτ ′ can
be greater thanτ ) if the definitions of the modes and the
observationsO1, . . . , Oτ ′ from the beginning of time through
time τ ′ unambiguously determine the value ofψ(τ).

To reiterate, the recognizability requirement differentiates
the MMPSR from hierarchical latent-variable models. If one
were to incorporate the fact that modes were recognizable
into a hierarchical latent-variable model, one would in effect
get an MMPSR. The recognizability of the modes plays a
crucial role in learning an MMPSR, because the modes for
the batch of training data are known. If the modes were
not recognizable, one would have to use the expectation-
maximization algorithm to estimate the latent modes, as is
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Fig. 1. The component models in an MMPSR.
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Fig. 2. How the mode variables relate to the observations. Theobservation at timeτ is Oτ , the
ith mode seen since the beginning of time isψi, andψ(τ) is the mode at timeτ .
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Fig. 3. A situation in the traffic system where the mode for the last few
time steps of history is unknown. After moving from the position on the
left of the figure at timeτ to the position towards the right at timeτ +k, it
is unclear if the car is beginning a left lane change or is justweaving in its
lane. These two possibilities will assign different modes tothe time steps
τ throughτ + k (i.e., “left lane change” vs. “going straight”).

typical in hierarchical latent-variable models. The MMPSR
also exploits the recognizability of the modes when main-
taining its state, as described in Section I-B.

Because the modes can be defined in terms of pastand
future observations, the MMPSR is not limited to using
history-based modes. A model using history-based modes
would only apply to systems where the current modeψ(τ)
was always known at timeτ . In contrast, the MMPSR can
model systems where the agent will not generally know the
modeψ(τ) until several time steps afterτ . The traffic system
is an example system where there are natural modes (e.g.
a “left lane change” mode) that can be defined in terms of
pastand futureobservations, but not past observations alone.
During the first few time steps of a left lane change, the mode
at those times is not known from the past observations of the
car (Figure 3): the car could be in the “going straight” mode
but weaving in its lane, or it could be starting the “left lane
change” mode. Even though the “left lane change” mode will
not immediately be known, it can be recognized when the
car crosses the lane boundary. Thus, the “left lane change”
mode can be defined as “The car crossed a lane boundary
from right to left within the most recentk time stepsor it
will do so within the nextk time steps.”

Defining the modes in terms of future observations pro-
vides a common characteristic with other PSR models, where
the state is defined in terms of future observations. The
PSR literature shows that a handful of features of the short-
term future can be very powerful, capturing information
from arbitrarily far back in history [5]. This motivates the
MMPSR’s use of modes that are defined in terms of past
and future observations.

The recognizability requirement is a constraint on the
definitions of the modesand not on the dynamical system
itself. That is, requiring the modes to be recognizable does
not limit the dynamical systems one can model with an

MMPSR. Given any system, one can define a recognizable
set of modes by simply ensuring that the modes partition
the possible history/length-k-future pairs (for some finitek).
Then for any history and length-k future, exactly one mode
definition is satisfied.

Furthermore, the modes that are defined for use by the
MMPSR do not need to match the modes that the system
actually used to generate the data (although a closer match
might improve the accuracy of the MMPSR). This flexibility
permits mode definitions that are approximations of com-
plicated concepts like lane changes. Section II-A includes
experiments where the mode definitions approximate the
process used to generate the data.

In addition to the recognizability requirement, the
MMPSR makes the following independence assumptions that
characterize the relationship between modes and observa-
tions: (1) The observationOτ+1 is conditionally independent
of the history of modes given the mode at timeτ + 1 and
the history of observationsO1, . . . , Oτ . (2) The future modes
ψi+1, . . . are conditionally independent of the observations
through the end ofψi, given the history of modesψ1, . . . , ψi.
Even if the independence properties do not strictly hold, the
MMPSR forms a viable approximate model, as demonstrated
by the empirical results (Section II).

These independence properties lead to the forms of the
high and low-level models within the MMPSR. The low-
level model makes predictions for the next observation given
the history of observations and the mode at the next time
step (Figure 4.b). The low-level model will also predict the
probability of a mode ending at timeτ , given ψ(τ) and
the history of observations through timeτ . The high-level
model makes predictions for future modes given the history
of modes (Figure 4.a). Because of the second independence
assumption, the high-level model can be learned and used
independently from the low-level model; it models the se-
quence of modesψ1, ψ2, . . . while abstracting away details
of the observations.

B. Updating the MMPSR State

The state of the MMPSR must be updated every time
step to reflect the new history. Suppose for a moment that
for all τ , ψ(τ) was known at timeτ . Then the high-level
model would update its state whenever a mode ends, using
that mode’s value as its “observation.” The low-level model
would update its state after every time stepτ , conditioned
upon the most recent observationOτ and the modeψ(τ).
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Fig. 4. Predictions made by the component models. The subscripts for the modes differ from the observations because each mode will last for several
time steps (soi << τ ). (a) The high-level model predictsψi+1 given the history of modes (shaded). (b) The low-level model predictsOτ+1 given the
history of observations and current mode (shaded).

Even thoughψ(τ) will not always be known at timeτ ,
this process defines the states of the high and low-level
models under the assumption that some hypothetical values
ψ(1), . . . , ψ(τ) are the modes of history. Each sequence
of hypothetical values has some posterior probability given
the observations through timeτ . The number of sequences
ψ(1), . . . , ψ(τ) with non-zero posterior probability will re-
main bounded, even asτ → ∞. Specifically, only one
sequence of hypothetical values for the known modes will
have non-zero posterior probability(i.e., the modes’ true
values), and only a finite (and typically small) window of
past modes will be unknown, because of the recognizability
requirement.

The MMPSR state at timeτ consists of the poste-
rior distribution over the modes of history and the high
and low-level model states corresponding to each sequence
ψ(1), . . . , ψ(τ) with non-zero posterior probability. At the
next time stepτ + 1, the MMPSR updates its state as
follows. The MMPSR computes the high and low-level
models’ states for a givenψ(1), . . . , ψ(τ), ψ(τ + 1) from
the high and low-level models’ states at timeτ using the
respective model updates. The MMPSR updates the posterior
distribution over modes of history using Bayes’ Rule (see
online appendix for details:http://users.ipfw.edu/
wolfeb/itsc2010appendix.pdf).

Because the learned component models of an MMPSR
will not be perfectly accurate, the Bayesian posterior update
might not assign zero probability to hypothetical mode values
even if they contradict the recognized value for those modes.
Thus, in addition to the Bayesian posterior update, after each
time step the MMPSR explicitly assigns zero probability
to values of the history modes that contradict the known
values, renormalizing the distribution after those changes.
In addition, one can use pruning techniques (e.g. keep only
the k most likely sequences of history modes) to reduce the
number of history mode sequences that are maintained in the
posterior distribution.

C. Making Predictions with an MMPSR

The MMPSR can make predictions about the next obser-
vation Oτ+1 given the history of observationsO1, . . . , Oτ .
Predictions of this form can be combined to make any pre-
diction about the system, including predictions further than
one step in the future. For a given assignment to the modes
ψ(1), . . . , ψ(τ +1), the low-level model can directly predict

Oτ+1 givenO1, . . . , Oτ . Since not all ofψ(1), . . . , ψ(τ +1)
will be known at timeτ , the MMPSR makes predictions
aboutOτ+1 given O1, . . . , Oτ by marginalizing the modes
that are not known. This marginalization can be done rela-
tively efficiently by using the distribution over modes that
the MMPSR maintains.

To make predictions about observations several time steps
in the future, it can be more efficient to make those pre-
dictions directly rather than calculating them from several
next-observation predictions (cf. [5]). For example, in our
empirical results, we include in the MMPSR several regres-
sion models to predict features of the future given the state
of the low-level model and the most recent mode. As with
the next-observation predictions, the overall predictionfrom
the MMPSR marginalizes the unknown modes of history.

D. Learning an MMPSR

Learning an MMPSR consists of learning the high and
low-level component models from a single sequence of
observations (i.e., the training data). The high-level model
is a linear PSR, so it is learned by applying the suffix-
history algorithm [7] to the sequence of modes of the training
data. The recognizability of the modes ensures that the
learning algorithm can correctly and automatically determine
the mode for each time step of the training data (except a
few time steps at the beginning and/or end of the data).

Learning the low-level model also requires the correct
modes of the training data, since the low-level model makes
predictions and updates its state conditioned upon the corre-
sponding mode. One way to implement this conditional form
is to have separate parameters of the low-level model for
each mode. For example, the low-level model could consist
of several parameterized functions from features of history
(i.e., the state of the low-level model) to predictions about
the next observation, with a separate function for each mode.
The function for each respective mode can then be learned
by applying an appropriate regression method to the time
steps of training data that have that mode. This form allows
the low-level model to make specialized predictions for each
mode. It is the form used in the following experiments.

II. EXPERIMENTS

We learned MMPSR models for three systems: a simple
random walk system, and both simulated and real-world
highway traffic. The low-level model includes parameterized
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Fig. 7. Prediction error of the MMPSR and comparison models. Togive a qualitative sense
of the error, “Mean Dist.” is the average distance traversedby the random walk. “True Mode”
is the error when the MMPSR can artificially peer into the future to recognize the current
mode. “Local Reg.” uses locally-weighted linear regressionover the entire data set.

functions for each mode that map features from a finite
window of history to predictions of interest. Each function
was learned using locally-weighted linear regression [1],
a flexible non-linear function approximation method. The
high-level linear PSR was learned using the suffix-history
algorithm [7]. Because the modes are defined in terms of
observations, the modes of the training data are known,
which is critical in ensuring efficient training of the model.
If the modes were not known, then an iterative estimation
procedure would be needed to estimate the modes (e.g.
expectation-maximization), often requiring several iterations
to converge. At each iteration, the estimated modes would
change, so the low-level model would have to be re-learned.
In contrast, the low-level model of the MMPSR is only
learned one time, using the true values of the modes because
the modes are recognizable. For purposes of comparison, it
would be possible to adapt hierarchical HMMs to exploit
these modes, but as discussed above this would effectively
yield an MMPSR. The comparison would then become a
comparison between the suffix-history learning algorithm
and the EM learning algorithm, a comparison which has
already been done [7] with results showing the suffix-history
algorithm to be generally superior. Therefore, we do not
evaluate hierarchical HMMs here.

A. Random Walk

The empirical evaluation of the MMPSR begins with a
simple random walk system, where the (scalar) observation
at each time step is the change in (one-dimensional) position
from the last time step. That change is given by the mode
— which can take on values -1, 0, and 1 — plus mean-
zero Gaussian noise. The mode is determined by a Markov
chain, shown in Figure 5. The low-level model state consists
of the average observations over the lastk time steps for
k ∈ {2, 5, 10}, along with a constant 1.0.

Because of the noise, the modes used to generate the data

— which we call thegenerative modes— cannot be defined
in terms of observations. Nevertheless, one can still definea
set of recognizable modesin terms of observations. For the
random walk system, the recognizable mode for time step
τ is defined as the mode (-1, 0, or 1) that is closest to the
average observation over five time steps, fromτ −2 through
τ+2. (Note that this mode definition includes both historical
and future observations.)

While there will not be perfect correspondence between
the recognizable modes and the generative modes, there
is enough correlation that an MMPSR learned using the
recognizable modes models the system well. Figure 6 shows
the average likelihood that the MMPSR assigns (from its
distribution over modes of history) to eachrecognizable
mode whenever its relatedgenerativemode was the (latent)
system mode at that time step. The high and low noise results
correspond to using Gaussian noise with standard deviations
0.5 and 0.25, respectively. Though the higher noise leads to
less certainty about the mode, the MMPSR attributes high
probability to the generative modes for both noise levels.

In addition to tracking the modes well, the MMPSR
is also able to predict the future observations well. The
average error for predicting several time steps in the future is
shown in Figure 7 for the high and low-noise systems. The
MMPSR consistently achieves lower error than using locally-
weighted linear regression on the entire data set, which does
not explicitly leverage the existence of modes. For another
comparison, we ran an additional set of experiments where
we artificially allowed the MMPSR to peer into the future
and determine the value of the current mode (even though
the current mode is not generally recognizable from the
observations through the current time). The real MMPSR
(which does not peer into the future) does almost as well as
the artificial MMPSR that can peer into the future, especially
in the low-noise system (Figure 7).



2 sec. L1 Error (feet) Percent Error
MMPSR 4.856± 0.722 1.615± 0.219

Last Velocity 7.952± 0.130 3.397± 0.063
Local Regression 184.165± 16.022 94.298± 7.105

5 sec. L1 Error (feet) Percent Error
MMPSR 9.172± 1.950 1.151± 0.278

Last Velocity 19.197± 0.527 3.176± 0.058
Local Regression 420.237± 62.923 86.694± 11.396

Fig. 8. Error in predicting distance traveled for simulated traffic. The
MMPSR achieves the lowest error for predicting both 2 and 5 seconds in
the future. The confidence intervals are two standard deviations, computed
across 15 data sets.

B. Traffic

We also learned MMPSRs to model simulated and real-
world highway traffic. The MMPSR predicts the movements
of a car given the history of that car and some neighboring
cars. The observation at each time step consists of the x
velocity, y velocity, and headway for the car being modeled,
where headway is the time to collision with the car in front.
We use “x” to refer to the lateral or side-to-side direction,
while “y” refers to the longitudinal or forward direction. The
features of history that composed the state of the low-level
model were as follows: average y velocity over three different
windows (the most recent 0.5 seconds, the 0.5 seconds before
that, and the most recent 5 seconds); average x velocity over
the most recent 0.5 seconds, and the 0.5 seconds before that;
the x position; the distance to the closest car in front, and its
average y velocity over the last 1.0 seconds; and a constant
term. We used left and right lane changes as two of the
modes of behavior for both simulated and real traffic; they
were defined as any 4.0-second window where the car center
crossed a lane boundary at the midpoint of the window.

1) Simulated Traffic: The simulated traffic consists of
three lanes of traffic, with cars entering the field of view
stochastically. (A video is available athttp://www.
youtube.com/watch?v=8eHx EzJOs0.) Each car has
a default velocity that it will maintain unless there is a carin
the way. In that case, if there is room in an adjacent lane, the
car will change lanes; otherwise, it will slow down. Gaussian
noise is added to the observations of the cars’ positions to
emulate the inherent noise in physical sensors.

In addition to left and right lane change modes, we
experimented with several possible sets of modes for the
traffic data, including modes defined in terms of y velocity,
headway, and a combination of y velocity and headway. The
results presented here use left and right lane change modes
and two different “stay-in-lane” modes for cars at different
speeds (i.e., fast and slow).

We compare the accuracy of the learned MMPSR with two
other prediction methods: a baseline method that predicts that
the car will maintain its last observed velocity, and locally
weighted linear regression trained upon the entire data set.
We evaluated the models’ predictions about how far each car
would travel in the y direction over the future 2 and 5 sec-
onds. The MMPSR performed significantly better than both
comparison methods at both the 2 and 5-second horizons
(Figure 8). Even in the presence of noisy observations, the

Mode LLC RLC Slow Fast
Predicted prob. of true mode 0.50 0.29 0.79 0.62

Fraction of data set 0.03 0.01 0.41 0.55

Fig. 9. Predicting the current mode for simulated traffic. “LLC” and “RLC”
are left and right lane changes.
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Fig. 10. Predicting the current mode for I-80 traffic: likelihood assigned
to the true (or similar) modes by the learned MMPSR. Regarding the mode
labels, LLC and RLC are left and right lane changes; the otherlabels “Vk,j”
indicate the mode of a car that falls in thekth velocity bin (4 is fastest)
andjth headway bin (3 is the longest distance to the car in front).

MMPSR achieves less than 2% error (relative to distance
traveled), for both 2 and 5 seconds in the future.

Not only does the MMPSR predict the movement of the
cars accurately, it also assigns reasonably high likelihood
to the true value of the current mode (Figure 9). The low
likelihoods for the “lane change” modes are primarily due
to the low prior probability of those modes (Figure 9).

2) Interstate 80 Traffic:We also learned an MMPSR to
model real highway traffic on interstate 80 (I-80) near San
Francisco. We used the data collected by the Next Generation
SIMulation (NGSIM) project, which used cameras to capture
traffic movement along approximately 500 meters of six-
lane freeway [6]. (A video is available athttp://www.
youtube.com/watch?v=JjxNu2kbtDI.)

As with the simulated traffic, we experimented with sev-
eral sets of mode definitions. The results presented here
use modes determined by the y velocity and the headway
to the car in front, which were discretized into four and
three bins, respectively. Along with the two lane change
modes, this gives fourteen total modes for the system. Partly
because of the fine distinctions between the modes (cf. the
simulated traffic with only two velocity bins), the MMPSR
has more difficulty determining the true mode than with the
previous domains (Figure 10). However, the likelihood that
the MMPSR assigns to either the true mode or a similar mode
(i.e., those that differ by one notch in velocity or headway,
but not both) is significantly higher (Figure 10).

Even though the MMPSR does not always track the true
mode, its predicted modes are close enough to enable good
predictions about the cars’ movements. These predictions
were evaluated in the same way as for the simulated traffic,



2 sec. L1 Error Percent Error
MMPSR 4.185± 0.250 6.552± 0.228

Oracle MMPSR 3.615± 0.123 6.048± 0.258
Last Velocity 4.538± 0.161 6.601± 0.249

Local Regression 49.648± 2.416 99.258± 0.129

5 sec. L1 Error Percent Error
MMPSR 13.827± 0.501 9.092± 0.424

Oracle MMPSR 9.196± 0.263 6.265± 0.316
Last Velocity 17.216± 0.687 11.187± 0.511

Local Regression 110.548± 5.943 89.432± 0.547

Fig. 11. Error in predicting distance traveled for I-80 traffic. The “Oracle
MMPSR” error provides a sense of the best error that could be achieved.
Among the remaining models, the MMPSR achieves the lowest errorfor
predicting both 2 and 5 seconds in the future. The confidence intervals are
two standard deviations, computed across 15 data sets.

2 sec. L1 Error Percent Error
MMPSR 0.678± 0.120 99.057± 2.656

Local Regression 0.666± 0.027 102.652± 3.272
Last Velocity 0.908± 0.039 105.316± 1.918

5 sec. L1 Error Percent Error
MMPSR 1.348± 0.214 101.307± 4.148

Local Regression 1.301± 0.087 99.366± 0.352
Last Velocity 2.403± 0.103 135.781± 4.937

Fig. 12. Error in predicting lateral movement of I-80 traffic. The last-
velocity comparison model has the highest error, while the MMPSR and
local regression models are comparable. The confidence intervals in the
tables are two standard deviations, computed across 15 data sets. The percent
error is so high because the true lateral movement is sometimes small, so
even small absolute errors can translate to large percent errors.

including a comparison with locally-weighted regression and
predicting the last velocity. We also evaluated an MMPSR
that uses an “oracle” feature that peers into the future. This
feature is included in the low-level state, even though it will
never be available online. Nevertheless, the oracle MMPSR’s
error provides a sense of the best error that could be achieved.
Specifically, the oracle feature isthe desired prediction(i.e.,
the distance the car will travel) minus the future value of the
gap between it and the car it is following.1

As with the simulated traffic, the MMPSR performed
better than both the local-regression and the last-velocity
comparison methods at both the 2 and 5-second horizons
(Figure 11), with a considerable difference at the 5-second
horizon. Also, the error of the MMPSR is reasonably close
to that of the oracle MMPSR, despite all the information
contained in the oracle feature. Finally, it is worth notingthat
the MMPSR achieves less than ten percent error (relative to
distance traveled), even when predicting five seconds in the
future for cars at highway speeds. In absolute terms, this is
about 14 feet, or roughly one car length.

Figure 12 shows the error in predictinglateral move-
ment for the MMPSR, the last-velocity model, and locally-
weighted linear regression. (The oracle MMPSR is not appli-
cable to lateral movement.) The last-velocity model does the
worst, while the MMPSR and local regression models are

1This evaluation only considers the time points where there isa car in
front of the modeled car; otherwise, the oracle feature is notdefined. In the
I-80 data set, there is almost always a car in front, so the vastmajority of
the data is evaluated.

comparable. The percent error is so high because the true
lateral movement is sometimes very small. For those time
points, a small absolute error results in an enormous percent
error, which skews the average percent error. However, in
absolute terms, the average error of the MMPSR is quite
small: less than 1.5 feet for five seconds in the future.

Neither the last-velocity model nor local regression per-
formed well on both lateral and forward predictions. This is
in contrast to the MMPSR, which is comparable to (or better
than) the better of the comparison methods for both lateral
and forward predictions.

III. SUMMARY

We have introduced the MMPSR, a hierarchical model
motivated by the problem of modeling vehicles’ movements.
In general, MMPSRs can model uncontrolled systems that
switch between modes of behavior. Inspired by PSRs, the
modes are not latent variables but are defined in terms of
both historical and future observations. Because the modes
are defined in terms of observations, learning the MMPSR
model is more efficient than if the modes were latent
variables. Furthermore, when using the MMPSR model to
make predictions, the MMPSR can adjust its state to reflect
the true values of the modes because those true values are
eventually recognized from the observations. Even though
the modes are defined in terms of observations, they are not
restricted to be features of history, which would limit the
expressiveness of the model. Rather, the mode definitions
can includefuture observations, allowing modes such as a
right lane change. We introduced a learning algorithm for
the MMPSR, using it to learn MMPSR models of three
systems, including simulated and real-world highway traffic.
The MMPSR achieved lower error than comparison methods
on all three systems, including the highway traffic on I-80.
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