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ABSTRACT

Factored models of multiagent systems address the complex-
ity of joint behavior by exploiting locality in agent interac-
tions. History-dependent graphical multiagent models (hG-
MDMs) further capture dynamics by conditioning behavior
on history. We propose a greedy algorithm for learning hG-
MDMs from time-series data, inducing both graphical struc-
ture and parameters. To evaluate this learning method, we
employ human-subject experiment data for a dynamic con-
sensus scenario, where agents on a network attempt to reach
a unanimous vote. We empirically show that the learned
hGMNMs directly expressing joint behavior outperform alter-
natives in predicting dynamic voting behavior. Analysis of
learned graphs reveals patterns of interdependence relations
not directly reflected in the original experiment networks.

1. INTRODUCTION

Modeling dynamic behavior of multiple agents presents in-
herent scaling problems due to the exponential size of any
enumerated representation of joint activity. Even if agents
make decisions independently, conditioning actions on each
other’s prior decisions or on commonly observed history in-
duces interdependencies over time. To address this complex-
ity problem, researchers have exploited the localized effects
of agent decisions by employing graphical models of multia-
gent behavior. This approach has produced several (related)
graphical representations capturing various facets of mul-
tiagent interaction [Koller and Milch, 2003, Kearns et al.,
2001, Jiang et al., 2008, Gal and Pfeffer, 2008, Duong et al.,
2008]. The history-dependent graphical multiagent models
(hGMMs) of [Duong et al., 2010] express multiagent behav-
ior on an undirected graph, and capture dynamic relations
by conditioning action on history. The authors showed that
for a fixed graph structure and history representation, the
expressive power to specify local joint behavior provided ad-
vantages over models that assume conditional independence
given history.

It is not always given or apparent how to organize agents
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on a sufficiently sparse graph for tractable modeling. Infor-
mation the modeler may have about the agents’ experiment
network is not definitive, as the graphical structure of the op-
timal predictive multiagent model of behavior does not nec-
essarily correspond to the experiment network. Moreover,
these networks may be too complex for practical computa-
tion without imposing strong independence assumptions on
behavior. We thus consider inducing the graphical structure
a necessary part of the modeling effort.

We motivate and empirically evaluate our learning tech-
nique with the dynamic consensus experiments conducted
by Kearns et al. [2009]. The human subjects in these ex-
periments were arranged on a network, specifying for each
subject (also called player, or agent) the set of other players
whose voting decisions he or she can observe. The experi-
ment network for this voting scenario provides a basis for ex-
pecting that joint agent behavior may exhibit some locality
that we can exploit in a graphical model for prediction. How-
ever, the graph structure of the optimal predictive model,
as noted above, need not mirror the experiment network of
the voting scenario, and moreover, the complex experiment
network instances we study render computation on the cor-
responding hGMMs intractable. Unlike previous models of
this domain, we aim to capture dynamic voting behavior,
with no particular focus on the final voting outcome.

In this study, we propose a greedy algorithm for learning
the graphical structure and parameters of an hGMM that
can effectively and compactly capture joint dynamic behav-
ior. Moreover, we empirically investigate the learned mod-
els” predictions of voting behavior and compare their per-
formance with those of different baseline multiagent mod-
els, and demonstrate that models expressing joint behav-
ior outperform the alternatives in predicting voting behav-
ior. We further examine the learned hGMM graphical struc-
tures in order to gain better insights and understanding of
voting behavior dynamics on networks, as well as the net-
work structure’s effect on collective actions. We are par-
ticularly interested in examining connections between nodes
of different characteristics in the hGMM induced graphical
structures. For example, our analysis compares the average
number of edges between more and less densely connected
nodes in the learned hGMM graphs and their corresponding
original experiment networks. We further start a discussion
on the challenges and potential solutions of predicting final
outcomes of the aforementioned dynamic consensus experi-
ments.



Figure 1: An example hGMM over three time periods. Undirected edges capture the correlation among
agents at the present time. Directed edges model the conditioning of an agent’s action on others’ past
actions. Only directed edges pertinent to agent 1 are shown in details: agent 1’s current action is conditioned
on its neighbors’ actions in the previous two time periods.

We provide background information on hGMMs and the dy-
namic consensus experiments in Sections 2 and 3, respec-
tively. We then present a variety of candidate model forms
in Section 4. Section 5 provides motivations and details of
our greedy model learning algorithm that simultaneously es-
timates a model’s parameters and constructs its interaction
graph. Our empirical study in Section 6 compares differ-
ent models across three experiment settings, examines the
learned graph structures against the original experiment net-
works, and discusses the problems and potential solutions of
predicting these experiments’ end state results. We offer
concluding remarks and suggest potential extensions in Sec-
tion 7.

2. HISTORY-DEPENDENT GRAPHICAL MUL-

TIAGENT MODELS
We model behavior of n agents over a time interval divided
into discrete periods, [0,...,7]. At time period ¢, agent

i €{l,...,n} chooses an action a! from its action domain,
A;, according to its strategy, ;. Agents can observe others’
and their own past actions, as captured in history H, up
to time ¢t. Limited memory capacity or other computational
constraints restrict an agent to focus attention on a subset
of history H} considered in its probabilistic choice of next
action: a} ~ o;(HY).

A history-dependent graphical multiagent model (hGMM)
[Duong et al., 2010], hG = (V, E, A, 7), is a graphical model
with graph elements V', a set of vertices representing the
n agents, and F, edges capturing pairwise interactions be-
tween them. Component A = (As,..., A,) represents the
action domains, and # = (m1,...,m,) potential functions
for each agent. The graph defines a neighborhood for each
agent - N; = {j | ({,7) € E} U {i}, including ¢ and its
neighbors N_; = N; \ {i}.

The hGMM captures agent interactions in dynamic scenar-
ios by conditioning joint agent behavior on an abstracted
history of actions H®. The history available to agent i,
H}fvi, is the subset of H' pertaining to agents in N;. Each

agent i is associated with a potential function m;(aly, | Hy,):
[Lien, 4 — R™. The potential of a local action configu-
ration specifies its likelihood of being included in the global
outcome, conditional on history. Specifically, the joint distri-
bution of the system’s actions taken at time t is the product
of neighbor potentials [Daskalakis and Papadimitriou, 2006,
Duong et al., 2010, Kakade et al., 2003]:

Hi Wi(ag\fi | H}VI)

Pr(d' | H") = 7 . (1)

The complexity of computing the normalization factor Z
in (1) is exponential in the number of agents, and thus pre-
cludes exact inference and learning in large models. Duong
et al. [2010] address this problem by approximating Z us-
ing the belief propagation method [Broadway et al., 2000],
which has shown good results with reasonable time in sparse
cyclic graphical structures. In particular, we adopt the pack-
age libDAI [Mooij, 2010] for approximating Z in our hGMM
implementation.

We stress that there are two different types of edges in an
hGMM, as depicted in Figure 1. Each node i’s undirected
edges define its neighborhood N;* of the present time’s con-
figuration aﬁvw and thus model the correlations among their
actions. The directed edges ending at i originate from nodes
whose actions in the past influence how i chooses its ac-
tion in the present, and consequently form i’s other neigh-
borhood N{. These two different neighborhood definitions
lead to a more generalized form of the potential function
m(sf\,r | s?v_dl). For simplicity, this paper assumes that N;*,

N¢ and N; are the same for all i, and employ the potential
function form 7; (s, | 33\;1)

3. DYNAMIC CONSENSUS EXPERIMENTS

We evaluate our approach with human-subject data from the
dynamic consensus game introduced and studied by Kearns
et al. [2009]. Each agent in this game chooses to vote either
blue (0) or red (1), and can change votes at any time. Agents
are connected in a network, where each can observe its neigh-



bors’ votes. The scenario terminates when: (i) agents con-
verge on action a € {0,1}, in which case agent 7 receives
reward r;(a) > 0, or (ii) they cannot agree by the time limit
T, in which case rewards are zero. Figure 2 illustrates the
dynamic behavior of an example voting experiment network.

Agents may have different preferences for the available vote
options, reflected in their reward functions. As nobody gets
any reward without a unanimous vote, agents have to bal-
ance effort to promote their own preferred outcomes against
the common goal to reach consensus. Another important
feature of the dynamic consensus game is that agent ¢ knows
the votes of only its neighbors, and its own local graph struc-
ture, including its neighbors N;, the degree of each neighbor
k € N;, and edges between its neighbors. This raises the
question of how agents take into account their neighbors’
voting patterns and their partial knowledge of experiment
network structure.

Kearns et al. [2009] conducted a series of human-subject ex-
periments studying how human agents behave in 81 different
instances of the voting game. They varied reward preference
assignments and experiment network structure in these ex-
periment instances, and thus were able to collect data about
these factors’ effects on the consensus voting results, as well
as the agent strategies employed. Figure 2 exhibits a run for
the experimental network labeled power22, discussed below.
Study goals included developing models to predict a given
scenario’s voting outcome, and if a consensus is reached, its
convergence time. This problem also served as the founda-
tion for analysis of adaptive strategies and theoretical con-
straints on convergence [Kearns and Tan, 2008]. In partic-
ular, they were interested in developing models that would
predict whether a given scenario would be likely to converge
to consensus, and if so, how fast and on which outcome. Ex-
ploring the problem also led this group to analyze a family
of adaptive strategies, and establish the impossibility of con-
verging to the preferred outcome in the worst case [Kearns
and Tan, 2008].

4. MODELING DYNAMIC VOTING BEHAV-
IOR

We present four multiagent behavior model forms designed
to capture voting behavior dynamics in the dynamic con-
sensus experiments. All are expressible as hGMMs. Only
the first, however exploits the flexibility of hGMMs to ex-
press dependence of actions within a neighborhood given
history (1), hence we refer to this as the joint behavior model
(JBM).

The other three forms model agent behaviors individually:
for each agent we specify a probabilistic strategy o;(H}) =
Pr(a! | H}). Such a formulation captures agent interactions
by the conditioning of individual behavior on observed his-
tory. The agents’ actions are probabilistically dependent,
but conditionally independent given this common history,
yielding the joint distribution

Pr(a | H') = [ ou(H)): (2)
We refer to a dynamic multiagent model expressible by (2)

as an indwidual behavior hGMM (IBMM). Conditional in-
dependence given history is a compelling assumption for au-

tonomous agents. Indeed, independent choice may even be
considered definitional for autonomy. In practice, however,
it is often infeasible to specify the entire history for condi-
tioning due to finite memory and computational power, and
the assumption may not hold with respect to partial his-
tory. History abstraction will generally introduce correla-
tions between agents actions, even if they are independently
generated on full history [Duong et al., 2010]. Nevertheless,
assuming conditional independence between agents’ actions
given history exponentially reduces the model’s complexity,
or more specifically, the computational complexity of the
joint probability distribution of the system’s actions.

The first of three IBMMs we present is designed as an inde-
pendent behavior version of JBM; thus, we call it simply the
individual behavior model (IBM). The remaining two mod-
els are based on proposals and observations from the original
experimental analysis [Kearns et al., 2009], and are labeled
proportional response model (PRM) and sticky proportional
response model (sSPRM), respectively.

4.1 JOINT BEHAVIOR MODEL

First, we consider how to summarize a history H f\,l of length
h relevant to agent i. Let indicator I(a;,ax) = 1 if a; = ax
and 0 otherwise, and I(a’} ,a%2) = 1iff I(a}},al?) =1 for
all k € Nx. We encode the historical frequency of a local
configuration an; as

S I(an,, dR,)
- .

However, this encoding only counts exact matches of an;
in history Hpy,, and thus heavily biases against local con-
figurations that have not happened in the past, effectively
hindering a neighborhood of agents with different vote pref-
erences from reach consensus. We introduce an alternative
frequency function that captures how close a local configu-
ration to past configurations:

e(aN”H}fVi) =

S, 05 e D)
h 3

where the exponent 3, _n 1 — I(ax, ag) basically counts the
number of pair-wise mismatches between an, and aj, and
the discount factor is fixed as 0.5. To simplify exposition, we
henceforth drop the time superscript ¢ and the neighborhood
subscript N; from Hjt\,i

flan,, Hy,) =

In formulating JBM’s potential function, we attempt to cap-
ture the impact of past collective choices of i’s neighborhood,
and i’s relative preference for each action. As subjects in the
lab experiments were able to keep track of how much time
they have left before having to reach a consensus, we also
would like to capture the time effect on agents’ reasoning in
the potential function. We define r;(an,) as the product of
time-discounted 7(a;) and a heuristic attenuation based on
how many neighbors currently vote differently:

) T—t
ri(an,) = aZkeNi(lff(au%))r(ai) B

where o € [0,1] and 8 > 0. Observe that r;(an;) as we

define it is increasing in the number of iOs neighbors playing

a;, reflecting the positive influence of neighbor choices on 1.

The potential function for agent i is given by

mi(an, | H) = ri(an;) f(an,, H)", (3)



Figure 2: Time snapshots of an experiment run where the densely connected minority group (red) exerts

strong influences on others’ votes [Kearns et al., 2009].

where v > 0 denotes the weight or importance of the his-
torical frequency f(an;,, H) relative to the estimated reward
ri(an,;). The normalized product of these potentials speci-
fies joint behavior as described in (1). The model maintains
three parameters «, 8 and +.

4.2 INDIVIDUAL BEHAVIOR MODEL

The IBM of the dynamic consensus experiments retains the
main elements of JBM (3) with a similar parameter set
{a, 8,7}, while imposing conditional independence among
agents’ actions given the common history. Let us define
f(ai, Hy,) as the frequency of action a; being chosen by
other agents in H}Vi, capturing the degree to which a; is
similar to past choices by i’s neighbors in Hy,.

Flas, HY ) D keN,— (i} Sy n I(ai,af) +1 )
i, HN,) = -

hINi \ {i}|
We add one to the numerator to ensure that the correspond-
ing term does not vanish when the configuration a; does not
appear in H]t\,L The probabilistic IBM strategy is then given
by:

1 at+tI=tp
Pr(a; | H) = 71",-((11-) T 7 f(a;, H)7. (5)
Z; is the normalization factor over all a; € A; (this normal-
ization sums only over the actions of a single agent and is,
therefore, easy to compute).

4.3 PROPORTIONAL RESPONSE MODEL

We also include in our study the proportional response model,
PRM, suggested by Kearns et al. [2009] as a reasonably ac-
curate predictor of their experiments’ final outcomes. PRM
specifies that voter i chooses action a; at time ¢t with proba-
bility proportional to r;(a;)g(as, aﬁ\,_il), where g(a;, aﬁv_il) de-
notes the number of 4’s neighbors who chose a; in the last
time period,

Pr(a; | H') ~ ri(ai)g(ai, ay,"). (6)

4.4 STICKY PROPORTIONAL RESPONSE

MODEL

PRM does not capture players’ tendency to start with their
preferred option, switching their votes only after collecting
additional information about their neighbors over several
time periods [Kearns et al., 2009]. Therefore, we introduce
the sticky proportional response model, sSPRM, which con-
tains an additional parameter p reflecting an agent’s stub-
bornness in voting its preferred option, regardless of its neigh-
bors’ past choices. Intuitively, a player’s inherent bias to-
ward its preferred option decays exponentially until there is

no bias:
Pr(al | Ht) ~ ri(af)g(ai, a?{il)(l + I;':axelftp)7 (7)

where I;;" =1 if a; = argmax;(a) and 0 otherwise.

S. LEARNING PARAMETERS AND GRAPH-
ICAL STRUCTURES
5.1 PARAMETER LEARNING

We first address the problem of learning the parameters of
an hGMM hG given the underlying graphical structure and
data in the form of a set of joint actions for m time steps,
X = (a°...,a™). For ease of exposition, let 6 denote the
set of all the parameters that define the hGMM’s potential
functions. We seek a # maximizing the log likelihood of X,

m—h
LhG(X; 9) = Z ln(Pr hg(ak+h ‘ (ak, ey ak"'h_l)); 9))

k=0

We use gradient ascent to update the parameters: 6 < 0 +

AV, where the gradient is

_ OLue(X30)

B 00

and A is the learning rate, stopping when the gradient is

below some threshold. We employ this same technique to
learn the parameters of the baseline models.

v

5.2 MODEL LEARNING

Each of the consensus voting experiments involves 36 hu-
man players. The largest neighborhood size in these games
ranges from 16 to 20, rendering computing exact data likeli-
hood for a joint behavior model of this complexity (required
for parameter learning described above) infeasible. Prelimi-
nary trials with the belief propagation approximation algo-
rithm [Broadway et al., 2000] on these models indicated that
its computational saving would still be insufficient for effec-
tive learning. Thus, we need to employ models with simpler
graphs in order to take advantage of hGMM’s expressiveness
in representing joint behavior. Toward this end, we devel-
oped a structure learning algorithm that produces graphs
for hGMMs within specified complexity constraints.

Though dictated by computational necessity, automated struc-
ture learning has additional advantages. First, we observe
that there is no inherent reason that the interaction graph
should constitute the ideal structure for a predictive graph-
ical model for agent behavior. Even though actual agent
behavior is naturally conditioned on its observable history
(as captured by the interaction graph), once we abstract the
history representation it may well turn out that non-local



historical activity provides more useful predictive informa-
tion. If so, the structure of the learned graph itself may
provide interesting insights on the agents’ networked behav-
ior.

Note that the complexity problem does not apply for IB-
MDMs, which are tractable based on their conditional inde-
pendence assumption. Nevertheless, since as GMMs their
graphical structures capture dependence unconditional on
history among agents’ actions, it may also be interesting to
employ our algorithm for learning IBMM structure.

Our learning algorithm combines greedy addition of edges
with gradient-descent parameter optimization, as described
by the following steps:
1: Start with an hGMM whose graphical structure (V, E =
() is completely disconnected.
2: Learn 0 that maximizes the training data’s likelihood
L(X;0)
3: repeat
repeat

LEu(i,j) (X7 0) 2 L(X7 0)}
6: E < E U (imax, jmax) such that (imax, jmax) =
arg Max; e L,

T until F is empty or the number of added edges is
greater than emax

8: Learn 6 that maximizes the training data’s likeli-
hood L(X;6)

9: until no edges can be added

5.3 EVALUATION

We evaluate the learned multiagent models by their abil-
ity to predict future outcomes, as represented by a test set
Y. Given two models M; and M2, we compute their cor-
responding log-likelihood measures for the test data set Y:
L, (Y) and Lag, (Y). Note that since log-likelihood is neg-
ative, we instead examine the negated log-likelihood mea-
sures, which means that M, is better than M, predicting Y
if —Lar, (Y) < —Lum,(Y), and vice versa.

6. EMPIRICAL STUDY

We empirically evaluate the predictive power of JBM in com-
parison with IBM, PRM, and sPRM, using the dynamic con-
sensus experiment data from Kearns et al. [2009]. We also
compare JBM against a naive guessing model, nM, which
initially assigns each a; a probability proportional to 7;(a;)
and linearly converges to a uniform distribution of agent ac-
tions as the game progresses. We are further interested in
examining the graphs induced by structure learning, and re-
lating them to their corresponding original game networks
using different statistical measures.

The human-subject experiments are divided into nine dif-
ferent sets, each associated with a network structure. These
structures differ qualitatively in various ways, characterized
by node degree distribution, ratio of inter-group and intra-
group edges, and the existence of a well-connected minority
[Kearns et al., 2009]. In particular, networks whose edges
are generated by a random Erdos-Renyi (ER) process [Erdos
and Renyi, 1959] has a notably more heavy-tailed degree dis-
tribution than those generates by a preferential attachment

E — {(17.7) | (7'7.7) ¢ E; |N’L|a |NJ‘ < dmax;i/(iaj) =

(PA) process [Barabdsi and Albert, 1999]. For each exper-
imental trial, human subjects were randomly assigned to
nodes in the designated network structure, and preferences
based on one of three possible incentive schemes. Since play-
ers in these experiments can change their votes at any time,
the resulting data is a stream of asynchronous vote actions.
We discretize these streams for data analysis, recording the
players’ votes at the end of each time interval of length
0 seconds. We experiment with different interval lengths
0 € {0.5,1.5} in this study.

In our study, we learn predictive models for each network
structure, pooling data across subject assignments and in-
centive schemes. This approach is based on the premise that
network structure is the main factor governing the system’s
collective behavior, in line with the findings of Kearns et al.
[2009]. In each experiment set, we use four of the nine tri-
als for training the predictive models for each form. The
hGMM graphical structures are learned with node degree
constraint dmax = 10, while the maximum degree of the in-
dividual behavior models is restricted to the greatest node
degree of the original network. We also set emax = 5. We
then evaluate these models based on their predictions over a
test set comprising the other five experimental trials. This
process is repeated five times, each of which uses a different
training trial set randomly chosen from the original trials.
Each data point in our reported experimental results aver-
ages over these five repetitions.

We reuse Kearns et al.’s labels for the three experiment net-
works studied in this analysis, listed in Table 1.

Table 1: Voting Experiment Settings

Label | Strong Minority | Graph Generator Process
coER_2 No Erdos-Renyi
coPA_2 No Preferential attachment
power22 Yes Preferential attachment

6.1 PREDICTIONS

We first examine predictions of players’ votes in each time
period conditional on available history. Figure 3 shows the
negated log-likelihood of the testing data set induced by
models JBM,IBM, PRM, sPRM, and nM. Note that the learned
graphical structures in JBM are different from the original
game experiments’ networks, upon which other models are
constructed. We observe that JBM performs significantly
better than IBM, PRM, sPRM, and nM in predicting dy-
namic agent behavior in the dynamic consensus experiments
for all three experiment sets, given data discretized with two
different interval lengths of 0.5 and 1.5 (differences signifi-
cant at p < 0.02. Contrary to the expectation that the less
historical information a model uses, the lower its predic-
tion performance, JBM and IBM that employ only the last
h = 3 periods of historical data generate better predictions
than those with h = 8. This phenomenon is likely a conse-
quence of the heuristic nature of the frequency functions in
Section 4, and moreover may indicate that human subjects
take into account only a short history of their neighbors’
actions when choosing their own present actions.

We also note that the results remain largely the same with
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Figure 3: JBM provides better predictions than IBM, PRM, sPRM, and nM in three experiment sets with two
different interval lengths 6 = 0.5 (top row) and § = 1.5 (bottom row): power22 (left), coER_2 (middle), and

coPA_2 (right).

different discretization intervals §. The large ratio between
the two examined intervals implies a significant difference in
the quantity and quality of discretized data, further high-
lighting the robustness of our learning method, as well as
our empirical prediction results. These outcomes in general
demonstrate JBM’s ability to capture joint dynamic behav-
ior, especially behavior correlations induced by limited his-
torical information, as opposed to different IBMMs and a
naive guessing model.

6.2 GRAPH ANALYSIS

Our first graph analysis focuses on the connections within
and between nodes of different degrees in the learned graphs.
We mainly focus on experiments with history length h = 3
and discretization interval § = 0.5. We partition the nodes
into four classes, based on their degrees in the original ex-
periment networks. Class 4 contains the most connected
nodes, and class 1 the least. We narrow our focus on classes
1 and 4: in particular, we examine the average number of
inter edges, which connect nodes within the same class, and
intra edges, which link nodes in different classes. Note that
intra and inter edges concern their end nodes’ degree, while
the characterization of intra-group and inter-group edges of
experiment networks is based on the end nodes’ vote pref-
erences. Let us define E/}; as the set of edges present in the
original G, but excluded in the graph M, and EJJ(/I as the set
of edges not present in G, but included in M.

We observe in Figure 4 that the distribution of edges within
and between node classes of different connectivity in JBM
diverges significantly from that in the original network for
coER_2 and power22.! The degree constraint in the learning
algorithm forces JBM to shed edges from class 4 nodes. In
fact, the learned models end up with more intra edges in

"We only include results for coER_2 and power22 in our
graph analysis session, as coPA_2’s outcomes appear similar
to those of coER_2.

®intra edges (class 1) " intra edges (class 4) ™inter edges (classes 1 and 4)
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Figure 4: Distributions of edges within and between
classes 1 and 4, for JBM and G in scenarios coER_2
and power22 (h =3 and § = 0.5).

class 1 than class 4, whereas G has more intra edges in class 4
than in class 1.

Our second analysis study examines different statistics and
properties of Ef5,, Ejgy. In particular, we find that 40%
to 60% of the edges in EJJ’BM connect nodes that share some
neighbors in G, suggesting that JBM manages to identify
nodes whose behavior correlates due to their observing com-
mon neighbors. Our investigation further focuses on bridge
edges, which connect nodes that share no common neighbors
in the original G. Let B denote the set of all bridges in G.

Further, define b, = ‘ﬁg?f‘
M

among edges eliminated during the construction of model

as the percentage of bridges

M, and b = % as the percentage of bridges in the origi-
nal G. We observe that the percentage of eliminated bridges
E g\ is consistently below the percentage of bridges over all
edges in G, as shown in Table 2, though only by small mar-
gins. This result may suggest the learning algorithm’s slight
preference in retaining bridges rather than edges of other

types.



Table 2: Percentage of bridges in the set of elimi-
nated edges by JBM and bridges in the set of all G’s
edges

| | coER_2 | power22 |

bow | 42% 30%
b 44% 31%

Table 3: JBM greatly diverges from G in terms of
assortativity.

| | coER_2 | power22 |

JBM | -0.081 0.09
G 0.09 0.09

The last analysis concerns the learned graphs and origi-
nal experiment networks’ assortativity [Newman, 2003]. A
graph G’s assortativity coefficient vg € [—1, 1] captures the
tendency for nodes to attach to others that are similar or
different in connectivity. Positive values of vg indicate a
correlation between nodes of similar degree, whereas nega-
tive values indicate relationships between nodes of different
degrees.

The table shows that in scenario coER_2 JBM graphs exhibit
negative assortativity, whereas the original network’s vg is
positive. In other words, JBM graphs appear to contain
sparsely connected hubs of highly connected nodes, which
implies the learning method’s ability to identify nodes of
greater influence in the original networks. This observa-
tion is further supported by the significant difference in the
proportion of intra edges among highly connected nodes be-
tween G and JBM in coER_2, as presented in Figure 4. Fig-
ure 4 indicates the same phenomenon for scenario power22,
which, however, does not correspond to any divergence be-
tween G’s and JBM’s assortativity in the same scenario. We
attribute this discrepancy to the existence of a strongly con-
nected minority group in power22. Overall, the retention
rate of G’s edges within the minority group in the learned
JBM (19.5%) is higher than that within class 4 (15.6%),
which contains both minority and majority nodes. The
structure learning algorithm appears to be able to identify
the importance and influence of the minority group, a phe-
nomenon also observed and reported by Kearns et al. [2009].

6.3 DISCUSSIONS OF CONSENSUS OUT-
COMES

We also evaluate the models’ capacity to predict the end
state of a dynamic consensus experiment. As noted above,
the original aim of modeling in these domains was to predict
this final outcome. For a particular model M, we start an
experiment run with agents choosing their preferred colors,
and then proceed to draw samples from M for each time
period until a consensus is reached or the number of time
periods exceeds the time limit. We average over 500 runs
for each experiment setting and model.

The convergence of PRM to consensus strongly correlates

with observed experimental results in terms of the percent-
age of experiments reaching consensus, as shown in Figure 5.
However, PRM’s predictions on the color of consensus are
out of line with the actual experiments for some experiment
settings, rendering PRM ineffective in predicting end state
results.?

We find that simulated runs drawn from JBM converge to
a consensus at a relatively lower rates than PRM in the
power22 setting where all lab experiments reach consensus,
and at a significantly lower rates in other settings. As a
result, JBM is not directly useful for predicting end state
specifically. That the model’s success in capturing transient
dynamics fails to translate to outcome prediction is an in-
teresting anomaly. It will be worth further investigating
whether incorporating time dependence or other additional
factors can remedy the discrepant effectiveness.

It is important to note that the input of our study has been
transformed from ordinal-time to snapshot data [Cosley et al.
2010], which inherently results in a loss of information about
the exact vote-update times. Moreover, the difference in the
discretization interval 6 does make a noticeable difference in
the end-game results for both JBM and PRM, while the effect
of ¢ in predicting transient dynamics is negligible. These ob-
servations suggest the need to experiment with constructing
and evaluating asynchronous versions of this study’s models.

We further observe that in settings coER_2 and coPA_2
where consensus appears less frequently, the vote majority
tended to switch from one color to another before assuming
its original color. As we suspect that the presence of “stub-
born” players fueled this pattern, JBM could benefit from
having an additional history summary function other than
f that captures the level of “stubbornness” of an agent, gains
greater importance as time passes, and thus effectively in-
forms the potential function about future vote updates. We
will also further incorporate in our models elements from dif-
ferent statistical models specifically developed for capturing
agents’ abilities to reach consensus on distributed networks
[Masuda et al., 2010, Mossel and Schoenebeck, 2010]

7. CONCLUSIONS

We have introduced and empirically evaluated an algorithm
for learning history-dependent graphical multiagent models
of dynamic behavior given time series of agent actions. The
empirical study demonstrates an ability to learn compact
graphical representations capturing the dynamics of human-
subject voting behavior on a network. In particular, we have
shown that the learned joint behavior model JBM provides
significantly better predictions of dynamic behavior than dif-
ferent individual behavior models, including the multiplica-
tive model PRM and its variation sPRM, suggested by the
original experimental analysis. This provides evidence that
expressing joint behavior is important for dynamic model-
ing, even given partial history information for conditioning
individual behavior. Our graph analysis further reveals char-
acteristics of the learned JBM graphical structures, particu-

*Kearns et al. [2009] only examined the correlations between
the number of seconds for human subjects to reach consen-
sus during lab experiments and the number of simulation
updates by a PRM-type model before reaching consensus,
but not the color of consensus.
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Figure 5: End-game results for three different experiment groups: power22 (left), coER_2 (middle), and

coPA_2 (right).

larly in how they diverge from the original experiment net-
works.

In future work we plan to improve the learning algorithm
for individual behavior models, which are currently con-
structed with a predetermined maximum degree constraint,
by replacing this degree constraint with a cross-validation
condition that can better help avoid overfitting. Another
potential research study would examine and compare dif-
ferent approaches to learning hGMM structure in terms of
efficacy and complexity. We would also like to build on this
study’s graph analysis a more systematic and comprehensive
toolbox for dissecting graphical models of dynamic behavior
and assessing model learning algorithms’ contributions. Fi-
nally, we are interested in applying our modeling technique
in studying similar problem domains where agents must co-
ordinate their actions or make collective decisions while only
communicating with their neighbors [Suri and Watts, 2011,
Judd et al., 2010], as well as large network scenarios, such
as social networks and internet protocols.
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