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ABSTRACT
Models of agent-environment interaction that use predic-
tive state representations (PSRs) have mainly focused on
the case of discrete observations and actions. The theory of
discrete PSRs uses an elegant construct called the system
dynamics matrix and derives the notion of predictive state
as a sufficient statistic via the rank of the matrix. With
continuous observations and actions, such a matrix and its
rank no longer exist. In this paper, we show how to define an
analogous construct for the continuous case, called the sys-
tem dynamics distributions, and use information theoretic
notions to define a sufficient statistic and thus state. Given
this new construct, we use kernel density estimation to learn
approximate system dynamics distributions from data, and
use information-theoretic tools to derive algorithms for dis-
covery of state and learning of model parameters. We illus-
trate our new modeling method on two example problems.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms

Keywords
Predictive representations of state, information theory, dy-
namical system modeling

1. INTRODUCTION
Model building is often an important aspect of learning in

autonomous agents. Many agent-environment interactions
can be captured as dynamical systems, in which the agent
repeatedly generates actions, the environment stochastically
transitions between states, and the agent receives observa-
tions. There are many popular models for capturing such
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systems (POMDPs, for example), but in a reinforcement
learning context, models that use predictive representations
of state (or PSRs [6]) have recently attracted attention.

PSRs replace the traditional notion of state with a set of
statistics about future actions and observations. A number
of results have been obtained about PSRs. In the case of dis-
crete observations, for example, PSRs have been shown to
be just as accurate, expressive and compact as unstructured
POMDPs. Because the state representation is grounded di-
rectly in data, PSRs can be learned directly from an agent’s
experience trajectories by a number of different algorithms
[14, 7, 4]. They are also flexible: predictive representations
have shown to be good bases for generalization [9], and have
recently been generalized to be able to capture relational
knowledge [17]. Most PSRs are only defined for discrete
actions and observations; the only known exception is the
Predictive Linear Gaussian model (or PLG) [11]. The PLG
is not a direct extension of PSRs to the continuous case; it
is derived more directly by transforming a linear dynamical
system into a predictive form.

This paper extends PSRs more directly to the continuous
case. To accomplish this, we introduce continuous analogues
of the concepts central to PSRs, and modify all algorithms
accordingly. Our extensions address two central problems
in modeling partially observable dynamical systems: find-
ing and updating sufficient statistics for history (that is,
state). There are three central ideas which form the basis
of our extensions. First, we allow all observations and ac-
tions to be real-valued. We therefore replace all probabilities
with densities. Second, we define the system dynamics dis-

tributions. These distributions describe the evolution of the
system over time, and are the continuous analogue of the
system dynamics matrix used in PSRs. Third, in a discrete
PSR, the system dynamics matrix is used to discover suffi-
cient statistics. We use concepts from information theory to
define sufficiency and to discover the needed statistics.

These conceptual extensions require companion algorith-
mic modifications. We use four key ideas: first, to estimate
the system dynamics distributions, we use kernel density
estimation. Second, to measure sufficiency, we use a gener-
alized form of mutual information based on quadratic Renyi
entropy. Third, to discover sufficient statistics, we use ran-
dom sampling combined with entropy optimization. Fourth,
we show how Nystrom approximations and homotopy opti-
mization yield an efficient implementation. The final combi-
nation of ideas has appealing properties; in particular, there
is a nice mathematical synergy between the elements.



We conclude with experiments showing that continuous
PSRs can be used to model agents in dynamical systems.
We demonstrate the ideas on two example problems, one of
which is a partially observable dynamical world consisting
of an autonomous mobile robot. The agent has realistic per-
ceptual and action models: camera images are observations,
no a priori information about the effect of actions is given,
and no automatic state is given. Empirically, the ideas are
viable: we show reduced variance in one-step prediction ac-
curacy and reduced MSE of one-step predictions.

2. DISCRETE AND CONTINUOUS PSRS
We begin by describing key conceptual ideas in discrete

PSRs, and then our extensions to continuous PSRs.

2.1 Discrete PSRs
Here we assume the agent is embedded in a controlled,

discrete time dynamical system with discrete actions and
observations. At each time step i, the agent executes an
action ai ∈ A and receives an observation oi ∈ O.

Histories: A history is a sequence of alternating actions
and observations a1o1a2o2 · · · amom describing an agent’s
experience from the beginning of time through timestep m.

Tests: An s-test (or “sequence test,” which we will also
just call a “test”), denoted a1o1a2o2 · · · anon, describes a
possible sequence of future actions and observations (note
the distinction between superscripts for tests and subscripts
for histories). A test succeeds if the observations of the test
are obtained, given that the test’s actions are taken. A
prediction for a test t = a1o1a2o2 · · · anon starting in his-
tory h is the probability that t will succeed when its ac-
tions are executed immediately following h. Formally, we
define the prediction for a test from history h of length
m to be p(t|h) = Pr(om+1 = o1, om+2 = o2, · · · , om+n =
on|h, am+1 = a1, · · · , am+n = an). For ease of notation,
we use the following shorthand: for a set of tests T =
{t1, t2, · · · tn}, p(T |h) = [p(t1|h), p(t2|h), · · · p(tn|h)]T is a
column vector of predictions.

The system dynamics vector: The systems dynamics

vector [12] is a conceptual construct introduced to define
PSRs. This vector describes the evolution of a dynamical
system over time, and is representation-independent. Every
possible test t has an entry in this vector, which represents
p(t|∅) (that is, the prediction of t from the null history).
Tests are arranged in length-lexicographic order, from short-
est to longest.

The system dynamics matrix: The system dynamics
matrix D is obtained by conditioning the system dynamics
vector on all histories. In this matrix, the first row is the
system dynamics vector (corresponding to the null history).
Every possible history has a row in the matrix; the entries in
that row are obtained by conditioning the system dynamics
vector on that particular history. An entry in the matrix is
the prediction of a particular test from a particular history:

Dij = p(tj |hi) =
p(hitj)

p(hi)

Tests and histories are arranged length-lexicographically, with
ever increasing test and history lengths. The matrix has an
infinite number of rows and columns.

Sufficient statistics: The system dynamics matrix in-
herently defines a notion of sufficient statistic, whose size is

equal to the rank of the matrix (shown to be finite for inter-
esting cases, such as POMDPs [12]). For finite rank, there
must be a set of core tests whose predictions correspond
to linearly independent columns of D. By definition, every
other column can be computed as a weighted combination of
these columns, so we say that the predictions of these core
tests are a linearly sufficient statistic for the system.

State: The key idea of a PSR is to represent state as a
set of predictions about tests, which represent possible future
observations given possible future actions. A PSR maintains
a set of core tests, the predictions of which are state in any
history, and which allow it to make correct predictions about
any test.

2.2 Continuous PSRs
We now conceptually extend PSRs to the case of con-

tinuous actions and observations. The first problem is that
when moving to continuous states and actions, it is no longer
possible to order all possible histories and tests, simply be-
cause both observations and actions are real-valued. This
means that we cannot define the system dynamics matrix,
and hence we cannot define sufficiency in terms of its rank.
Here, we outline our alternative.

Histories and tests: These are defined in exactly the
same way as for discrete PSRs, except that both actions
and observations may be continuous and vector-valued. If
observations are vectors in R

3 and actions are vectors in R
2,

for example, then a length three history is a vector in R
15.

The continuous system dynamics vector: We define
this somewhat differently than the discrete system dynam-
ics vector: each entry represents one timestep, and so the
n’th entry contains p(F n|∅), which is the full distribution
representing densities of tests of length n, measured from
the null history.

The system dynamics distributions: The system dy-
namics distributions are defined by conditioning the con-
tinuous system dynamics vector on histories of increasing
length. There is one distribution for each combination of a
history length and a future length. We say that p(F n|Hm) =
p(HmF n)/p(Hm) is the density of a length n future from a
length m history. These distributions play the same role as
the system dynamics matrix: they give the density of any
given future from any given history. We will often drop the
superscripts n and m when no ambiguity results.

Sufficient statistics: The idea of using linear indepen-
dence to define sufficiency is no longer applicable. To define
a new concept of sufficiency, we turn to information the-
ory. We start by treating history and the future as random
variables, whose joint is described by the system dynamics
distribution p(HF ). State is a function of history: given a
particular history hi, we will summarize that history into a
state variable si = f(hi). It is well-known that no function
of a random variable can increase the information between
that variable and another variable. This is known as the
data processing inequality:

I(X; Y ) ≥ I(X; f(Y ))

with equality if and only if f(Y ) is sufficient for Y [1].
It is this fact that we will use as the basis for our measure
of sufficiency: we will say a function f captures state if
I(F n; Hm) = I(F n; S = f(Hm)) for all n, m. If f can be
found such that equality is achieved, the resulting state has
summarized all of the information about the past which is



Modeling

• Sample trajectories of the system; use the suffix-
history method to slice into samples; each sample con-
sists of a past (hi) and future (fi).

• Use density estimation to estimate p(HF ).

• To find the state for sample i, we condition p(HF )
on hi, and use the resulting conditional distribution
to evaluate p(tj |hi) for each test tj . This gives us a
sample of S.

• Assume that temporally consecutive samples i and
i+1 are available. We can generate paired samples si

and si+1, as well as oi and ai. This allows us to gener-
ate transition models by constructing p(S, A, O, S′).

Discovery
• Randomly sample a set of tests T .

• Discover better tests by increasing information
I(F ; S = f(H; Θ)); increase information by tuning
parameters Θ, which are the actual test values in T .

State Updates
• Given p(T |h), compute p(T |hao) using either

Bayesian inversion or conditional regression.

Figure 1: Outline of the continuous PSR strategy.

relevant for predicting the future.
State: There are many choices we could make for the

parametric mapping f discussed previously; the above def-
inition of sufficiency applies to all of them. We are inter-
ested in the particular class of PSRs. Given a history ht,
our state at time t will be an n vector, the j’th component
of which represents the prediction of a specific test from ht:
sj

t = p(tj |ht). The set T of all tj constitute our core tests.

3. LEARNING PSRS
Our goal is to learn a PSR directly from observed se-

quences of actions and observations. Given this data, there
are two key problems. First, the discovery problem: which
tests will be sufficient statistics? Second, the state update
problem: given state for history h, how can we compute
state for history hao? In order to solve the discovery and
state update problem, our algorithms will need to solve an
additional problem: that of estimating the system dynamics
matrix/distributions from data.

3.1 Learning Discrete PSRs
In a discrete PSR, all three questions can be answered

through the system dynamics matrix.
Discovery: The idea of linear sufficiency suggests pro-

cedures for discovering sufficient statistics: a set of core
tests corresponds to a set of linearly independent columns of
the system dynamics matrix. Existing discovery algorithms
search for linearly independent columns, typically through
repeated SVDs.

Updating state: Because core tests are sufficient statis-
tics, they can be used to maintain state. In a PSR, for every
s-test t, there is a weight vector mt ∈ R

|Q| independent of
history h such that the prediction p(t|h) = mT

t p(Q|h) for all
h. Given a set of core tests Q, their predictions p(Q|h), an

action a and an observation o, the updated prediction for a
core test qi ∈ Q is

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

mT
aoqi

p(Q|h)

mT
aop(Q|h)

. (1)

This means that to maintain state, we only need to know
mao, which are the weights for the one-step tests, and the
maoqi

, which are the weights for the one-step extensions.
Estimating the system dynamics matrix: To esti-

mate the system dynamics matrix, we estimate each entry
using sample statistics. We use the suffix-history algorithm
[18] to generate samples: given a trajectory of the system,
we slice the trajectory into all possible histories and futures.

3.2 Learning Continuous PSRs
In some ways, the move to continuous observations and

actions simplifies things: we can use function approximators,
take gradients, etc. Here we broadly outline our strategy for
learning continuous PSRs; Figure 1 summarizes the process.

Discovery: How can we find tests whose predictions are
state? First, we introduce a parametric mapping f(H; Θ)
from history to state. We can evaluate sufficiency by mea-
suring the information between the future and state, which
is a function of the past: I(F ; S = f(H; Θ)). To maximize
sufficiency, we can manipulate the parameters Θ to maxi-
mize information. What are the parameters of the function
f? They are the tests themselves—the questions that the
tests are posing, or the ao values in the vector tj . We discuss
this in Section 5.

State and state updates: To represent state, we still
use the prediction of a set of tests; the prediction of a test
is now a density, instead of a probability. To update state,
we may use the Bayesian inversion in Eq. 1, but there are
other possibilities. We discuss this in Section 6.

Estimating the system dynamics distributions: The
new modeling problem is to approximate the distributions
p(HF ). To do this, we choose to use kernel density esti-
mation; as discussed in Section 4, this makes it compatible
with our information-theoretic ideas.

This completes the conceptual outline of our move to con-
tinuous PSRs. The next sections present more detail.

4. ESTIMATING THE SYSTEM DYNAMICS
DISTRIBUTIONS

Modeling the system dynamics distributions is a density
estimation problem. We choose to use kernel density esti-
mation with a Gaussian kernel. To estimate p(HF ), we need
samples of the joint distribution of history and future. To
generate the needed samples, we use the suffix-history algo-
rithm [18]. Given a long trajectory of actions and observa-
tions, we slice the trajectory into all possible combinations
of history and future. For example, a length five trajectory
is sliced into five samples: one for each of H0F 5, H1F 4,
H2F 3, H3F 2, and H4F 1.

Given a set of samples x1 · · ·xN ∈ R
d of the random vari-

able X, our estimate of p(X) is

p(X) =
1

N

N
X

j=1

K(X, xj ; σj)



with a Gaussian kernel:

K(X, xj ; σj) = G(X − xj ; σj)

=
1

p

(2πσj)d
e−(X−xj)T (X−xj)/2σj

where we have assumed the use of a spherical covariance
matrix σjI, and where d is the dimension of the variable
X. Because we are using spherical Gaussians, we can write
similar expressions for joint densities:

p(X, Y ) =
1

N

N
X

j=1

G(X − xj ; σ
X
j )G(Y − yj ; σ

Y
j )

The choice of kernel density estimation is motivated for
several reasons: it is compatible with our information the-
oretic measures, our gradient optimizer and our Nystrom
approximations, as will be clear throughout the paper.

5. DISCOVERY
There are two elements to discovery: determining how

many tests are needed, and determining which actions and
observations should comprise the tests. Most discovery al-
gorithms are concerned with discovering a minimal set of
statistics. We do not address the issue of minimality; rather,
we supply many more tests than needed, and focus on dis-
covering the constituent elements.

Our approach is to start by sampling tests randomly from
observed trajectories. We then improve those tests by com-
puting the gradients of information with respect to the pa-
rameters of the tests, and performing steepest ascent in pa-
rameter space.

5.1 Generalized Information Measures
Our goal is to maximize the mutual information between

state S and the future F :

I(F ; S = f(H; Θ)) = H(F ) + H(S) − H(F, S) ,

but it is too difficult to optimize Shannon information di-
rectly. However, Kapur [5] has argued that if the aim is
not to compute an exact value of information, but rather to
extremize information, generalized measures of information
may be used. These have the same maxima and minima, but
may fit other design parameters better (for example, they
may be computationally cheaper). We also wish to make as
few assumptions about the form of the densities as possible.

Finding an easily optimizable, generalized information mea-
sure while making few assumptions about the density is a
problem that has been dealt with by the entropy optimiza-
tion community. The solution that has emerged in the liter-
ature has been to 1) use a generalized information measure
based on generalized entropies, and 2) use a kernel density
estimate with a Gaussian kernel [8][13][3]; this is why we
chose to model our densities with Gaussian kernel density
estimation.

By far, the most popular generalized entropy in use is
Renyi’s entropy, which is defined as:

HRα(X) =
1

α − 1
log

Z

p(X)αdX

This measure generalizes Shannon’s entropy, because in the
limit as α approaches 1, Shannon’s entropy is recovered.

The choice of α = 2 yields quadratic Renyi entropy:

HR2
(X) = − log

Z

p(X)2dX (2)

which we will write as H(X) when it is clear from context
that Renyi entropy is intended. In conjunction with kernel
density estimation and a Gaussian kernel, Eq. 2 can be
evaluated in closed form, as explained next.

5.2 Identities and Derivatives Necessary
Here, we outline our particular choices of information mea-

sure, entropy measure and density estimate. As discussed
previously, our objective is to maximize

I(F ; S = f(H; Θ)) = H(F ) + H(S) − H(F, S)

by tuning the parameters Θ. We will adopt a steepest gra-
dient ascent strategy1:

Θ = Θ + η
∂I

∂Θ
= Θ + η

X

i

∂I

∂si

∂si

∂Θ
(3)

where η is a learning rate. We can take derivatives of I
with respect to the parameters directly, or we can invoke
the chain rule and take derivatives with respect to state
variables first (as shown in the right-hand side of Eq. 3).
These are equivalent formulations of the derivatives.

There are two quantities we must compute: ∂I
∂si

and ∂si

∂Θ
.

5.2.1 Information change wrt. state samples
We begin by taking derivatives of information with respect

to individual state samples:

∂I

∂si
=

∂H(F )

∂si
+

∂H(S)

∂si
−

∂H(F, S)

∂si

=
∂H(S)

∂si
−

∂H(F, S)

∂si

This will result in a vector describing which way sample i
wishes to move in order to increase information. The en-
tropy measure that we will use is quadratic Renyi entropy:

H(X) = − log

Z

p(X)2dx

= − log

Z

 

1

N

X

j

G(X − xj ; σ
X
j )

!2

dX

= − log
1

N2

X

ij

G(xi − xj ; σ
X
i + σX

j )

where we have used the identity
Z

G(X − xi; σi)G(X − xj ; σj)dX = G(xi − xj ; σi + σj).

Similarly, a joint density can be written as:

H(X, Y ) = − log
1

N2

X

ij

G(xi−xj ; σ
X
i +σX

j )G(yi−yj ; σ
Y
i +σY

j ).

The nice thing about these choices of entropy and density
estimator is that we have a closed-form expression which
has reduced to computing pairwise interactions between the
data points used to construct the density. Note that there

1More sophisticated numerical methods using these gradi-
ents are also possible; in our experiments, steepest ascent
outperformed them, and is simpler to explain.
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Figure 2: A toy data distribution (left), the resulting information landscape as a function of test value (right)
and the trajectory taken by the gradient optimizer (center).

is no approximation in this integral, apart from the use of a
kernel density estimate to begin with.

Another useful identity involves the derivative of a Gaus-
sian:

∂

∂xi
G(xi − xj ; Σ) = −G(xi − xj ; Σ)(Σ−1)(xi − xj)

which we use to find the gradients of information:

∂H(S)

∂si
=

2

H(S)

X

j

G(si − sj ; σ
S
i +σS

j )(σS
i +σS

j )−1(si − sj)

and similarly

∂H(F, S)

∂si
=

2

H(F, S)

X

j

G(si − sj ; σ
S
i + σS

j )

G(fi − fj ; σ
F
i + σF

j )(σS
i + σS

j )−1(si − sj)

5.2.2 State sample changes wrt. parameters
Finally, we need to compute the change in sample si with

respect to the parameters Θ. Up to this point, none of
the math that we have laid out says anything about pre-
dictive representations of state, and applies equally well to
any parametric mapping from past to state. We will now
introduce the choices that make this a PSR. Recall that
si = f(hi; Θ). si is a vector, the j’th component of which is
the prediction of test tj :

sj
i = p(tj |hi) =

p(hi, tj)

p(hi)

=
1
N

P

k G(hi − hk; σH
k )G(tj − fk; σF

k )
1
N

P

l G(hi − hl; σH
l )

=
X

k

n(hi)kG(tj − fk; σF
k )

where we have summarized the conditioning of the past into
a function n (which only depends on hi, and not on tj).

As noted, the parameters of our f are the tests themselves.
We can compute the partial of a given state variable with
respect to the test values that generated it:

∂sj
i

∂tj
= −

X

k

n(hi)kG(tj − fk; σF
k )(σF

k )−1(tj − fk).

This completes the math that we require.

5.3 Example: A Toy Data Set
Here we consider a toy data set to illustrate the concepts

of information and gradients, and to clarify exactly what
the parameters are that we are trying to find. Consider one
particular system dynamics distribution p(H2F 1) from an
unspecified dynamical system. The system is uncontrolled,
and observations are one-dimensional, so the distribution is
three-dimensional, with two of the dimensions correspond-
ing to “history” dimensions and one dimension correspond-
ing to a “future” dimension. Samples from the distribution
are shown in the leftmost panel of Figure 2 (we are only
pretending that this data comes from a dynamical system;
in reality, the data is from six Gaussian clusters in R

3).
Suppose we decide to use two tests to summarize history.

We will denote the prediction of test 1 as p(F = l|H), and
the prediction of test 2 as p(F = k|H). Thus, our state
is two-dimensional, and there are two parameters: l and k.
Given particular values for l and k, we can compute the
mutual information between F and S.

We wish to find the two best parameters to maximize
I(F |h; S = f(h)). The rightmost panel of Figure 2 shows
mutual information between state and the future as a func-
tion of the parameters. This information landscape high-
lights a few points of interest: values for l and k which are
very far away from the high-density areas of the data (say,
l = −1, k = −1) have low information content. It also shows
that when l and k have the same value, no new information
is added – in other words, the predictions are redundant.

The middle panel shows the results of the gradient opti-
mization starting the tests at [l = −1, k = −1.4], and end-
ing at the star (it does not climb quite as one might expect
because of the use of homotopy optimization, as discussed
later). The gradient optimizer indeed moves the tests from
regions of low information to regions of high information.

6. STATE UPDATING
Finally, we address the question of state updating. From a

given history, we can estimate the densities of our core tests
p(T |h) using our estimates of the system dynamics distribu-
tions. With a new action and observation, we must update
state to compute p(T |hao). There are two possibilities.

Bayesian Inversion. By direct analogy to Eq. 1, we can
perform the state update using Bayesian inversion:

p(tj |hao) =
p(aotj |h)

p(ao|h)



Figure 3: The autonomous robot domain. Arrows
on the map correspond to viewpoints.

where we could use the system dynamics distributions to
compute the needed densities. However, we prefer to find
a recursive solution: we wish to update state in terms of
previous state. Since state is sufficient for history, we can
equally well model

p(tj |hao) =
p(aotj |Sh)

p(ao|Sh)
=

p(Sh, a, o, tj)

p(Sh, a, o)

using the same tools of density estimation:

p(Sh, a, o, tj)

p(Sh, a, o)
=

P

j G(Sh − sj)G(a − aj)G(o − oj)G(tj − tj)
P

j G(Sh − sj)G(a − aj)G(o − oj)

where we assume that we have joint samples of state, action,
observation, and future, as discussed in Fig. 1.

Conditional Regression. Another option is to adopt a
function approximation view: we wish to compute p(tj |Shao)
as a black-box function of state, action, and observation:
p(tj |Shao) = ftj

(Sha, o, ). Most function approximators at-
tempt to approximate E [Y |X], which we can compute di-
rectly using the distributions (using S′ to represent the new
state following S, a, o):

E
ˆ

S′|S, a, o
˜

=

P

j G(S′ − s′j)G(a − aj)G(o − oj)G(S − Sj)
P

j G(a − aj)G(o − oj)G(S − sj)

(4)
where we again assume we have samples of the needed joint
densities, as discussed in Fig. 1.

7. EXPERIMENTS AND RESULTS
We have introduced several new ideas and made many

design choices. Here, we present some experiments designed
to explore the decisions we have made. We tested on two
problems: a bouncing ball, and a simulated autonomous
robot.

The Bouncing Ball. The first domain is an uncon-
trolled, nonlinear, two-dimensional dynamical system con-
sisting of a ball bouncing. The ball bounces vertically, with
a damped restitution when it strikes the floor. True hidden
state is the position and velocity of the ball; only position
is observed.

To model this system, we made an assumption: we use
a suffix-history with a history of length 3 and a future of
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Figure 4: Information vs. one-step MSEs.

length 3 (we also model the one-step extended distribution
with a history of length 3 and a future of length 4 for the
Bayesian inversion state update). This is a choice based
on intuition and experimentation (in general, more sophis-
ticated methods of selecting which distributions to use are
needed). Different experiments used different numbers of
tests, as explained later.

We trained on 2,000 data points. We initialized the state
of the system to a random position and velocity, and ran
the system for several timesteps; we then sliced the resulting
trajectory into samples using suffix-history.

The Autonomous Robot Domain. The second do-
main is more challenging: a simulated autonomous mobile
robot in a 2D maze. The domain is controlled, nonlinear,
and partially observable; no a priori knowledge about the
domain is given to the agent. The robot has two contin-
uous actions (the amount by which to rotate and amount
by which to move forward/backward), and continuous state
coordinates (position x, y and orientation θ). The robot is
located in a maze with obstacles and brightly colored walls.
The observation is generated as follows: the agent’s camera
initially samples a 64x64 full color image, but the agent ex-
tracts a single feature from the image: the dominant color
in the center of the image (done by convolving with a Gaus-
sian). Observations are therefore three dimensional (consist-
ing of rgb color values). With full camera images, about 80%
of the states can be disambiguated through an observation,
but with the reduction to a single color, the observability is
severely reduced. Figure 3 shows representative camera im-
ages, as well as the map used. All actions are deterministic.

The training data is a single long trajectory of actions and
observations (100,000 samples, generated with a movement
policy that was a smoothed version of random exploration).
Again, we assumed that length 3 histories and length 3 fu-
tures were sufficient. In this case, both history and future
are 15-dimensional vectors (3 steps of history x (2 action
dimensions + 3 observation dimensions)). The gradient op-
timizer used a subset of 10,000 samples; testing used the full
100,000 (either size data set is feasible with [and only with]
the Nystrom approximations discussed in Section 7.2).

Error measure. We evaluate based on mean-squared
error of the one-step predictions. That is, at each timestep,
the agent is asked to predict the expected next observation.
The true observation is given; there is some error, which
we square. The mean is taken over the length of the test
sequence. The absolute value of the MSE is not important;
but rather the difference before and after application of the
gradient optimizer.
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Figure 5: Improving tests on the ball domain.

Implementation. We used the optimizations discussed
in Section 7.2. We used a Nystrom-based gradient optimizer
with 100 landmarks. We used the same homotopy schedule
(λ = [500, 200, 100, 60, 20, 5, 1]) for both problems, and set
stepsizes such that the norm of the gradient vector was be-
tween 0.5 and 0.01 (depending on λ). All samples used the
same covariances; this simplifies the math further.

7.1 Results
First, we directly test the hypothesis of the paper: that

there is a correlation between higher information (between
state and the future) and lower MSE of one-step predictions.
To explore this, we sampled 1,000 random three-step tests
in the ball domain. For each, we computed the MSE of
using those tests to generate states, as well as the mutual
information of states with the future. Figure 4 plots the
resulting MSEs versus information (and is fit with a 3rd
degree polynomial). There is an obvious correlation, which
suggests that the idea of using Renyi entropy to solve the
discovery problem may be feasible.

We next ask: does the information gradient optimizer
work? We explored this question for both domains. For
each domain, we fixed the number of core tests. We ran-
domly sampled that many tests and computed the MSE of
using them to generate states. We then optimized the tests
with the gradient method, used the improved tests to gener-
ate states, and again computed the MSE. This was done for
different numbers of core tests. Figure 5 shows results for
the ball domain, while Figure 6 shows results for the vision
domain. The number of tests used is the horizontal axis,
while MSE of random and optimized tests is shown on the
vertical axis.

The results are very encouraging. Both figures demon-
strate the same behavior: not only does the optimizer con-
sistently find tests which generate lower MSEs, it also re-
duces variance in the MSE. This is because the homotopy
optimizer was able to consistently locate almost the same
points, regardless of initial conditions. In the ball domain,
the variance is particularly high for the randomly sampled
tests. Sometimes, a bad set of tests can result in a catas-
trophic run of the system, resulting in very high MSE; the
optimized tests never showed this behavior. Figure 7 illus-
trates this behavior. Note that the random tests, with few
exceptions, never performed as well as the optimized tests.
It is possible that this is because the optimized tests are not
constrained to lie on the manifold of observed trajectories.
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Figure 6: Improving tests on the robot domain.

We conducted other experiments which are not reported
in detail here. We noticed, for example, that there was gen-
erally not a difference between Bayesian inversion and con-
ditional regression, except that the inversion method some-
times had higher variance.

7.2 Practical Considerations
We found that learning from large datasets was impossible

without the addition of additional computational tools. We
found the following techniques indispensable.

Homotopy optimization. As with all gradient meth-
ods, ours is guaranteed to only find a local maximum. How-
ever, the local maximum can be improved by “smoothing”
the information landscape, and finding a local optimum of
the smoothed landscape, and then gradually unsmoothing
the landscape while continuing to optimize. This is known
as homotopy optimization (or deformation optimization) be-
cause it uses a homotopy, which is a continuous transforma-
tion of an easy optimization problem into a hard one.

We accomplish this by smoothing test predictions: in-
stead of computing p(T |h) =

P

G(T − fk|h, σT ), we com-
pute p(T |h) =

P

G(T − fk|h, λσT ). Using λ to scale the
variance effectively makes test predictions look more simi-
lar, which has the side effect of smoothing the information
landscape. By gradually reducing λ while taking gradient
steps, a much better optimum is achieved.

Nystrom approximations. The complexity of the
gradient computations is quadratic in the number of data
points. One of the keys to scalability is the observation
that the Gaussian used in our kernel density estimator is
also a Mercer kernel. This means that Nystrom approx-
imations can be used to simplify expressions of the form
E =

P

ij G(xi − xj ; Σ) = 1T G1, where G is a matrix with

Gij = G(xi − xj ; Σ) and 1 is an appropriately sized column
vector of ones.

Nystrom approximations work by selecting a number of
“landmark” points: instead of computing a Gaussian of ev-
ery point with every other point (Gij), we compute the
Gaussians with respect to a set of landmarks. Let Vik =
G(li−xk; Σ) be a matrix containing the kernel of every data
point with each landmark li, and let Mkl = G(lk − ll; Σ) be
a matrix containing the kernel of every landmark with ev-
ery other landmark. Then E ≈ (1T V T )M−1(V 1), and we
see that the expression V T M−1V is effectively a low-rank
approximation of the matrix G.

The complexity of this method is O(d3 + nd), where n
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Figure 7: Top: a catastrophic run using random
tests. Bottom: optimized tests avoid catastrophe.

is the total number of samples and d ≪ n is the number
of landmark points. The complexity of the naive version is
O(n2). Landmark points can be selected in a variety of ways;
a good way is the dictionary-based methods of Engel [2],
which ensure that the landmarks are linearly independent,
and therefore that M is invertible.

8. RELATED WORK
The only other known extension of PSRs to the continu-

ous case is the Predictive Linear-Gaussian model (or PLG)
[11]. The PLG operates on a discrete time, linear dynamical
system (LDS). An LDS is defined by a linear state update
equation, and a companion observation process in which the
observation is a (different) linear function of state. Both the
transitions and observations can be corrupted with mean-
zero Gaussian noise. These are the same assumptions used
by the Kalman filter. The original PLG operated on linear,
uncontrolled systems; the cPLG [10] operated on controlled
linear systems, and the KPLG and MPLG operated on un-
controlled, nonlinear systems [15, 16]. However, no work has
been done on the controlled, nonlinear case. This work fills
that gap, but from a very different perspective.

9. CONCLUSIONS AND FUTURE WORK
We have extended PSRs to the continuous case with two

core ideas: we have replaced the system dynamics matrix
with the system dynamics distributions, and we have re-
placed the idea of using rank analysis to find sufficient statis-
tics with ideas from information theory. We have argued
that mutual information can help quantify the sufficiency of
a candidate state representation; because information can
be optimized, the representation can be improved.

We have also made several contributions on the algorith-
mic side, where there is a nice synergy between the elements:
we started by using kernel density estimation to estimate the
system dynamics distributions. Not only is it a nonparamet-
ric estimator, but it leads to closed-form expressions for mu-
tual information. In addition, we can compute gradients of
information with respect to test parameters in closed-form,
which allows us to help solve the discovery problem. Both
measuring information and computing gradients can be ap-
proximated efficiently; the resulting algorithms can handle
tens or hundreds of thousands of data points.

Empirically, our ideas seem viable. Our continuous PSRs
are a reasonable model of the dynamical systems presented,

which includes an example of an agent embodied in a com-
plex environment. There appears to be a correlation be-
tween mutual information and MSE which our optimization
procedure exploits; experimentally, it reduces both the MSE
of one-step predictions and the variance of the MSE.

There are still many open problems. Future work will
address questions such as picking test and history dimen-
sionality, and how to best exploit graphical structure in the
system dynamics distributions.
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