Exponential Family
Predictive Representations of State

David Wingate Satinder Singh
Computer Science and Engineering Computer Science and Engineering
University of Michigan University of Michigan
Wi ngat ed@ni ch. edu bavej a@ni ch. edu
Abstract

In order to represent state in controlled, partially obabhe, stochastic dynamical
systems, some sort of sufficient statistic for history isessary. Predictive repre-
sentations of state (PSRs) capture state as statistice @ditilre. We introduce a
new model of such systems called the “Exponential family P8Rich defines
as state the time-varying parameters of an exponentialyfatistribution which
modelsn sequential observations in the future. This choice of segigesentation
explicitly connects PSRs to state-of-the-art probalidistodeling, which allows
us to take advantage of current efforts in high-dimensideakity estimation, and
in particular, graphical models and maximum entropy madéfs present a pa-
rameter learning algorithm based on maximum likelihood] exe show how a
variety of current approximate inference methods apply. eégduate the qual-
ity of our model with reinforcement learning by directly &vating the control
performance of the model.

1 Introduction

One of the basic problems in modeling controlled, partialbgervable, stochastic dynamical sys-
tems is representing and tracking state. In a reinforceileaming context, the state of the system
is important because it can be used to make predictions a@hedtiture, or to control the system
optimally. Often, state is viewed as an unobservable, {atamable, but models witpredictive rep-
resentations of statgl] propose an alternative: PSRs represent stagtadistics about the future

The original PSR models used the probability of specificaitled futures calletestsas the statistics
of interest. Recent work has introduced the more generamof using parameters that model the
distribution of lengthn futures as the statistics of interest [8]. To clarify thisnsider an agent
interacting with the system. It observes a series of obsenso; ...o;, which we call ahistory

h; (where subscripts denote time). Given any history, themoise distribution over the next
observations:p(O;41...04n|he) = p(F™|h:) (WhereO;,, is the random variable representing
an observation steps in the future, and™ is a mnemonic forfuture). We emphasize that this
distribution directly models observable quantities in slystem.

Instead of capturing state with tests, the more generaliglgacapture state by directly modeling
the distributionp(F™|h;). Our central assumption is that the parameters descrildifity|h;) are
sufficient for history, and therefore constitute state K@satgent interacts with the systep(F™|h;)
changes becaugg changes; therefore the parameters and hence state chasga). example of
this, the Predictive Linear-Gaussian (PLG) model [8] asssithatp(F™ |h;) is jointly Gaussian;
state therefore becomes its mean and covariance. Nothlogtiby defining state in terms of ob-
servable quantities: Rudary et al [8] proved that the PL®@risally equivalent to the latent-variable
approach in linear dynamical systems. In fact, because dhengeters are grounded, statistically
consistent parameter estimators are available for PLGs.

Thus, as part of capturing state in a dynamical system in athod,p(F#™|h,) must be estimated.
This is a density estimation problem. In systems with riclsesbations (say, camera images),
p(F™|h:) may have high dimensionality. As in all high-dimensionahsiéy estimation problems,
structure must be exploited. It is therefore natural to eatro the large body of recent research
dealing with high-dimensional density estimation, andantigular, graphical models.

In this paper, we introduce tHexponential Family PSREFPSR) which assumes thatf™|h,) is

a standard exponential family distribution. By selectihg sufficient statistics of the distribution

carefully, we can impose graphical structurepdf™ |h;), and therefore make explicit connections to
graphical models, maximum entropy modeling, and Boltznmraachines. The EFPSR inherits both
the advantages and disadvantages of graphical exponfamtidy models: inference and parameter
learning in the model is generally hard, but all existingesgsh on exponential family distributions

is applicable (in particular, work on approximate inferenc

Selecting the form of(F" |h;) and estimating its parameters to capture state is only htileqrob-

lem. We must also model the dynamical component, which dexcthe way that the parameters
vary over time (that is, how the parameter®0f™|h;) andp(F"|h:+1) are related). We describe a
method called “extend-and-condition,” which generalimemy state update mechanisms in PSRs.

Importantly, the EFPSR has no hidden variables, but cdrcapiture state, which sets it apart from
other graphical models of sequential data. It is not diyectimparable to latent-variable models
such as HMMs, CRFs [3], or Maximum-entropy Markov Models (MEs) [5], for example. In
particular, EM-based procedures used in the latent-Variaodels for parameter learning are un-
necessary, and indeed, impossible. This is a consequetitefafct that the model is fully observed:
all statistics of interest are directly related to obselajuantities.

We refer the reader to [11] for an extended version of thispap

2 TheExponential Family PSR

We now present the Exponential Family PSR (EFPSR) modeln€kesections discuss the specifics
of the central parts of the model: the state representadimhhow we maintain that state.

2.1 Standard Exponential Family Distributions

We first discuss exponential family distributions, which uwse because of their close connections
to maximum entropy modeling and graphical models. We réferéader to Jaynes [2] for detailed
justification, but briefly, he states that the maximum entrdjstribution “agrees with everything
that is known, but carefully avoids assuming anything teaiat known,” which “is the fundamental
property which justifies its use for inference.” The staadexponential family distribution is the
form of the maximum entropy distribution under certain dosists.

For a random variabl&, a standard exponential family distribution has the faiiX = z;s) =
exp{s? ¢(x) — Z(s)}, wheres is the canonical (or natural) vector of parametersafad is a vector

of features of variable:. The vectorg(x) also forms the sufficient statistics of the distribution.
The termZ(s) is known as the log-partition function, and is a normalizomgpstant which ensures
thatp(X; s) defines a valid distributionZ (s) = log [exp{s” ¢(z)}dz. By carefully selecting the
featuresp(x), graphical structure may be imposed on the distribution.

2.2 State Representation and Dynamics

State. The EFPSR defines state as the parameters of an exponantig} distribution modeling
p(F™|h:). To emphasize that these parameters represent state, weferilto them as;:

p(F™ = ["|h;s:) = exp {s] o(f™) —log Z(s1)} , 1)
with both{ ¢(f™), s; } € R*!. We emphasize that changes with history, but(f™) does not.

Maintaining State. In addition to selecting the form @f F"|h;), there is a dynamical component:
given the parameters pf £ |h,), how can we incorporate a new observation to find the paramete
of p(F™|h, 0¢.+1)? Our strategy is textend and conditigras we now explain.

Extend. We assume that we have the parametens(éf*|h;), denoteds;. We extendthe distribu-
tion of F"|h, to includeO,,, +1, Which forms a new variabl&”*!|h,, and we assume it has the
distributionp(F™, Oy n11|ht) = p(F™*|h;). This is a temporary distribution witn + 1)d ran-
dom variables. In order to add the new variable ,, .1, we must add new features which describe
Ot n+1 and its relationship td™. We capture this with a new feature vectpf (f"+1) € RF*1,
and define the vector; € R**! to be the parameters associated with this feature vectothuge
have the following form for the extended distribution:

p(F"'H _ f"+1|ht;8j) — exp {Sg-‘r¢+(fn+) — log Z(s?‘)} .

To define the dynamics, we define a function which maps thenustate vector to the parameters
of the extended distribution. We call this tegtension functians,” = extend(s;; #), whered is a
vector of parameters controlling the extension functiord(aence, the overall dynamics).

The extension function helps govern the kinds of dynamiasttie model can capture. For example,
in the PLG family of work, a linear extension allows the moetapture linear dynamics [8], while
a non-linear extension allows the model to capture norafilgnamics [11].

Condition. Once we have extended the distribution to modekthe 1'st observation in the future,
we then condition on thactual observatiorv; 1, which results in the parameters of a distribution
over observations from+ 1 throught + n + 1: s;41 = condition(s;", 0,11), which are precisely
the statistics representingF"|h;11), which is our state at time+ 1.

By extending and conditioning, we can maintain state foitiily long periods. Furthermore, for
many choices of features and extension function, the dvext¢nd-and-condition operation does
not involve any inference, mean that tracking state is cdatfmnally efficient.

There is only one restriction on the extension function: westhensure that after extending and con-
ditioning the distribution, the resulting distributionrche expressed ag(F™ = f"|hit1; St+1) =
exp{s;,10(f™) — log Z(s+1)}. This looks like exactly like Eq. 1, which is the point: theafe
ture vectorp did not change between timesteps, which means the form afistrbution does not
change. For example, if ' |h;) is a Gaussian, them(F™|h.1) will also be a Gaussian.

2.3 Representational Capacity

The EFPSR model is quite general. It has been shown that agmohpopular models can be unified
under the umbrella of the general EFPSR: for example, evBR an be represented as an EFPSR
(implying that every POMDP, MDP, ank-th order Markov model can also be represented as an
EFPSR); and every linear dynamical system (Kalman filted)some nonlinear dynamical systems
can also be represented by an EFPSR. These different modalbtained with different choices of
the featureg and the extension function, and are possible because mawgpaistributions (such

as multinomials and Gaussians) are exponential familyildigtons [11].

3 Thelinear-Linear EFPSR

We now choose specific features and extension function tergean example model designed to
be analytically tractable. We select a linear extensiorction, and we carefully choose features
so that conditioning is always a linear operation. We restiie model to domains in which the

observations are vectors of binary random variables. Tadtrss named the Linear-Linear EFPSR.

Features. Recall that the features() and¢™ () do not depend on time. This is equivalent to saying
that the form of the distribution does not vary over time.hi features impose graphical structure
on the distribution, it is also equivalent to saying that ilen of the graph does not change over
time. Because of this, we will now discuss how we can use ahgrdwse form is independent of
time to help define structure on our distributions.

We construct the feature vectasg) and¢™ () as follows. Let eactd, € {0, 1}4; therefore, each

F"|hy € {0,1}". Let (F™)" be thei'th random variable inF"|h;. We assume that we have an
undirected graplt which we will use to create the features in the vecat¢y, and that we have
another grapltz* which we will use to define the features in the vector(). DefineG = (V, E)

whereV = {1,...,nd} are the nodes in the graph (one for edchlh,"), and(i,j) € E are the

=4

2 O

6 N

2 .

c = SN0

S — —

kS

c o

7 O O O O
(2] 3

Qo

© t+1 t+2 t+n t+1 t+2 t+n tHn+l t+1 t+2 t+n t+n+l
Distribution of next n observations Extended distribution Conditioned distribution

p(F"[hy) P(F™, Onsi|he) P(E™|he, 0441)

Figure 1: An illustration of extending and conditioning ttlistribution.

edges. Similarly, we defin6+ = (V+, E+) whereV+ = {1,..., (n + 1)d} are the nodes in the
graph (one for eactF"+1|h;)"), and(i, j) € E+ are the edges. Neither graph depends on time.

To use the graph to define our distribution, we will let ergtiie$ be conjunctions of atomic obser-
vation variables (like the standard Ising model): fex V/, there will be some featurein the vector
such thatp(f;)* = fi. We also create one feature for each edgéi,if) € E, then there will be

some featuré in the vector such that(f;)* = f;ff Similarly, we useG™ to definep™ ().

As discussed previously, neith@mor G (equivalentlyg andg™) can be arbitrary. We must ensure
that after conditioning>*, we recovel’. To accomplish this, we ensure that both temporally shifted
copies and conditioned versions of each feature exist igtaghs (seen pictorially in Fig. 1).

Because all features are either atomic variables or cotipmscof variables, conditioning the dis-
tribution can be done with an operation which is linear in skege (this is true even if the random
variables are discrete or real-valued). We therefore défi@éinear conditioning operat@r(o;1)

to be a matrix which transforms™ into s, 1: ;11 = G(0;11)s;. See [11] for details.

Linear extension. In general, the functioaxtend can take any form. We choose a linear extension:
3?_ = ASt + B

whereA € R¥*! andB € R**! are our model parameters. The combination of a linear eixtens
and a linear conditioning operator can be rolled togethir @nsingle operation. Without loss of
generality, we can permute the indices in our state vectoh flats;; = G(ory1) (Ast + B).
Note that although this is linear in the state, it is nonlimieahe observation.

4 Modd Learning

We have defined our concept of state, as well as our methodhfikihg that state. We now address
the question of learning the model from data. There are twagthwhich can be learned in our
model: the structure of the graph, and the parameters goggtime state update. We briefly address
each in the next two subsections. We assume we are given erssgofl’ observationsjo; - - - or],
which we stack to create a sequence of samples fromf'the,’s: fi|hy = [0141 « + - 04|

4.1 StructureLearning

To learn the graph structure, we make the approximationradrigg the dynamical component of
the model. That is, we treat ea¢gh as an observation, and try to estimate the density of the re-
sulting unordered set, ignoring thsubscripts (we appeal to density estimation because many/ go
algorithms have been developed for structure inductiord thgrefore ignore temporal relationships
acrosssamples, but we preserve temporal relationshiisin samples. For example, if observation

a is always followed by observatidn this fact will be captured within thé,’s.

The problem therefore becomes one of inducing graphicattsire for a non-sequential data set,
which is a problem that has already received considerat#atain. In all of our experiments, we
used the method of Della Pietra et. al [7]. Their method fieely evaluates a set of candidate
features and adds the one with highest expected gain inkelijslbood. To enforce the temporal

invariance property, whenever we add a feature, we also ladfitae temporally shifted copies of
that feature, as well as the conditioned versions of thatifea

4.2 Maximum Likelihood Parameter Estimation

With the structure of the graph in place, we are left to leampgarameterd and B of the state ex-
tension. It is now useful that our state is defined in termshsiovable quantities, for two reasons:
first, because everything in our model is observed, EM-giydeedures for estimating the parame-
ters of our model are not needed, simply because there araeafiserved variables over which to
take expectations. Second, when trying to learn a sequdrstates §,’s) given a long trajectory

of futures (f;'s), eachf; is a sample of information directly from the distribution 'meetrying to
model. Given a parameter estimate, an initial stgtend a sequence of observations, the sequence
of s;’s is completely determined. This will be a key element to proposed maximume-likelihood
learning algorithm.

Although the sequence of state vecteysare the parameters defining the distributigg™|h,),
they arenot the model parameters — that is, we cannot freely select thestead, the model pa-
rameters are the parametéra/hich govern the extension function. This is a significaffedence
from standard maximum entropy models, and stems from theHatour overall problem is that of
modeling a dynamical system, rather than just density editdm.

The likelihood of the training data i%(01, 02...01) = Hthlp(ot|ht). We will find it more conve-

nient to measure the likelihood of the correspondfiag: p(o1, 02...0r) =~ nHthlp(ft|ht) (the
likelihoods are not the same because the likelihood offtlsecounts a single observatiantimes;
the approximate equality is because the firsind last, are counted fewer thamtimes).

The expected log-likelihood of the traininfy's under the model defined in Eq. 1 is
T
1
LL= (Z —s{ ¢(fe) — log Z(st)> @)
t=1

Our goal is to maximize this quantity. Any optimization metdhcan be used to maximize the log-
likelihood. Two popular choices are gradient ascent angigfhlawton methods, such as (L-)BFGS.
We use both, for different problems (as discussed laterjvéver, both methods require the gradient
of the likelihood with respect to the parameters, which wikmaw compute.

Using the chain rule of derivatives, we can compute the dévieg with respect to the parametets
OLL ~~OLLT Ds,

9A ~ £~ s, 0A)
First, we compute the derivative of the log-likelihood wigspect to each state:
OLL 0
sy = 8_(% [_Sjﬁb(ft) — log Z(St)] = Es, [¢(Fn|ht)] —o(fr) =0, (4)

whereE,, [¢(F"|h;)] € R*! is the vector of expected sufficient statistics at timeComputing
this is a standard inference problem in exponential famibdets, as discussed in Section 5. This
gradient tells us that we wish to adjust each state to makexpected features of the nextob-
servations closer to the observed features however, weotadjusts; directly; instead, we must
adjust it implicitly by adjusting the transition parameter and B.

We now compute the gradients of the state with respect to paemeter:

Js 0 0si_
a_fi = 571G (0r41) (Asi1 + B) = G(or1) <Aﬁf +5,® 1) .
where® is the Kronecker product, andis an identity matrix the same size 4s The gradients of
the state with respect tB are given by
ds 0 08—
8—Bt = 8_BG(Ot+1) (Ast_l + B) = G(OH—I) <A atBl + I)
These gradients are temporally recursive — they implictypend on gradients from all previous
timesteps. It might seem prohibitive to compute them: mastlgorithm examine all past - - - ;1
data points to compute the gradient at titReFortunately, the answer is no: the necessary statistics
can be computed in a recursive fashion as the algorithm vilatksigh the data.

—— Training LL|

- = =Testing LL —2.07 p 1- q
8 |/ True LL i /p\(
= « Naive LL G
©
=
T 1-q
8’ v
—
0 10 20 O 10 20 0 10 20
Iterations of optimization
(a) (b)

Figure 2: Results on two-state POMDPs. The right shows thergemodel used. By varying the
transition and observation probabilities, three diffele@MDPs were generated. The left shows
learning performance on the three models. Likelihoods &wvenpredictions are shown as a dotted
line near the bottom; likelihoods for optimal predictioms ahown as a dash-dot line near the top.

of #of | #of Naive | True || Training set Test set
Problem || states| obs. | actions| LL LL LL [% LL [%
Paint 16 2 4 6.24 | 466 || 467 99.7 | 4.66] 99.9
Network || 7 2 4 6.24 | 449 || 450 | 995 | 452 | 98.0
Tiger 2 2 3 6.24 | 523 || 5.24 | 924 | 5.25| 86.0

Figure 3: Results on standard POMDPs. See text for exptanati

5 Inference

In order to compute the gradients needed for model learrtimg,expected sufficient statistics
E[¢(F™|h)] at each timestep must be computed (see Eqg. 4):

E [p(F"|hy)] = / S(fp(E" he)dfs = VZ(s).

This quantity, also known as ttmean parameterss of central interest in standard exponential fam-
ilies, and has several interesting properties. For examapleh possible set of canonical parameters
s induces one set of mean parameters; assuming that thedeair linearly independent, each set
of valid mean parameters is uniquely determined by one seradnical parameters [9].

Computing these marginals is an inference problem. Thiggsated” times (the number of sam-

ples) in order to get one gradient, which is then used in agraygtimization loop; because inference
must be repeatedly performed in our model, computatiorimiexficy is a more stringent require-

ment than accuracy. In terms of inference, our model inhetlit of the properties of graphical

models, for better and for worse. Exact inference in our rhidgenerally intractable, except in

the case of fully factorized or tree-structured graphs. kl@y, many approximate algorithms ex-
ist: there are variational methods such as naive mean-frelekreweighted belief propagation, and
log-determinant relaxations [10]; other methods incluééB-Kikuchi approximations, expectation
propagation, (loopy) belief propagation, MCMC methods] eontrastive divergence [1].

6 Experimentsand Results

Two sets of experiments were conducted to evaluate thetgoéthur model and learning algorithm.
The first set tested whether the model could capture exaet gigen the correct features and exact
inference. We evaluated the learned model using exaceinéerto compute the exact likelihood of
the data, and compared to the true likelihood. The secongsteid larger models, for which exact
inference is not possible. For the second set, bounds carobieled for the likelihoods, but may be
so loose as to be uninformative. How can we assess the qoéliftye final model? One objective
gauge is control performance: if the model has a reward kiggiaforcement learning can be used
to determine an optimal policy. Evaluating the reward agiebecomes an objective measure of
model quality, even though approximate likelihood is tregténg signal.

0.2

= . —— EFPSRIVMF | 2
£ 015 / - - —EFPSRILBP | 3
% 01— == EFPSRILDR | 3
g / POMDP g
o 0.05 g
> . >
S Reactive <
o 2 3 4 5 6 | Random
Steps of optimization Steps of optimization

Figure 4: Results on Cheesemaze (left) and Maze 4x3 (rightJifferent inference methods.

First set. We tested on three two-state problems, as well as thred, steaidard POMDPs. For
each problem, training and test sets were generated (usinifcaimly random policy for controlled
systems). We used 10,000 samplespset3 and used structure learning as explained in Section 4.1.
We used exact inference to compute Hie(F"|h;)] term needed for the gradients. We optimized
the likelihood using BFGS. For each dataset, we computetbtiékelihood of the data under the
true model, as well as the log-likelihood of a “naive” modehich assigns uniform probability

to every possible observation. We then learned the best Inpodsible, and compared the final
log-likelihood under the learned and true models.

Figure 2 (a) shows results for three two-state POMDPs witlatyi observations. The left panel of

Fig. 2 (a) shows results for a two-state MDP. The likelihobthe learned model closely approaches
the likelihood of the true model (although it does not quiach it; this is because the model
has trouble modeling deterministic observations, bectheseights in the exponential need to be
infinitely large [or small] to generate a probability of ore gero]). The middle panel shows results
for a moderately noisy POMDP; again, the learned model i®sirperfect. The third panel shows

results for a very noisy POMDP, in which the naive and true htesvery close; this indicates that

prediction is difficult, even with a perfect model.

Figure 3 shows results for three standard POMDPs, named, Rétwork and Tiger. The ta-
ble conveys similar information to the graphs: naive aneé tng-likelihoods, as well as the log-
likelihood of the learned models (on both training and tets)s To help interpret the results, we
also report a percentage (highlighted in bold), which iaths the amount of the likelihood gap (be-
tween the naive and true models) that was captured by thedéanodel. Higher is better; again we
see that the learned models are quite accurate, and gepexall.

Second set. We also tested on a two more complicated POMDPs called Chegseand Maze
4x3t. For both problems, exact inference is intractable, andesosed approximate inference. We
experimented with loopy belief propagation (LBP) [12],veimean field (or variational mean field,
VMF), and log-determinant relaxations (LDR) [10]. Since #MF and LDR bounds on the log-
likelihood were so loose (and LBP provides no bound), it vsasdssible to assess our model by an
appeal to likelihood. Instead, we opted to evaluate the sdziesed on control performance.

We used the Natural Actor Critic (or NAC) algorithm [6] to tesur model (see [11] for further
experiments). The NAC algorithm requires two things: a Iststic, parameterized policy which
operates as a function of state, and the gradients of therlagppility of that policy. We used a
softmax function of a linear projection of the state: thehadaility of taking actionz; from states;
given the policy parametersis: p(a;; s¢,0) = exp {s/ 6;} / Z‘j“ill exp {s{ 0;}. The parameters
0 are to be determined. For comparison, we also ran the NAptawith the POMDP belief
state: we used the same stochastic policy and the samemfsadiat we used the belief state of the
true POMDP in place of the EFPSR’s statg)(We also tested NAC with the first-order Markov
assumption (or reactive policy) and a totally random policy

Results. Figure 4 shows the results for Cheesemaze. The left paneksthe best control perfor-
mance obtained (average reward per timestep) as a fundtseps of optimization. The “POMDP”
line shows the best reward obtained using the true beliéd stg computed under the true model,
the “Random” line shows the reward obtained with a randontpahnd the “Reactive” line shows
the best reward obtained by using the observation as inghetblAC algorithm. The lines “VMF,"
“LBP,” and “LDR” correspond to the different inference metfs.

'From Tony Cassandra’s POMDP repository at http://www.cs.browrresearch/ai/pomdp/index.html

The EFPSR models all start out with performance equivatettitet random policy (average reward of
0.01), and quickly hop to of 0.176. This is close to the averagvard of using the true POMDP state
at 0.187. The EFPSR policy closes about 94% of the gap betaveandom policy and the policy
obtained with the true model. Surprisingly, only a few itamas of optimization were necessary to
generate a usable state representation. Similar resuttdrahe Maze 4x3 domain, although the
improvement over the first order Markov model is not as strahg EFPSR closes about 77.8% of
the gap between a random policy and the optimal policy. Welcole that the EFPSR has learned
a model which successfully incorporates information frdstdry into the state representation, and
that it is this information which the NAC algorithm uses tdaih better-than-reactive performance.
This implies that the model and learning algorithm are usefien with approximate inference
methods, and even in cases where we cannot compare to thdiksditrood.

7 Conclusions

We have presented the Exponential Family PSR, a new modemntfatled, stochastic dynamical
systems which provably unifies other models with predityidefined state. We have also discussed
a specific member of the EFPSR family, the Linear-Linear BERHBd a maximum likelihood learn-
ing algorithm. We were able to learn almost perfect modekeoéral small POMDP systems, both
from a likelihood perspective and from a control perspectifhe biggest drawback is computa-
tional: the repeated inference calls make the learningga®weery slow. Improving the learning
algorithm is an important direction for future research. Wklow, the learning algorithm generates
models which can be accurate in terms of likelihood and useterms of control performance.

Acknowledgments

David Wingate was supported under a National Science Fdiwmd@raduate Research Fellowship.
Satinder Singh was supported by NSF grant 11S-0413004. Aviryians, findings, and conclusions
or recommendations expressed in this material are tho$e @futhors and do not necessarily reflect
the views of the NSF.

References
[1] G. E. Hinton. Training products of experts by minimizing contrastiedjence.Neural Computation
14(8):1771-1800, 2002.

[2] E. T.Jaynes. Notes on present status and future prospects.Gnandy and L. Schick, editorsjaximum
Entropy and Bayesian Methodsages 1-13, 1991.

[3] J. Lafferty, A. McCallum, and F. Pereira. Conditional random eldrobabilistic models for segmenting
and labeling sequence data.liternational Conference on Machine Learning (ICMRPO1.

[4] M. L. Littman, R. S. Sutton, and S. Singh. Predictive representatidrssate. InNeural Information
Processing Systems (NIRBages 1555-1561, 2002.

[5] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markovdels for information extraction
and segmentation. limternational Conference on Machine Learning (ICMpages 591-598, 2000.

[6] J. Peters, S. Vijayakumar, and S. Schaal. Natural amitic. In European Conference on Machine
Learning (ECML) pages 280-291, 2005.

[7] S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing featuresasfdom fields. IEEE Transactions on
Pattern Analysis and Machine Intelligende(4):380-393, 1997.

[8] M. Rudary, S. Singh, and D. Wingate. Predictive linear-Gaussiaaats of stochastic dynamical systems.
In Uncertainty in Artificial Intelligence (UAl)pages 501-508, 2005.

[9] M. J. Wainwright and M. I. Jordan. Graphical models, exponéfiimilies, and variational inference.
Technical Report 649, UC Berkeley, 2003.

[10] M. J. Wainwright and M. I. Jordan. Log-determinant relaxation d&pproximate inference in discrete
Markov random fieldsIEEE Transactions on Signal Processjigl(6):2099—-2109, 2006.

[11] D. Wingate.Exponential Family Predictive Representations of StBteD thesis, University of Michigan,
2008.

[12] J. S. Yedida, W. T. Freeman, and Y. Weiss. Understanding bel@dagation and its generalizations.
Technical Report TR-2001-22, Mitsubishi Electric Research Labdes, 2001.

