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Abstract
The recent Predictive Linear Gaussian model (or
PLG) improves upon traditional linear dynamical
system models by using a predictive representa-
tion of state, which makes consistent parameter
estimation possible without any loss of model-
ing power and while using fewer parameters. In
this paper we extend the PLG to model stochas-
tic, nonlinear dynamical systems by using ker-
nel methods. With a Gaussian kernel, the model
admits closed form solutions to the state update
equations due to conjugacy between the dynam-
ics and the state representation. We also ex-
plore an efficient sigma-point approximation to
the state updates, and show how all of the model
parameters can be learned directly from data (and
can be learned on-line with the Kernel Recursive
Least-Squares algorithm). We empirically com-
pare the model and its approximation to the orig-
inal PLG and discuss their relative advantages.

1. Introduction
Model building is an important part of AI. Many agent-
environment interactions can be modeled as dynamical sys-
tems, spanning things as diverse as the dynamics of a biped
walking, the trajectory of a missile, or the shifting fish pop-
ulation in a lake. This paper builds on several recent ad-
vances in the machine learning community to motivate, de-
rive and analyze a new nonlinear dynamical system model
which combines predictive representations of state, kernel
methods and statistical state updating.

In the machine learning community, models with predic-
tive representations of state have recently attracted consid-
erable interest. These models replace the traditional notion
of state (which is typically a latent, unobservable quantity)
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by a set of (possibly action-conditional) predictions about
the future. This is permissible because the most general
definition of “state” is any sufficient statistic for history—
in our case, a finite set of predictions about the future sum-
marize our infinite past.

Most predictive models, including PSRs (Littman et al.,
2001) and OOMs, have been defined for discrete observa-
tions, typically in the realm of discrete partially observ-
able Markov decision processes. The Predictive Linear
Gaussian (or PLG) model was introduced by Rudary et al.
(2005) as an extension of PSRs to the case of continuous
observations, and has several advantages when compared
to traditional state-space models. First, the entire model
is defined strictly in terms of statistics about observable
quantities. This means that parameters of the model have
definite meaning with respect to the observed data, which
leads to consistent parameter estimation procedures: esti-
mated parameters will asymptotically converge to their true
value, which is a stronger guarantee than the guarantees
which accompany the usual EM-style algorithms used to
learn state-space model parameters. Second, the PLG esti-
mation procedure works particularly well as the dimension
of the system increases. Third, the PLG model strictly sub-
sumes two popular linear dynamical system models: the
celebrated Kalman filter (Kalman, 1960), and autoregres-
sive time-series (or ARMA) models (Pandit & Wu, 1983).
Finally, the PLG is just as compact as state-space models
(meaning that only n predictions are necessary to model an
n-dimensional LDS) and requires fewer parameters. There
are, however, two drawbacks to the PLG model. First, it is
only capable of modeling linear systems, and second, it is
limited to cases where the observation is a single scalar.

The main contribution of this paper is a new model that ex-
tends the PLG to the nonlinear case by using kernels. We
first present the general model, analyzing in depth the spe-
cial case of the Gaussian kernel. We then present a com-
putationally efficient approximation which is almost as ac-
curate as the exact method. We discuss on-line and off-line
parameter estimation, and conclude by empirically show-
ing that both the model and its approximation are viable.
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1.1. Linear Dynamical Systems

A discrete time, linear dynamical system (LDS) is defined
by a state update equation xt+1 = Axt +η, where xt ∈ R

n

is the state at time t, A ∈ R
n×n is a transition matrix

and η ∼ N (0, Q) is mean-zero Gaussian noise (where
Q ∈ R

n×n). Often, we are not able to observe the state
directly. Many LDSs define a companion observation pro-
cess, in which observations are linear functions of the true
state: yt = Hxt + N (0, R), where H ∈ R

m×n and
R ∈ R

m×m. There are generally no restrictions on H;
in particular, it may collapse an n-dimensional state into a
lower-dimensional (or even scalar) observation.

In some cases, the parameters of the LDS are not known,
and must be estimated from data. Because the true state
is never observed directly, these procedures typically in-
volve some sort of expectation maximization (Ghahramani
& Hinton, 1996) or maximum likelihood estimation, and
suffer from several problems: they can get stuck in local
maxima or minima, and are somewhat slow.

1.2. The Predictive Linear Gaussian Model

In the PLG model, we never refer to an unobservable or la-
tent state xt. Instead, we capture state as statistics about a
random variable Zt, which is defined as a vector of random
variables predicting future observations. We associate each
future observation at time t+ i with a random variable Yt+i

(all observations are scalars), and collect the next n of them
into the vector Zt = [Yt+1 · · ·Yt+n]T , as illustrated in Fig-
ure 1. These n variables are jointly Gaussian, with mean
µt and covariance Σt. It is these two statistics that are used
as the state of the system.

The system dynamics are defined by a special equation:

Yt+n+1 = 〈g, Zt〉 + ηt+n+1. (1)

where 〈·〉 denotes inner product, g ∈ R
n is a linear trend

and ηt+n+1 ∈ R is a noise term. The importance of mod-
eling Yt+n+1 as a function of Zt will be explained in the
next section. The noise term is mean-zero with a fixed
variance: ηt+n+1|ht ∼ N (0, σ2

η), but is allowed to covary
with the next n observations in a way that is independent
of history: Cov[Zt, ηt+n+1|ht] = C. The PLG’s represen-
tational power comes from this special noise term: the fact
that it covaries with future observations gives it the infinite
memory of the LDS—an observation can have an effect far
in the future through the chain of influence created by the
correlation in the noise terms. The parameters of the PLG
model are the trend g and the noise statistics C and σ2

η .

Rudary et al. (2005) showed how the state of this system
can be recursively updated in closed form, and that this
model is equivalent in modeling power to the Kalman fil-
ter. They also provided a consistent estimation procedure

Figure 1. A timeline illustrating the random variables we use.

to learn the parameters, as well an algorithm for converting
parameters from an LDS to the equivalent PLG.

1.3. Updating State: Extend and Condition

We will now discuss our general strategy for updating state
and modeling nonlinear dynamics; the next section dis-
cusses our specific model. As in the PLG, we restrict our-
selves to scalar observations, but emphasize that this does
not restrict the dimensionality of the underlying state space.

Modeling the system dynamics requires determining how
to update the state of the system. The problem can be stated
thus: given a state at time t, how can we incorporate an
observation Yt+1 = yt+1 to compute our state at time t+1?
Our strategy is to extend and condition, as follows.

We begin with state extension. We assume that we have
the state at time t, represented by µt and Σt. These statis-
tics describe Zt ∼ N (µt,Σt), which is an n−dimensional
Gaussian describing the next n observations. We will ex-
tend this variable to include the variable Yt+n+1 (ensur-
ing that it is still jointly Gaussian), creating a temporary
(n + 1)-dimensional Gaussian. In the PLG, Yt+n+1 is a
linear function of Zt, but we will allow it to be a nonlin-
ear function, which allows us to model nonlinear dynam-
ics. In order to extend Zt to include the variable Yt+n+1,
we must compute three terms, which are Et = E[Yt+n+1],
Ct = Cov[Yt+n+1, Zt] and Vt = Var[Yt+n+1]:

(
Zt

Yt+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

CT
t Vt

)]
.

We will then condition on the observation yt+1, which will
result in another n−dimensional Gaussian random vari-
able describing [Yt+2 · · ·Yt+n+1]

T = Zt+1 (conditioning
is done with standard techniques on multivariate Gaussians,
for which it is well-known that the result is Gaussian). This
results in E[Yt+2 · · ·Yt+n+1] = E[Zt+1] = µt+1, along
with Cov[Zt+1] = Σt+1, which are precisely the statistics
representing our new state. Figure 1 illustrates this.

Rolling together the construction of the temporary Gaus-
sian and the conditioning yields the complete state update:

µt+1 = µ−
t+1 + Kt(yt+1 − eT

1 µt) (2)

Σt+1 = (I − Kte
T
1 )Σ−

t+1 (3)
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where Σ−
t+1 = I−ΣtI

−T + I−Ct + CT
t I−T + eneT

nVt,
Kt = Σ−

t+1e1(e
T
1 Σte1)

−1, µ−
t+1 = I−µt + enEt,

I− =

(
0 In−1

0

)
,

and ei is the i-th column of the identity matrix. Note that
Eqs. (2) and (3) have the same form as the Kalman filter.

2. The Kernel PLG Model
We will now extend the PLG model to handle nonlinear
dynamics by allowing Yt+n+1 to be a nonlinear function
of Zt. We accomplish this by invoking the kernel trick.
As discussed in the previous section, all that is needed to
maintain state is the state extension and the observation
conditioning, so the computation of Et, Ct and Vt, com-
bined with the construction and conditioning equations (2)
and (3), constitutes the complete model.

Computing Et, Ct and Vt in closed form for arbitrary ker-
nels is impossible. Section 2.1 will therefore present the
general model and analyze the special case where the ker-
nels are Gaussian, which will make closed-form solutions
possible by virtue of the conjugacy properties of Gaussians.
Section 2.2 will then relax this assumption by presenting an
approximation method which works for all kernels.

2.1. The KPLG Model

Our model is named the KPLG, or “Kernel Predictive Lin-
ear Gaussian” model, which defines the state extension as

Yt+n+1 =

J∑

j=1

αjK(ξj , Zt) + ηt+n+1, (4)

where K() is our kernel. The ξj ∈ R
n are points that could

come from a number of sources: they may come from train-
ing data, be derived analytically, or be randomly generated.

This is the most obvious way to kernelize the original PLG
algorithm, because we have employed the standard tech-
nique of rewriting the linear trend g as a weighted combi-
nation of data points; this is possible by virtue of the Rep-
resenter Theorem (Kimeldorf & Wahba, 1971):

Yt+n+1 = 〈g, Zt〉 + ηt+n+1

= 〈
∑

j

αjξj , Zt〉 + ηt+n+1

=
∑

j

αj〈ξj , Zt〉 + ηt+n+1

=
∑

j

αjK(ξj , Zt) + ηt+n+1

Since this is a linear basis function model (with the ker-
nels K(ξj , ·) acting as the basis functions), we will refer to

the ξj’s as basis function centers. The model strictly gen-
eralizes the PLG, since using the linear kernel recovers it1.
Note that ηt+n+1 has the same properties as in the PLG.

With a Gaussian kernel, we can analytically derive expres-
sions for Et, Ct and Vt. Appendix A contains the lemmas
and identities needed for their derivation, and a summary
of what the terms mean (all summations are from 1 to J):

Et =
∑

j

αjK
′
tj (5)

Ct =
∑

j

αjK
′
tj(µ

′
tj − µt)

T + CT (6)

Vt =
∑

i

∑

j

K
†
tijαiαj − E2

t + σ2
η

+2(
∑

j

αjK
′
tj(µ

′
tj − µt)

T )Σ−1
t C. (7)

The parameters of this model are therefore the ξj’s, the
αj’s, C, and σ2

η. In the case of a Gaussian kernel, we allow
an additional parameter φj (which is the covariance matrix
of the Gaussian) and write the kernel as K(ξj , Zt;φj). We
use a fully normalized Gaussian for analytical purposes.

2.2. A Sigma-Point Approximation

With Gaussian kernels, the KPLG model is analytically
tractable. While this is appealing, there are some compu-
tational liabilities. In particular, computing Vt is a O(J2)
operation (where J is the number of basis functions; see the
double summation of Eq. 7), which is prohibitively com-
plex, especially since J typically scales exponentially with
the dimension n. This motivates some sort of fast approxi-
mation. We would also like the approximation to relax the
restriction to Gaussians, and free us to use arbitrary kernels.
The following method accomplishes both goals (although
exploring arbitrary kernels is left for future research).

Sigma-point approximations, or “unscented transforma-
tions” (Julier & Uhlmann, 1996), are a general method of
propagating an arbitrary distribution through a nonlinear
function. The method is conceptually simple, and should
be thought of as a deterministic sampling approach. Sup-
pose we are given a random variable Y = f(Z, η) that is
a nonlinear function of another random variable Z and a
mean-zero Gaussian noise term η. Instead of recording the
distribution information of Z in terms of a mean and co-
variance, we represent the same information with a small,
carefully chosen number of sigma points. These points are
selected so that they have the same mean and covariance
as Z (in fact, they are the minimal such set), but the ad-
vantage is that they can be propagated directly through the
function f(). We then compute the posterior statistics of
the propagated points to approximate Y .

1This model is also closely related to an RBF network.
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• Construct a RV relating predictions and noise:

P =

(
Zt

ηt+n+1

)
∼ N

[(
µt

0

)
,

(
Σt C

CT σ2
η

)]

• Ensure that Cov[P ] is symmetric positive definite.

• Construct a set of 2(n + 1) sigma points:

[z
(2i−1)
t , η

(2i−1)
t+n+1]

T = E[P ] + (
√

(n + 1)Cov[P ])i

[z
(2i)
t , η

(2i)
t+n+1]

T = E[P ] − (
√

(n + 1)Cov[P ])i

• Propagate each point: y
(i)
t+n+1 = f(z

(i)
t , η

(i)
t+n+1)

• Compute the empirical mean and covariance:

Et =
1

2(n + 1)

2(n+1)∑

i=1

y
(i)
t+n+1

Vt =
1

2(n + 1)

2(n+1)∑

i=1

(y
(i)
t+n+1 − E[Yt+n+1])

2

Ct =
1

2(n + 1)

2(n+1)∑

i=1

(z
(i)
t −µt)(y

(i)
t+n+1−E[Yt+n+1])

T

Figure 2. The sigma-point approximation algorithm.

There are many advantages to sigma-point approximations.
First, they are a good match for our needs: we only want
first and second-order moments of the posterior (which
they are designed to provide), and their strongest optimal-
ity guarantees are when Z is normally distributed (as it is
in our case). They are provably accurate to at least a sec-
ond order approximation of the dynamics for any distribu-
tion on Z and any nonlinearity, and are accurate to third
order for a Gaussian distribution on Z and any nonlinear-
ity, while fourth order terms can sometimes be corrected as
well. They can flexibly incorporate noise and other con-
straints into f(). They are simple to implement because no
analytical derivatives (such as Jacobians or Hessians) are
required. They are also efficient: they require 2(n + 1)J
kernel evaluations at each timestep, which is far smaller
than the O(J2) matrix operations required by the KPLG.

Sigma-point approximations should not be confused with
particle filters. While they are similar in spirit, there are
several important differences. Particle filters typically al-
low a multi-modal distribution over states, while sigma-
point approximations require a Gaussian; it is the Gaus-
sian assumption which gives the sigma-point approxima-
tion its strong theoretical guarantees with a small number
of points. Also, where particle filters use random sampling,
sigma-point approximations use deterministic sampling.

The algorithm is shown in Figure 2. If we let f() be the
state extension defined by the KPLG model (Eq. 4), then
the final terms computed may be used in place of the ana-
lytical values of Et, Vt, and Ct.

2.3. Complexity and Generalization

The KPLG model has high complexity: computing Et and
Ct is O(Jn3), but computing Vt is O(J2n3) (and can
be numerically unstable). There are other ways to esti-
mate these terms, besides the sigma-point approximations.
Nearest-neighbor style methods, such as the Fast Gauss
Transform (Yang et al., 2003), are one possibility, and
would also allow O(Jn3) computations, although these
methods only work well for small n.

In the case of Gaussian kernels, the model can suffer from
generalization problems. Because the Gaussians have lo-
cal receptive fields, the state extension equation (Eq. 4)
will return something close to zero for all states outside
the training region. This implies a very strong, and some-
what strange, prior on the system dynamics. We believe
that renormalized kernels (Hastie et al., 2001) will improve
generalization, but this is left for future research.

2.4. Comparison to Nonlinear Autoregression

There is a significant difference between the KPLG model
and an n-th order kernel autoregressive (KAR) model. The
KAR model is E[Yt+1] =

∑
j αjK(ξj , zt−n), which states

that the next observation is predicted to be a nonlinear func-
tion of the past n observations zt−n. It has a similar func-
tional form to our predictive model: the same kernels, ba-
sis function centers, and coefficients are used, and it can be
trained using similar methods as the KPLG (see Section 3).
However, their differences are as important as their similar-
ities. In particular, KAR assumes that n past observations
constitute state, while the KPLG can summarize a poten-
tially infinite amount of history into its predictions. These
differences are what accounts for the empirical improve-
ment of KPLG over KAR reported in Section 4.

3. Model Estimation
The KPLG model requires several parameters: the dimen-
sion n of the system, the basis function centers ξj and
weights αj , as well as the noise statistics C and σ2

η. In
the case of a Gaussian kernel, the covariance matrix φj is
also required. The next two sections discuss off-line and
on-line methods of estimating these parameters.

3.1. The Off-Line Case

In this scenario, we are interested in learning the parame-
ters from training data. This data will be given as a set of
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Figure 3. Extracting training pairs from a training trajectory.

trajectories from the system, with each trajectory consisting
of at least n+1 sequential observations. We will slice these
trajectories into training pairs (zi, yi+n+1) where zi ∈ R

n

is a vector of n successive observations (representing a
noisy sample of some Zt), and yi+n+1 ∈ R is the (n+1)-th
observation (a sample of the corresponding Yt+n+1, or the
state extension). Each trajectory is sliced into all such pairs
and collected into a set S. Figure 3 illustrates this process.

Model Order Selection. We must first estimate the or-
der of the model, which includes the system dimension n

and the number of basis functions J . For our experiments,
we use cross-validation to select parameters from a set of
likely candidates. However, there is nothing unusual about
our model or estimation needs, meaning that many existing
techniques are also suitable2.

Finding Basis Function Parameters. Next, we must de-
termine the basis function centers ξj and covariance ma-
trices φj . We tested three methods: random selection,
dictionary-based selection (explained in Section 3.2), and
expectation maximization. For random selection, we set
each ξj to be a random training sample zi, we set φj =
σ2

φI , and we used cross-validation to select σ2
φ. Expecta-

tion maximization (EM) is a well-known method for es-
timating mixture of Gaussian parameters. We will here
summarize our experiments with EM by saying that it did
not appear to offer any advantage over the other two meth-
ods, and since it was computationally more intensive, it was
dropped. Again, many other methods are also suitable3.

Estimating Coefficients. Given ξj and φj , finding the
αj’s can be viewed as a simple kernel regression problem.
It can be solved with a linear least squares approach, or
more sophisticated methods such as support-vector regres-
sion (Shawe-Taylor & Cristianini, 2004). We chose reg-
ularized least-squares. We construct a regression matrix
A + λI , where Aij = K(ξj , zi;φj) and λ is the regu-
larization coefficient. Let Y be a vector collecting all the

2These include growing and pruning methods, stacked gener-
alization, regularized complexity criteria, or statistical tests such
as Z tests (Bishop, 1995; Pandit & Wu, 1983).

3These include nonlinear gradient methods (such as Gauss-
Newton or Marquardt-Levenburg), re-estimation methods (such
as expectation maximization), adaptive k-means clustering,
stochastic sequential estimation, or cross-validation (generalized,
leave one out, or k-fold) (Hastie et al., 2001; Bishop, 1995).

yi+n+1’s. Then, the optimal coefficients α are given by
α = A†Y , where † denotes the pseudo-inverse (giving
a minimum-norm solution to an underconstrained system,
and a least-squares solution to an overconstrained system).

3.2. The On-Line Case: KRLS

The previous section discussed the selection of the basis
function centers ξj and their weights αj as two separate
problems. However, both steps may be combined into a
single step by using the Kernel Recursive Least-Squares
(KRLS) algorithm of Engel et al. (2004). As noted, finding
the weights is a least-squares kernel regression problem,
which KRLS is designed to solve. However, it does so in
a recursive way: instead of presenting all of the training
pairs simultaneously, they are presented one at a time, and
the algorithm updates the resulting weights in a way that is
independent of the total number of pairs used (in our case,
it is equivalently independent of time).

Because of the nonlinear kernels involved, the KRLS al-
gorithm is more complicated than the standard RLS algo-
rithm. KRLS uses a dictionary to perform on-line spar-
sification of what would otherwise be prohibitively large
matrices. The dictionary stores points (the zi’s) whose fea-
tures are linearly independent of each other; points that are
almost linearly dependent on the dictionary points are dis-
carded (where “almost” is a tunable threshold). Thus, the
dictionary holds a set of points which approximately lin-
earize the feature space; equivalently, they can be thought
of as points which are spaced evenly enough so that the fea-
tures of new points will be a linear combination of them.

It is these dictionary points that we use as the basis func-
tion centers ξj , and the corresponding weights as the αj’s.
This gives even coverage to the feature space, and can be
controlled by only a single additional parameter. Note that
KRLS is an instance of the KAR model (see Section 2.4).

3.3. Learning Noise Parameters

Either the off-line or the on-line techniques provide basis
function centers, covariances and weights, allowing us to
now estimate the noise parameters. For these, we can use
sample statistics. Assume we have a set S of training pairs
(zi, yi+n+1). In the off-line case, this may be the training
set; in the on-line case, this set may be collected during
training, or once the basis function parameters have been
fixed. Let ηi = yi+n+1 −

∑
j αjK(ξj , zi;φj). Then, the

estimated noise term is σ̂2
η = 1

|S|−1

∑
i(ηi)

2. To estimate
C, we run the algorithm on the training data (or run it on-
line) with C = 0 and collect an estimate of µt at each t. We
then compute Cov[Ztηt+n+1] = E[(Zt − µt)(ηt+n+1)],
which is simply Ĉk = 1

|S|−1

∑
i(zi − µi)kηi. Extending

these estimators to be fully on-line is left as future work.
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Problem Best (10-CV) Best (5-CV) Best (direct)
L

D
Ss

Rotation KPLG-SP KPLG-SP KPLG/KPLG-SP
Biped KPLG/KAR KPLG-SP KPLG/KPLG-SP/KAR
Peanut KAR/PLG KPLG-SP KPLG/KPLG-SP
NB3 KAR/PLG KAR/PLG KPLG-SP/KAR/PLG
Spring KAR KAR KAR

Ti
m

e

Se
ri

es M.G. KAR KAR KAR
Leuven KAR KAR KAR
Laser KPLG KPLG-SP KAR

Figure 4. The best performing algorithms on the test problems.

4. Experiments
Our experiments were designed to assess the performance
of the PLG, KPLG and KPLG-SP (the sigma-point approx-
imation) algorithms across a variety of problems. For com-
pleteness, we also tested the KAR algorithm. We tested on
five linear and nonlinear dynamical systems (the Rotation,
Biped, Peanut, NB3, and Spring problems), where the un-
derlying generative model was known. Since the models
are limited to scalar observations, we also tested on three
timeseries benchmarks (Santa Fe Laser, Mackey-Glass, and
K.U. Leuven). The problems are described in Section 4.3.

We ran two types of experiments. The first type, which
is the more important of the two, was a state estimation
problem, in which the algorithms were run as explained in
the text. This tested the algorithms’ state update mecha-
nisms and prediction performance. The second type was a
far-horizon prediction test, where the algorithms predicted
hundreds of steps into the future, without correcting state
based on any observations. This tested modeling capacity
and parameter estimation methods.

Parameters were selected by 10-fold cross-validation. Al-
gorithms were judged on the mean-squared error (MSE)
of their predictions. All data sets were normalized to
be in [0, 1]. For the initial state, we set Σ0 = σ̂2

ηI +∑n

i=1(I
−)iĈ + ((I−)iĈ)T and µ0 to be the last n val-

ues of the training sequence, and then rolled it forward
n timesteps (the test data was structured to be a continu-
ation of the last sequence of training data). All algorithms
were tested on n = 2, 3, 4, 5, 6, σ2

φ = 0.1, 0.4, 0.8, 1.2,
λ = 0.00001, 0.001, 0.01, and ν = 0.0001, 0.001, 0.01
(the dictionary threshold).

4.1. State Estimation

For these experiments, we measured 1-step, 5-step and 10-
step prediction MSEs (due to space limitations, only 1-step
results are discussed). It is important to note that the mea-
sure of success is the difference between actual and pre-
dicted observations. This means that we are not attempting
to estimate latent state, but we are allowed to use state to
make our predictions. Basis function centers were selected
with a dictionary, and αj’s were computed using regular-

ized least-squares; this method appeared to be superior to
using either EM or a random selection of basis functions.

The results are shown in Figure 4. Three columns are pre-
sented, the first of which shows the best algorithms on
each problem when parameters are selected using cross-
validation (all algorithms with an MSE within 5% of the
lowest are considered equal). The results are mixed but
encouraging. In particular, it seems that KPLG(-SP) gen-
erally performed well on the dynamical systems, where
there really is an opportunity to leverage infinite memory
via state. In contrast, KAR has performed well on the
timeseries problems; in particular, it wins on the Mackey-
Glass series, which really is an autoregressive model. This
trend is more pronounced when only the best 5 out of the
10 cross-validation runs are used to select parameters, as
shown in the second column. Here, we have eliminated out-
liers in the cross-validation runs, which has given us better
parameters. We see in this case that KPLG-SP has won in
four out of eight trials, and in the situations we expect it to.

The final column of Figure 4 shows best performers when
tested directly against the test set (that is, without cross-
validation). While it doesn’t change the fundamental re-
sults, there are some noteworthy points: KAR does bet-
ter on Laser, and KPLG is now competitive on the LDSs.
These results should be taken with a grain of salt: there
are enough parameters in the algorithms (and the test se-
quences are short enough) that they may be overfitting on
the test data. However, the results show that all of the al-
gorithms have the capacity to model the test data well. We
also note that KAR still wins on the Spring problem. This
is expected: Spring is deterministic with noiseless observa-
tions, so the uncertainty the KPLG(-SP) uses is unneeded.

Together, these results can be interpreted as preliminary
evidence that each algorithm is winning when it is sup-
posed to be, although it also appears that the test problems
are not as discriminative as we would like. The results
suggest three conclusions: first, that the nonlinear mod-
els are outperforming their linear counterparts; second, that
the sigma-point approximation is competitive with the ex-
act KPLG; and third, that our models are indeed capturing
state, which results in an advantage over a simple autore-
gressive model, especially in noisy cases. Not reflected in
these results is the fact that KAR seemed to give more con-
sistent MSEs across parameter settings than KPLG(-SP);
this is why we limited ourselves to only 5 out of 10 cross-
validation sets, and indicates that further improvements to
KPLG(-SP) are needed.

4.2. Long-Term Prediction

Here, each algorithm was asked to predict hundreds of
timesteps into the future. This was done to assess the mod-
els’ raw capacity, especially as compared to other methods.
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Figure 5. Top: the results of predicting the Mackey-Glass series.
Bottom: the results of predicting the Santa Fe Laser series.

We trained KPLG(-SP) using the KRLS algorithm, incor-
porating the more sophisticated training method suggested
by Engel et al. (2004). We set Σt = 0 for all t, mak-
ing KPLG(-SP) and KAR equivalent; we merely wanted to
compare PLG and KPLG. Figure 5 shows results on Laser
and Mackey-Glass, both of which demonstrate a clear ad-
vantage of KPLG over PLG. The Laser result almost ex-
actly reproduces the result obtained by Engel; as noted by
him, the MSE incurred here (0.00120; equivalent to their
NMSE of 0.026) would have been just enough to place first
in the Santa Fe competition. This suggests that the model
is capable of competing successfully with other methods.

4.3. Problem Descriptions

All problems except Laser were trained on 2000 sequential
observations and tested on a 200 observation continuation.
Laser had 1000 training and 100 testing observations.

Rotation, Peanut, Biped, NB3: Two-dimensional LDSs.
Rotation is linear; the others are nonlinear. Observations
and dynamics were noisy. NB3 had about an order of mag-
nitude more noise than the other problems. Spring: A
2D system with a mass oscillating between damped springs
with nonlinear forcing functions. Only the position of the
mass was observed. Deterministic with noise-free observa-
tions. Mackey-Glass: A well-known timeseries generated
from a delay differential equation. The series is determin-
istic but chaotic. Parameters were a = 0.2, b = 0.1, and
τ = 30, which are standard settings. Santa Fe Laser: Data
from the Santa Fe timeseries competition. The series was
recorded from a laser in a chaotic state, whose pulsations
more or less follow the theoretical Lorenz model of a two-
level system. K. U. Leuven: Competition data from the In-
ternational Workshop on Advanced Black-Box Techniques
for Nonlinear Modeling, K.U. Leuven Belgium, 1998.

5. Related Approaches
Here, we briefly survey other nonlinear methods that are
similar in spirit and application to ours, focusing on non-
linear extensions to the Kalman filter. The first is the Ex-
tended Kalman filter (EKF), which updates state by lin-
earizing the system dynamics, and propagating informa-
tion through this first-order approximation. Unfortunately,
it requires that analytical derivatives of the dynamics be
available, and cannot capture discontinuities in the dynam-
ics. The Unscented Kalman Filter (Wan & van der Merwe,
2000) improves on the EKF with a sigma-point approxima-
tion. It is the closest competitor to our method, except that
it posits latent state and provides no parameter estimation
methods; our method is also simpler because our observa-
tion and transition models are combined. Rudary and Singh
(2004) proposed a nonlinear PSR based on “e-tests,” but it
is restricted to domains with discrete observations.

6. Conclusions and Future Research
Our focus has been an investigation of the viability of non-
linear predictive representations of state for continuous ob-
servation systems, as well as the advantages of our spe-
cific extension to the original PLG. Based on our empirical
results, the broadest conclusion is that both the idea and
our specific model are viable. While more work remains
to be done, our algorithms have successfully modeled the
real-world and synthetic problems presented here – while
learning their parameters directly from data – and appear
to provide competitive results to other methods. One of the
advantages of the model is the straightforward method of
parameter estimation. Only standard regressions and sam-
ple statistics are required, which is a direct consequence of
the predictive nature of the state. This also lead us easily to
an on-line version of the algorithm with KRLS.

We have not focused on raw empirical success, which
leaves the door open for several obvious extensions. In
particular, combining the strengths of KPLG and KAR into
quasi-predictive models (which use history and predictions
together) is an open and interesting avenue. It is also im-
portant to address the difficulties in parameter estimation
and cross-validation, and to improve the algorithm’s stabil-
ity and generalization, but even with these problems, the
algorithm is learning reasonable and competitive models.

An important practical conclusion is the success of the
sigma-point approximations, which have provided results
close to those of the KPLG for a fraction of the compu-
tational effort. We originally picked the Gaussian form of
the kernels for analytical tractability, but the success of the
approximations suggests that this is unnecessary. In addi-
tion to accuracy and speed, they provide freedom: future
algorithms can use other kernels in more flexible models.
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A. Derivation of and Key to Model Terms
Space precludes a full derivation of Et, Ct and Vt for the
KPLG model with a Gaussian kernel, so we here sum-
marize the necessary identities and lemmas. An impor-
tant lemma is a standard result about products of Gaus-
sians: K(a, b;A)K(b, c;B) = K(a, c;C)K(b, d;D) with
C = A + B,D = A−1 + B−1 and d = A(A + B)−1b +
B(A + B)−1c (where A,B,C and D are covariance ma-
trices). Using it, we will compute one key identity by fac-
toring terms out of the integrals needed when taking ex-
pectations and covariances; the other needed identities are
easily computed by analogy. This first result states that the
expected value of the kernel is the kernel of the expected
value, with added variance. Let Ktj = K(ξj , Zt;φj):

E[Ktj ] =

∫
K(ξj , Zt;φj)p(Zt)dZt

=

∫
K(ξj , Zt;φj)K(Zt, µt; Σt)dZt

= K(ξj , µt;φj + Σt)

∫
K(Zt, µ

′
tj ; Σ

′
tj)dZt

= K(ξj , µt;φj + Σt)

where Σ′
tj = Σ−1

t + φ−1
j and µ′

tj = φj(Σt + φj)
−1µt +

Σt(Σt+φj)
−1ξj . The last line follows because the integral

is over an entire PDF with unit volume. As a corollary, it
is easy to show that E[K(ξj , Zt;φj)Zt] = K(ξj , µt;φj +
Σt)µ

′
tj because the integral in the penultimate line will be-

come an expected value. The other identities needed for the
derivation of Et, Ct and Vt are:

E[Ktj ] = K ′
tj

E[Ktjηt+n+1] = K ′
tjC

T Σ−1
t (µ′

tj − µ)

E[KtjKti] = K
†
tij

where

K ′
tj = K(ξj , µt;φj + Σt)

µ′
tj = φj(Σt + φj)

−1µt + Σt(Σt + φj)
−1ξj

K
†
tij = K(µ†

tij , µt; Σt + Σ†
tij)K(ξi, ξj ;φi + φj)

µ
†
tij = φi(φi + φj)

−1ξj + φj(φi + φj)
−1ξi

Σ†
tij = φi(φi + φj)

−1φj .
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